Essential Introduction Essential Introduction

Essential Introduction to the NAG C Library

This document is essential reading for any prospective user of the Library
Contents:

1. The C Library and its Documentation
1.1. Structure of the Library
1.2. Structure of the Manual
1.3. Marks of the Library
1.4. Implementations of the Library
1.5. Library Identification
1.6. C Language Standards

2. Using the Documentation
2.1. Structure of Function Documents

3. Using the Library
3.1. General Advice
3.2. Programming Advice
3.3. Use of NAG Long Names
3.4. Input/Output in the Library
3.5. Auxiliary Functions
3.6. NAG Error Handling and the fail Parameter
3.7. Approach to Underflow and Overflow

4. Optional Function Parameters in the NAG Library
4.1. Use of optional parameters
4.2. Memory management
4.3. Reading option values from a file
4.4. Results printout

5. Summary for New Users
6. Contact Between Users and NAG
7. References

Appendix: NAG Header Files

[NP3275/5/pdf] 1.essint.

Essential Introduction NAG C Library Manual

1.1.

1.2.

1.3.

1.4.

The C Library and its Documentation

Structure of the Library

The NAG C Library is a collection of C functions for the solution of numerical and statistical
problems. It is divided into chapters, each containing a set of functions devoted to a particular
branch of numerical or statistical analysis. Generally each chapter has a three-character name and
a title, for example

¢c06 — Fourier Transforms

but exceptionally chapters f and s have one-character names. The chapters and their names are
based on the ACM modified SHARE classification index (see Section 7, References).

All documented functions have two names. One is based on the SHARE index classification and
consists of a six-character name which begins with the characters of the chapter/subchapter name,
for example

c06ebc

The letters of this type of function name are always lower case, the second and third characters
being digits and the last letter being c. This function name is referred to as the short name. Each
function (except the Linear Algebra Support functions in Chapter f06) also has a more meaningful
and longer name, for example

nag_fft_hermitian

which we refer to as the long name. The long name may be used as an alternative to the short
name when calling the function. See Section 3.3 for further details.

Structure of the Manual

The NAG C Library Manual is the principal documentation for the NAG C Library and it has the
same chapter structure as the Library. Each chapter of functions in the Library has a corresponding
chapter of the same name in the Manual and they appear in alphanumeric order. Library functions
are sometimes termed routines in the text, particularly where confusion with the mathematical
term function could arise.

Each chapter contains a Chapter Introduction and a set of documents, one for each user-callable
function in the chapter. A function document has the same long name and short name as the
function which it describes. The documents are ordered alphanumerically using the short function
name.

Marks of the Library

The current NAG C Library is Mark 5 of the Library. Periodically, new Marks of the C Library
will be released — Mark 6, Mark 7, and so on — as new functions are added to the Library and
improvements or corrections are made to existing functions. At each Mark the documentation of
the Library will be updated; it is important that the Mark of the documentation used is consistent
with the Mark of the Library software you are using.

The Library may be updated between Marks to an intermediate maintenance level so that
corrections can be incorporated. Maintenance levels are indicated by a letter following the Mark
number, e.g. 5A, 5B, and so on.

Implementations of the Library

The NAG C Library is available for use on different computer systems. For each distinct system,
an implementation of the Library is prepared by NAG. An implementation is usually specific to
a range of machines (e.g. Sun SPARCstations); it may also be specific to a particular operating
system, C compiler, or compiler option. The implementation distributed to sites includes a tested
compiled library.

Essentially the same facilities are provided in all implementations of the Library, but, because of
differences in arithmetic behaviour and in the compilation system, functions cannot be expected to
give identical results on different systems, especially for sensitive numerical problems.

The documentation supports all implementations of the Library, with the help of a few simple
conventions, and a small amount of implementation-dependent information, which is provided in a
separate Users’ Note for each implementation.

1.essint.2 [NP3275/5/pdf]

Essential Introduction Essential Introduction

1.5.

1.6.

2.1.

Library Identification

The Mark and implementation of the C Library you are using may be found by calling the NAG
C Library function nag-implementation_details (a00aac) from a C program. An example of the
output of nag_implementation_details (a00aac) is:

*xx NAG C Library Implementation **x*
Sun4 (SPARC)
Implementation code (CLSU405DA)
Mark 5

C Language Standards

All functions in the Library conform to the de facto C language standard defined in Kernighan and
Ritchie (1978) (referred to as K&R in this document), with the following extensions:

use of enumerated types,

passing of structure arguments to functions,

functions which have a structure as the returned value,

void data type functions.
In addition, the following features from ANSI C, are used by ANSI C compilers only (see Kernighan
and Ritchie (1988)):

function prototypes,

ANSI style function definitions,

void pointers,

const keyword,

ANSI data types ptrdiff_t and size_t.

The preprocessor is used to select the ANSI C or K&R features appropriate to the compiler.

Using the Documentation
The Manual is designed to serve the following functions:

(i) to give background information about different areas of numerical and statistical computation;
(ii) to advise on the choice of the most suitable NAG Library function or functions to solve a
particular problem;
(iii) to give all the information needed to call a NAG Library function correctly from a C program
and to assess the results.

The Chapter Introductions contain general advice on a suitable choice of function. When you have
chosen a function, you must consult the relevant document. Each function document is essentially
self-contained (it may contain references to related documents). It includes a description of the
method, detailed specifications of each parameter, explanations of each error exit, remarks on
accuracy and an example program to illustrate the use of the function.

Structure of Function Documents
Each function document is subdivided into the following sections.

Purpose

A concise description of the purpose of the function.

Specification

An ANSI C declaration of the function together with a list of the include files required for the use
of the function.

Description

A description of the operation(s) carried out by the function, together with background information.

Parameters

Each parameter is listed. The parameter type is given if it is not explicitly stated in the specification
section and, if relevant, the minimum array size. The input/output properties of the parameter

[NP3275/5/pdf] Lessint.3

Essential Introduction NAG C Library Manual

3.1.

3.2,

are explained together with its purpose. Any constraints on the parameter value are also stated.
If a function is called with an invalid value of a parameter, the function will usually take an error
exit, producing an error message on the C standard error stream stderr if error message printing
is requested (see Section 3.6 on NAG Error Handling).

Error Indications and Warnings

This section lists all possible error exits with the appropriate NAG error code. Where necessary,
further advice is given to help the user correct the error.

Further Comments

Notes on the accuracy of the function, timing information and other comments.

References

List of references which give background information relevant to the function.

See Also

Cross references to other similar or complementary NAG C Library functions.

Example

Each function has a simple example program, if appropriate, showing its use; input data (if required)
and base results are also listed. These programs and their data may be available on-line at your
installation, and users are encouraged to use them as a basis for their own calling programs. Please
note that the example results from different implementations of the Library may in some cases
differ slightly from each other and from those printed in the Manual.

In Chapters e04 and gl3 the more complex functions have function documents with additional
sections; these describe the optional function arguments and printing facilities and may also give
additional information on the operation of the algorithm. These documents have two example
programs, the first of which appears after the section describing the mandatory parameters, and
the second at the end of the document.

Additionally some of the functions in Chapters g02 and g13 have two example programs, illustrating
the more complex use of these functions.

Using the Library

General Advice

A numerical routine cannot be guaranteed to return meaningful results irrespective of the data
supplied to it. Care and thought must be exercised in:

(a) formulating the problem and choosing appropriate NAG C function(s),
(b) producing a C program to call the required NAG C function(s) correctly,
(c) assessing the significance of the results.

Advice on points (a) and (c) is given in the Chapter Introductions and function documents; point
(b) is discussed below.

Programming Advice

When a suitable NAG function has been selected, the function must be called from the C Library
via a suitable user-written C program, the calling program. This Manual assumes that the user
has sufficient knowledge of the C programming language to be able to write such a program. Each
C Library function document contains an example of a suitable calling program (see Structure of
Function Documents above) and one of these example calling programs is repeated below.

Example program to call NAG C Library function nag_real_eigensystem (f02agc).

/* nag_real_eigensystem(f02agc) Example Program

*
* Copyright 1989 Numerical Algorithms Group.
*

* Mark 1, 1990

*/

1.essint.4 [NP3275/5/pdf]

Essential Introduction Essential Introduction

3.2.1.

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagf02.h>

#define NMAX 4

#define TDA NMAX

#define TDV NMAX

#define COMPLEX(A) A.re, A.im

main()
{
Integer i, j, n;
double a[NMAX] [TDA];
Complex r[NMAX], v[NMAX] [TDV];
Integer iter [NMAX];

Vprintf ("f02agc Example Program Results\n");
Vscanf ("%*["\nl"); /* Skip heading in data file */
Vscanf ("%1d", &n);

if (n<1 || n>NMAX)
{
Viprintf (stderr, "n is out of range: n = %51d\n", n);

exit (EXIT_FAILURE);
}
for (i=0; i<n; i++)
for (j=0; j<mn; j++)
Vscanf ("%1f", &alil [j1);
f02agc(n, (double *)a, (Integer)TDA, r, (Complex *)v,
(Integer)TDV, iter, NAGERR_DEFAULT);
Vprintf ("Eigenvalues\n") ;
for (i=0; i<n; i++)
Vprintf (" (%7.3f, %7.3f) \n", COMPLEX(r[i]));
Vprintf ("\nEigenvectors\n") ;
for (i=0; i<n; i++)
for (j=0; j<m; j++)
Vprintf("(%7.3f, %7.3f) Y%s", CDMPLEX(V[i][j]),
(J%4==3 || j==n_1)? "\Il" .o n);
exit (EXIT_SUCCESS);
}

When writing a calling program, a number of environmental features common to all such NAG
programs must be observed in addition to specific features which are relevant to the particular
NAG function being called. These features are discussed below; the user should refer to the
above example calling program while studying the description of these features. Users are also
recommended to pay particular attention to the specification of the function parameters, array
sizes and array indices.

The NAG C Environment

The environment for the NAG C Library is defined in a number of include files; a complete list is
given in the Appendix to this Introduction. The most important of the header files is <nag.h>,
which must be included in any program that calls a NAG C Library function and must precede any
other header file.

These include files are normally located in the standard directory for C include files. The exact
location is installation dependent; please see the Users’ Note or other local documentation.

The file nag . h defines data types and error codes used in the NAG C Library together with a number
of macros used in example programs. File nag.h also contains the definitions for the input/output
and string handling functions Vscanf, Vprintf, Vfprintf, Vsprintf, Vstrcpy which are the C
functions scanf, printf etc. cast to void.

The user may also need to include the header files nag_stddef.h and nag_stdlib.h in the calling
program; see part (a) of the Appendix to this Introduction.

[NP3275/5/pdf] Lessint.5

Essential Introduction NAG C Library Manual

3.2.1.1. NAG Data Types

Integer
This data type is used for almost all integer parameters to NAG C Library functions. It is normally
defined to be long.
Boolean
This data type is used for all parameters that take a true or false value. It is defined to be the
shortest practical integer type, usually char. If TRUE and FALSE have not previously been defined,
then the following definitions are used:

#define TRUE 1

#define FALSE O

Complex
This data type is a structure defined for use with complex numbers:

typedef struct {double re, im;} Complex;

Pointer

This data type represents a generic pointer and is defined either as void * for those compilers that
define void * or char * otherwise.

Nag_User

This data type is a structure containing a generic pointer used for communicating information
between a user defined function and the user’s calling program, where the user defined function is
supplied as an argument to the NAG function. This avoids the necessity of using global variables
for such communication. A brief example of use (taken from the Chapter d02) is given below:

struct user
{ double xend, h;

Integer k;
main()
{
Integer neq = 3;
double x = 0.0, tol = 0.0001, y[3] = {1.0, 0.0, 0.0};
Nag_User comm;
struct user s;
comm.p = (Pointer)&s; /* assign address of user defined structure to comm.p */
s.xend = 10.0;
s.k = 4;
s.h = (s.xend-x) /(double) (s.k+1);
d02ejc(neq, fcn, NULLFN, &x, y, s.xend, tol, Nag_Relative,
out, NULLDFN, &comm, NAGERR_DEFAULT);
}
static void out(Integer neq, double *xsol, double y[], Nag_User *comm)
{
Integer j;
struct user *s = (struct user *)comm->p;
Vprintf ("%8.2f", *xsol);
for (j=0; j<3; ++j)
Vprintf ("%13.5f", y[j1);
Vprintf ("\n");
*xs0l = s->xend - (double)s->k * s->h;
s->k—-;
}

Enumeration Types

A number of enumerated types are defined in <nag.h> for use in calls to various C Library functions.
Users must use these enumerated types in their calling programs.

1.essint.6 [NP3275/5/pdf]

Essential Introduction Essential Introduction

Other structure types

A number of structures have been defined to facilitate calls to NAG functions. These are described
in the relevant function documents.

3.2.1.2. Memory management in the Library

Memory is frequently dynamically allocated within NAG C Library functions. All requests for
memory are checked for success or failure. In the unlikely event of failure occuring the Library
function returns or terminates with the error state NE_LALLOC_FAIL (details of error handling in
the Library are given in Section 3.6).

The macros NAG_ALLOC and NAG_FREE are defined to select suitable memory management functions
for the NAG C Library. NAG_ALLOC has two arguments, the first specifies the number of elements
to be allocated while the second specifies the type of element. The statement

p = NAG_ALLOC(n, double);

allocates n elements of memory of type double to p, a pointer to double.

NAG_FREE frees memory allocated by NAG_ALLOC, its single argument is the pointer which specifies
the memory to be deallocated. The statement

NAG_FREE(p) ;
deallocates memory pointed to by p.

These macros are defined in the header file nag_stdlib.h which must be included if these macros
are used in the calling program. NAG_FREE must be used to free memory allocated and returned
from a NAG function. If memory is allocated using NAG_ALLOC for whatever reason, it must be
freed using NAG_FREE.

3.2.1.3. Arrays

One-dimensional Arrays

One-dimensional arrays are passed to NAG functions as pointers to the first element of the array,
e.g. arrays r and iter in the example program at the start of Section 3.2. The size of the array must
be at least as large as that required by the problem; in the example call to nag_real_eigensystem
(f02agc) n is the size of the problem, so the array iter must have n or more elements. Constraints
upon array sizes are given in the individual function documents.

Two-dimensional Arrays

A two-dimensional array is passed to a NAG C Library function as a pointer to the start of a
contiguous block of storage (i.e. a single vector) which should contain the elements of the array in
the usual C order (i.e. in row order). Because the C language ensures that two-dimensional arrays
are held in memory with data stored contiguously, such an array can, like one-dimensional arrays,
be passed as a pointer to the first element as long as an appropriate cast is applied. For example,
a two-dimensional array of type double, d_array, defined in the calling program must be cast to
(double *)d_array in the call to the NAG C function. See arrays a and v in the example program
at the start of Section 3.2.

Dynamically allocated ‘two-dimensional’ arrays should always be allocated as one-dimensional
arrays, e.g. a dynamically allocated version of the array a in the example program, having
dimensions n and tda determined at run time, should be allocated as a single block of storage
of length n*tda thus:

a = NAG_ALLOC(n*tda, double);
To aid in the correct access of a given element of the array in the calling program, the definition of

a macro such as
#define A(I,J) al[(I)*tda + (J)]

is recommended. This allows the use of an expression such as A(i,j) to access an element of the
notional two-dimensional array a.

The example call to nag_real eigensystem (f02agc), suitably modified to use dynamically allocated
arrays is shown below:

/* nag_real_eigensystem(f02agc) Example Program
*

* Copyright 1989 Numerical Algorithms Group.
*

[NP3275/5/pdf] Lessint.7

Essential Introduction NAG C Library Manual

* Mark 1, 1990.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagf02.h>

#define A(I,J) al[(I)*tda + (J)]
#define V(I,J) v[(I)*tda + (J)].re, v[(I)*tda + (J)].im
#define R(I) r((I)].re, r((I)].im

main()

{
Integer i, j,
double *a = 0;
Complex *r = 0, *v = 0;
Integer *iter = 0;
Integer tda, tdv;

n;

Vprintf ("f02agc Example Program Results\n");
/* Skip heading in data file */

Vscanf ("%*["\n]");

Vscanf ("%1d", &n);

tda = n;

tdv = n;

a = NAG_ALLOC(n*tda, double);
r = NAG_ALLOC(n, Complex) ;

v = NAG_ALLOC(n*tdv, Complex);

iter = NAG_ALLOC(n, Integer);

if Cla |l 'r || 'v || 'iter)
{
Viprintf (stderr, "Memory allocation failed\n");
exit (EXIT_FAILURE);
}

for (i=0; i<n; i++)
for (j=0; j<m; j++)

Vscanf ("/41f", &A(i,3));
nag_real_eigensystem(n, a, tda, r, v, tdv, iter, NAGERR_DEFAULT);
Vprintf ("Eigenvalues\n") ;
for (i=0; i<n; i++)

Vprintf (" (%7.3f, %7.3f) \n", R(i));
Vprintf ("\nEigenvectors\n") ;
for (i=0; i<n; i++)

for (j=0; j<m; j++)

Vprintf (" (%7.3f, %7.3f) %s", V(i,j),
(J%4==3 || j==n_1)? "\Il" .o n);

NAG_FREE(a) ;
NAG_FREE(r);
NAG_FREE(v) ;
NAG_FREE(iter);
exit (EXIT_SUCCESS);

Further parameters to nag_real_eigensystem (f02agc) define the size of the problem (in the example
this is n) and the size of the second dimension of the array (tda and tdv in the example). The
user must ensure that the second dimensions are at least as large as n (the size of the problem).
The particular size constraints will be given in the function document. The second dimension
information is essential if the function called is to access the correct array elements. The user must
also ensure that the leading dimension of the array is sufficiently large for the problem (i.e., as large
as n in this example) even though the leading dimension is not passed; normally the problem size
in this respect will be represented by the required number of rows in the matrix.

1essint.8 [NP3275/5/pdf]

Essential Introduction Essential Introduction

3.2.1.4. Chapter header files

3.3.

3.4.

3.5.

3.6.

3.6.1.

3.6.2.

Chapter header files contain the function declarations for the NAG C library with ANSI function
prototyping and the alternative K&R style. It is strongly recommended that the appropriate
chapter header file be included for each NAG function called by your program. For example, to
call the function nag_fft_complex (cO6ecc) the chapter header file nagc06.h should be included as

#include <nagc06.h>

The naming convention is to prefix the first three characters of the function name in lower case
by nag and use .h as the postfix as in normal C practice, except that all functions in Chapter s
use the header file nags.h. Note that there are six separate header files for functions in Chapter
f: nagf01.h, nagf02.h, nagf03.h, nagf04.h, nagf06.h and nagf07.h. See also the Appendix to
this document.

Use of NAG Long Names

The long names are defined in the header file nag names.h. Users should note that the short
function names given in upper case in this file are #defines and therefore the corresponding long
names will not require a terminating pair of brackets. These declarations are to be found in Chapter
x01 and x02 header files. As the header file nag names.h is already included in nag.h users need
not include nag names.h in their calling programs.

Input/Output in the Library

NAG C Library functions output all error and warning messages to the C standard error stream
stderr. Chapters e04, g02 and gl3 will optionally output results to the C standard output stream
stdout or to an alternative user-specified file. A number of functions in the Optimization (e04)
and Operations Research (h02) areas read input from external files.

Auxiliary Functions

In addition to the documented functions available to the user, the NAG C Library contains a much
larger number of auxiliary functions. Users do not normally need to concern themselves with these
functions, as they will automatically be called as required by the user-callable function selected by
the user. The function declarations of these auxiliary functions can be found in the relevant chapter
header files together with the user-callable function declarations.

NAG Error Handling and the fail Parameter

All functions that have error exits have a parameter that allows the user control over the printing
of error messages when an error is detected. There is a further option which allows users either to
continue running their program, having returned from the NAG function, or to stop with either
an exit statement or an abort within the NAG function. The different ways of using these error
handling facilities are described below.

Use of NAGERR DEFAULT

The simplest method of using the error handling facility is to put NAGERR_DEFAULT in place of
the fail parameter in calls to the NAG C functions. If an error is detected the appropriate NAG
error message is output on stderr and the program is stopped by the use of abort (in some
implementations the program may be stopped with exit rather than abort). This method of use
is illustrated in the above example program for nag real_eigensystem (f02agc). NAGERR_DEFAULT is
defined in <nag.h> as (NagError x)O0.

Use of the fail parameter

The two remaining ways of using the NAG error handling facility both involve defining the fail
parameter in the calling program. The fail parameter is of type NagError which is a structure
defined in <nag_types.h> as:

typedef struct {
int code;
Boolean print;
char message [NAG_ERROR_BUF_LEN];
Integer errnum;
#ifdef NAG_PROTO
void (*handler) (char*,int,char*);

[NP3275/5/pdf] Lessint.9

Essential Introduction NAG C Library Manual

3.6.3.

#else

void (*handler) ();
#endif
} NagError;

where the symbol NAG_ERROR _BUF_LEN is normally defined to be 512.

This structure will contain the NAG error code and message on return from a call to a NAG
C Library function. The NAG error codes and associated NAG error messages are defined in
<nag_errlist.h>. A detailed description of the individual members of this structure is given
below (see Section 3.6.3).

The NAG error parameter fail is declared in the calling program as:
static NagError fail;

The address of the parameter is then passed to the NAG C function being called. The use of static
in the declaration is recommended as all members of the structure must be initialised before passing
the parameter to the called function, even though a member may not actually be required by the
user. As an alternative to the use of the storage specifier static the NAG defined macro SET_FAIL
may be used. This initialises fail but also sets the fail.print member to TRUE.

(a) Use of the fail parameter with the print member set to TRUE

If the user requires that the NAG error message be printed when an error is found, but that the called
function should return control to the calling program, then the fail parameter must be declared with
all members initialised and the print member set to TRUE. Use of the NAG defined macro SET_FAIL
with the statement SET_FAIL(fail); performs the appropriate assignments. Alternatively the
initialisation could be done by declaring the fail parameter with static (see the example declaration
above) and then setting fail.print to TRUE.

If no error occurs, fail.code will contain the error code NE_ZNOERROR on return from the called
function. However, if an error is found, the appropriate NAG error message will be output on
stderr before returning control to the calling program; fail.code will contain the relevant NAG
error code. The user must ensure that the calling program tests the code member of the fail
parameter on return from the NAG C function; the user may then choose whether to exit the
calling program or continue. See the example program for nag real svd (f02wec) for such a case.
The option of continuing may be advantageous if the results being returned are of some value even
when an error has been detected. In the case of nag_real svd (f02wec) the code could be altered to
allow the program to continue if the specific error code of NE_.QR_-NOT_CONYV occurs, as in such
a case useful partial results are returned (see the documentation for nag real svd (f02wec)).

(b) Use of the fail parameter with the print member set to FALSE

If the user does not wish the NAG error messages to be printed automatically when an error is
found then the fail parameter must be declared with all members initialised and the print member
set to FALSE. Use of static in the declaration of fail will automatically leave the print member as
FALSE.

This method is suitable for users who wish to produce their own error messages rather than use
the NAG C Library versions. Alternative error messages may be coded directly into the calling
program or be produced via a user-written error-handling function which is assigned to the handler
member of the fail parameter (see the description of handler member below).

The NagError structure
The individual members of the NagError structure are described in full below.

code

On successful exit, code contains the NAG error code NE_.NOERROR; if an error or warning has
been detected, then code contains the specific error or warning code. Error codes are prefixed with
NE_ whereas warning codes have the prefix NW_.

print
print must be set before calling any NAG C Library function with a fail parameter. It should be

set to TRUE if the NAG error message is to be printed, otherwise FALSE. It is not changed by the
NAG C Library function.

Lessint. 10 [NP3275/5/pdf]

Essential Introduction Essential Introduction

3.7.

message

On successful exit the array message contains the character string "NE_NOERROR:\n No error".
If an error has been detected, then message contains the error message text, whether or not this is
printed.

errnum

On successful exit, errnum is unchanged. For certain error or warning exits errnum will contain a
value specifying additional information concerning the error. For example if a vector is supplied
incorrectly, then errnum may specify which component of the vector is wrong. Cases where errnum
returns information are described in the relevant function documents.

handler

handler must be set to 0 if control is to be returned to the calling function after an error has been
detected. Otherwise it must point to a user-supplied error-handling function. An example of the
ANSI C declaration of a user-supplied error function (here called errhan) is:

void errhan(char *string, int code, char *name)

where string contains the NAG error message on input, code is the NAG error code and name is
the short name of the NAG C Library function which detected the error. If print (see above) is
TRUE, then the NAG error message is printed before the user-supplied error handler is called. If the
user-supplied error handler returns control, then the NAG error handler will return control to the
calling program; otherwise the user-supplied error handler may abort, exit or longjmp.

An elementary example of where this feature might be used is if it is preferred to print error
messages on stdout rather than the default stderr. In this case errhan could be defined as:

void errhan(char *string, int code, char *name)

{
if (code != NE_NOERROR)
{
Vprintf ("\nError or warning from %s.\n", name);
Vprintf ("%s\n", string);
}
}

Approach to Underflow and Overflow Conditions

The NAG C Library algorithms are generally written to avoid underflow and overflow by checking
that the input parameters are in the apppropriate range and taking other prudent measures when
evaluating certain expressions. However, not all expressions are checked as this would cause
excessive run-time overhead.

When underflow occurs, it is generally assumed to have no side effects. Most run-time environments
have some means of trapping or warning of floating point underflow. It is not recommended that
such facilities be enabled whilst using the NAG C Library.

Overflow can occur particularly when a problem is ill-posed. Such conditions are generally regarded
as terminal and are expected to be trapped as such by the run-time environments.

Optional Function Parameters in the NAG Library

Some of the more sophisticated functions in the NAG C Library use algorithms which require a
large number of parameters to be set before use. To avoid having an excessively long argument
list and yet allow the user control over these parameters, an ‘option setting’ facility is provided for
these functions.

The least used of the parameters have been combined into a structure; users need only assign
values to those members of the structure which govern the algorithm parameter they are interested
in. Any members not set by the user will cause the selection of a suitable default value for that
parameter.

This mechanism of option setting provides a simple interface to the function, which allows it to be
used quickly and easily but still allows control of the more complex features of the algorithm when
this is required.

[NP3275/5/pdf] 1.essint. 11

Essential Introduction NAG C Library Manual

4.1.

4.2.

Use of the C mechanism of variable-length argument lists for option setting has been avoided, as
variable-length argument lists are inherently unsafe with regard to the identification of optional
argument type and do not provide a simple interface. The mechanism provided by the NAG C
Library fulfils the criteria of being safe and easy to use.

Use of Optional Parameters

The general method of ‘option setting’ is to initialise an options structure with a call to a utility
function, assign appropriate values to selected structure members and then pass the address of the
structure to the required function.

The principal example of the use of the ‘option setting’ facility within the library is in the
optimization functions of Chapter e04. These functions use a structure of type Nag_E04_Opt to
hold the optional parameters. The structure contains members for the output of results as well as
the input of parameter values. A typical example of its use is:

/* Initialise the options structure */
e04xxc(&options);

/* Assign selected values */

options.optim_tol = sqrt(X02AJC); /* Adjust final solution accuracy. */
options.linesearch_tol = 0.7; /* Adjust linesearch accuracy. */
options.print_level = Nag_Soln; /* e04dgc will print the final result. */

/* Pass the structure address to the optimization function */
e04dgc(n, objfun, x, &objf, g, &options, NAGCOMM_NULL, &fail);

For the call to nag_opt_conj_grad (e04dgc) there are more than ten optional input parameters in
addition to the ones selected in the example code above. Those members which are not selected
will cause suitable default values to be used for the relevant parameter.

Most functions return some results within the options structure; these values supply extra
information about the solution which the user may wish to consult but are less important than
the values returned via the other function arguments.

Memory Management

Pointers within the options structure are often used to hold arrays of values, usually for output but
occasionally for input as well. Memory is allocated to these pointers by the NAG functions and a
memory deallocation function is provided for each options structure.

The optimization chapter permits the allocation of memory to these pointers by the user; however,
this facility is rarely needed and in general it is recommended that the user rely solely upon the
NAG functions for the management of memory.

An example of using a function where pointers in the options structure are used to output results
is:

/* Assign data to function parameters. */
n = 20;

for (i = 0; 1 < n; ++i) Vscanf ("%1f", &x[i]);

/* Initialise the options structure */
e04xxc (&options);

/* Assign selected values to options structure. */

/* Adjust number of iterations allowed in feasibility phase. */
options.fmax_iter = 20;

options.ftol = 10*sqrt(X02AJC); /* Adjust feasibility tolerance. */

/* e04nfc will print intermediate and final results in full. */
options.print_level = Nag_Soln_Iter_Full;

1l.essint.12 [NP3275/5/pdf]

Essential Introduction Essential Introduction

/* Pass the structure address to the optimization function */
e04nfc(n, nclin, (double *)a, tda, bl, bu, cvec, (double *)h, tdh,
NULLFN, x, &objf, &options, NAGCOMM_NULL, &fail);

/* On return from eO4nfc the following results can be obtained via

* the pointers in the options structure.

*

* options.ax holds the final values of the constraints.
* options.lambda the Lagrange multipliers.

* options.state the status of the constraints.

*/

/* When no longer required free the memory allocated by e0O4nfc
* and set pointers to NULL.

*/

e04xzc(&options, "all", &fail2);

If memory is allocated to pointers within the options structure by the user then the user must also
manage the deallocation of this memory and set the pointer to NULL after deallocation if a further
call to a NAG function will occur using the same options structure. The NAG memory deallocation
functions will not free memory that has not been assigned by a NAG function.

It is sometimes necessary to make a further call to a function after returning from the first call, for
example the iteration limit might be reached while the function is still making progress towards the
optimum. In this situation some functions have a ‘warm start’ facility which allows the function to
make use of the information returned in a previous call, rather than re-intialising all values which
is the case with the default ‘cold start’. An example of a repeated call with a ‘warm start’ is:

/* Initialise the options structure */
e04xxc (&options);

/* Assign selected values to options structure. */

/* Adjust number of iterations allowed in feasibility phase. */
options.fmax_iter = 20;

options.ftol = 10*sqrt(X02AJC); /* Adjust feasibility tolerance. */
/* e04nfc will print intermediate and final results in full. */

options.print_level = Nag_Soln_Iter_Full;

/* Pass the structure address to the optimization function */
e04nfc(n, nclin, (double *)a, tda, bl, bu, cvec, (double *)h, tdh,
NULLFN, x, &objf, &options, NAGCOMM_NULL, &fail);

if (fail.code == NW_TOO_MANY_ITER)

{
/* Specify a warm start. */
options.start = Nag_Warm;
/* Call the optimization function again. */
e04nfc(n, nclin, (double *)a, tda, bl, bu, cvec, (double *)h, tdh,
NULLFN, x, &objf, &options, NAGCOMM_NULL, &fail);
}

/* Free the memory allocated by eO4nfc and set pointers to NULL. */
e04xzc(&options, "all", &fail2);

Note that the options structure used in the first call must be the same as that supplied in the
second call. Information for the ‘warm start’ is communicated between the two calls via members
of the options structure; in the example above the pointer options.state supplies the status of the
constraints at the end of the first call to the second call of nag opt_qp (e04nfc). The memory
deallocation function should not be called between successive calls of the optimization function,
even for a ‘cold start’, as the optimization function will manage any required deallocation and
reallocation of memory.

[NP3275/5/pdf] Lessint.13

Essential Introduction NAG C Library Manual

4.3.

4.4.

4.4.1.

Reading Option Values from a File

In Chapter €04, option values can be read from a file and assigned to the option structure using the
utility function nag_opt.read (e04xyc). This facility allows option values to be changed between
different runs of a program without recompilation. The values read from the file are checked before
assignment to ensure they are in the correct range for the option specified; an error message is
generated for any value which is out of range and the value is not assigned. An example of its use
is:

/* Initialise the options structure */
e04xxc(&options);

/* Assign a value to the options structure. */

/* Adjust maximum number of iterations allowed. */
options.max_iter = 100;

/* Read other option values from a file, in this case stdin */
fail.print = TRUE;

print = TRUE;

e04xyc("eO4fcc", "stdin", &options, print, "stdout", &fail);

if (fail.code == NE_NOERROR)
/* Pass the structure address to the optimization function */
e04fcc(m, n, lsqfun, x, &fsumsq, fvec, (double *)fjac, tdj,
&options, &comm, &fail);

/* Free the memory allocated by eO4fcc and set pointers to NULL. */
e04xzc(&options, "all", &fail2);

An example of an option file which could be supplied to the above program is:

Options file for e04fcc
begin e04fcc
linesearch_tol = 0.8 /* Adjust linesearch tolerance. */

/* eO4fcc will print intermediate and final results in full. */
print_level = Nag_Soln_Iter_Full

end

The option values must be set between the keyword sequences begin <function name> and end,
where function name is the name of the optimization function for which the options are being set,
in this case e04fcc. Within the set of option values C style comments are allowed whereas outside
the option set any text is permitted. If the parameter print is TRUE in the call to nag-opt_read
(e04xyc) then messages confirming that an option has been read and assigned are output to a file,
in the example above, stdout.

Results Printout

Some NAG C Library functions print the results of the function call to a file, stdout unless
specified otherwise by the user. This printout can be controlled by function parameters. In the
case of the file reading function nag_opt_read (e04xyc), printout is switched on or off by means of
the Boolean argument print, however, in Optimization (e04) and Time Series (g13) functions, the
options structure member options.print_level is used to control the level of printout. The default
value of options.print_level in the optimization chapter is the enum value Nag_Soln_Iter, which
specifies that a single line of intermediate results be output after each iteration and the details of
the final result be output prior to return. The available range of other enum values depends upon
the function being used, but they usually allow more detailed results to be printed out as well as
less detailed results (including none).

User-defined print function

A print function may also be defined and supplied by the user, allowing users to output intermediate
results in their own style. The print function defined needs to be assigned to the pointer to function

1.essint.14 [NP3275/5/pdf]

Essential Introduction Essential Introduction

options.print_fun. Any function assigned to this member will be called in preference to the NAG
default print function. Calls to this user-defined printing function are also controlled by means of
options.print_level.

5. Summary for New Users

If you are unfamiliar with the NAG C Library and are thinking of using a function from it, please
follow these instructions:

a) read the whole of the Essential Introduction;
b)

(

(b) consult the Library Contents list to select an appropriate chapter or function;

(c¢) read the relevant Chapter Introduction;

(d) choose a function, and read the function document. If the function does not after all meet
your needs, return to step (b) or (c);

(e) read the Users’ Note for your implementation;

(f) consult local documentation, which should be provided by your local support staff, about access
to the NAG C Library on your computing system.

You should now be in a position to include a call to the function in a C program, and to attempt
to run it. You may of course need to refer back to the relevant documentation, if difficulties occur,
for advice on assessment of results, and so on.

As you become familiar with the Library, some of steps (a) to (f) can be omitted, but it is always
essential to:

— be familiar with the Chapter Introduction;
— read the function document;
— be aware of the Users’ Note for your implementation.

6. Support from NAG

(a) Contact with NAG

Queries concerning this library should be directed initially to your local Advisory Service. If
you have difficulty in making contact locally, you can write to NAG directly. Users subscribing
to the Support Service are encouraged to contact one of the NAG Response Centres.

(b) NAG Response Centres

The NAG Response Centres are available for general enquiries from all users and also for
technical queries from sites with an annually licensed product or Support Service.

The Response Centres are open during office hours, but contact is possible by fax, email and
telephone (answering machine) at all times.

When contacting a Response Centre please quote your NAG user reference and NAG product
code.

(¢c) NAG Web site

The NAG Web site is an information service providing items of interest to users and
prospective users of NAG products and services. The information is regularly updated and
reviewed, and includes implementation availability, descriptions of products, down-loadable
software and technical reports. The NAG Web site can be accessed at

http://www.nag.co.uk/ or
http://www.nag.com/ (in the USA)

[NP3275/5/pdf] Lessint.15

Essential Introduction NAG C Library Manual

7. References

Collected Algorithms from ACM (1960-1976) Index by subject to algorithms.

ISO/IEC 9899:1990 Information technology — Programming Language C (1990) Current C
Language Standard.

Kernighan B W and Ritchie D M (1978) The C Programming Language (1st Edn) Prentice-Hall.
Kernighan B W and Ritchie D M (1988) The C Programming Language (2nd Edn) Prentice-Hall.

L.essint. 16 [NP3275/5/pdf]

Essential Introduction Essential Introduction

Appendix: NAG Header Files
(a) Header files intended for inclusion by the user within calling programs to the NAG C Library

<nag.h>

Defines the basic environment for use of the NAG C Library. This header file must be included
in each calling program to the NAG C Library and must precede all other header files which are
included.

<naga00.h> Chapter-header file.
<naga02.h> Chapter-header file.
<nagc02.h> Chapter-header file.
<nagc05.h> Chapter-header file.
<nagc06.h> Chapter-header file.
<nagd01.h> Chapter-header file.
<nagd02.h> Chapter-header file.
<nage01.h> Chapter-header file.
<nage02.h> Chapter-header file.
<nage04.h> Chapter-header file.
<nagf01.h> Chapter-header file.
<nagf02.h> Chapter-header file.
<nagf03.h> Chapter-header file.
<nagf04.h> Chapter-header file.
<nagf06.h> Chapter-header file.
<nagf07.h> Declarations for the LAPACK derived linear algebra functions used within the
Library.
<nagf08.h> Declarations for the LAPACK derived linear algebra functions used within the
Library.

<naggO1l.h> Chapter-header file.
<nagg02.h> Chapter-header file.
<nagg03.h> Chapter-header file.
<nagg04.h> Chapter-header file.
<nagg05.h> Chapter-header file.
<nagg07.h> Chapter-header file.
<naggl0.h> Chapter-header file.
<naggll.h> Chapter-header file.
<naggl2.h> Chapter-header file.
<naggl3.h> Chapter-header file.
<nagh02.h> Chapter-header file.
<nagh03.h> Chapter-header file.
<nagmO1.h> Chapter-header file.
<nagpO1.h> Declaration of NAG error-handling function.
<nags.h> Chapter-header file.
<nagx01.h> Chapter-header file.
<nagx02.h> Chapter-header file.

<nagx03.h> Declarations for inner product functions used within the Library.
<nagx04.h> Declarations for utility functions used within the Library.
<nagx05.h> Declarations for time functions used within the Library.
<nagy.h> Declaration of functions used in the testing of the Library.
<nagy91.h> Declaration of function used in the testing of the Library.

Chapter header files contain the function declarations for each chapter. The relevant chapter header
file should be included in every calling program to the C Library.

<nag_stddef.h>

Defines suitable types of size_t and ptrdiff_t for the compiled library. This header file should be
included by the user if one of these types is required for interfacing to a NAG C Library function.

<nag_stdlib.h>

Selects a suitable stdlib.h system file for the compiled Library and defines EXIT_SUCCESS and
EXIT_FAILURE and the memory allocation macro NAG_ALLOC. This header file may be included by

[NP3275/5/pdf] Lessint.17

Essential Introduction NAG C Library Manual

the user if the NAG definitions of EXIT_SUCCESS, EXIT FAILURE and NAG_ALLOC, as used in the
example programs, are required.

(b) The following three header files are included by nag.h (the user does not need to supply a
specific statement to include them)

<nag_types.h>

Defines the NAG types used in the Library.

<nag_errlist.h>

Defines the NAG error codes and messages used in the Library.

<nag_names.h>

Maps the NAG long names to short names.

(c) Header files used during the compilation of the Library (not normally required by Library
users)

<nag_e0O4mesg.h>

Defines the NAG messages used in Chapter e04 of the compiled Library.
<nag_g02mesg.h>

Defines the NAG messages used in Chapter g02 of the compiled Library.
<nag_gO3mesg.h>

Defines the NAG messages used in Chapter g03 of the compiled Library.
<nag_gl3mesg.h>

Defines the NAG messages used in Chapter gl3 of the compiled Library.
<nag_h02mesg.h>

Defines the NAG messages used in Chapter h of the compiled Library.
<nagle04.h>

Symbols defined for Chapter e04 functions.

<naglg05.h>

Machine-dependent constants for NAG random number generator functions.
<naglh02.h>

Symbols defined for Chapter h of the compiled Library.

<nagls.h>

Machine-dependent constants for Chapter s functions.

<naglx03.h>

Machine-dependent constants for x03 (undocumented, auxiliary) functions.

<nag_string.h>
Defines the string.h system file used in the Library.

1.essint.18 [NP3275/5/pdf]

