NAG C Library

s - Approximations of Special Functions


Chapter Introduction
s10aac nag_tanh
Hyperbolic tangent, tanh x
s10abc nag_sinh
Hyperbolic sine, sinh x
s10acc nag_cosh
Hyperbolic cosine, cosh x
s11aac nag_arctanh
Inverse hyperbolic tangent, arctanh x
s11abc nag_arcsinh
Inverse hyperbolic sine, arcsinh x
s11acc nag_arccosh
Inverse hyperbolic cosine, arccosh x
s13aac nag_exp_integral
Exponential integral E1 (x)
s13acc nag_cos_integral
Cosine integral Ci(x)
s13adc nag_sin_integral
Sine integral Si(x)
s14aac nag_gamma
Gamma function gamma(x)
s14abc nag_log_gamma
Log Gamma function ln(gamma(x))
s14bac nag_incomplete_gamma
Incomplete gamma functions P(a,x) and Q(a,x)
s15abc nag_cumul_normal
Cumulative normal distribution function, P(x)
s15acc nag_cumul_normal_complem
Complement of cumulative normal distribution function, Q(x)
s15adc nag_erfc
Complement of error function, erfc x
s15aec nag_erf
Error function, erf x
s17acc nag_bessel_y0
Bessel function Y0 (x)
s17adc nag_bessel_y1
Bessel function Y1 (x)
s17aec nag_bessel_j0
Bessel function J0 (x)
s17afc nag_bessel_j1
Bessel function J1 (x)
s17agc nag_airy_ai
Airy function Ai(x)
s17ahc nag_airy_bi
Airy function Bi(x)
s17ajc nag_airy_ai_deriv
Airy function Ai'(x)
s17akc nag_airy_bi_deriv
Airy function Bi'(x)
s18acc nag_bessel_k0
Modified Bessel function K0 (x)
s18adc nag_bessel_k1
Modified Bessel function K1 (x)
s18aec nag_bessel_i0
Modified Bessel function I0 (x)
s18afc nag_bessel_i1
Modified Bessel function I1 (x)
s18ccc nag_bessel_k0_scaled
Scaled modified Bessel function ex K0 (x)
s18cdc nag_bessel_k1_scaled
Scaled modified Bessel function ex K1 (x)
s18cec nag_bessel_i0_scaled
Scaled modified Bessel function e-|x| I0 (x)
s18cfc nag_bessel_i1_scaled
Scaled modified Bessel function e-|x| I1 (x)
s19aac nag_kelvin_ber
Kelvin function ber x
s19abc nag_kelvin_bei
Kelvin function bei x
s19acc nag_kelvin_ker
Kelvin function ker x
s19adc nag_kelvin_kei
Kelvin function kei x
s20acc nag_fresnel_s
Fresnel integral S(x)
s20adc nag_fresnel_c
Fresnel integral C(x)
s21bac nag_elliptic_integral_rc
Degenerate symmetrised elliptic integral of 1st kind RC (x,y)
s21bbc nag_elliptic_integral_rf
Symmetrised elliptic integral of 1st kind RF (x,y,z)
s21bcc nag_elliptic_integral_rd
Symmetrised elliptic integral of 2nd kind RD (x,y,z)
s21bdc nag_elliptic_integral_rj
Symmetrised elliptic integral of 3rd kind RJ (x,y,z,r)


Last modified: new doc September 1999
© The Numerical Algorithms Group Ltd, Oxford UK. 1999