d01 – Quadrature d01amc

nag_1d_quad_inf (d01amc)

1. Purpose

nag_1d_quad_inf (d01amc) calculates an approximation to the integral of a function f(x) over an infinite or semi-infinite interval [a, b]:

$$I = \int_a^b f(x) \ dx.$$

2. Specification

3. Description

nag_1d_quad_inf is based on the QUADPACK routine QAGI (Piessens *et al* (1983)). The entire infinite integration range is first transformed to [0, 1] using one of the identities:

$$\int_{-\infty}^{a} f(x) \, dx = \int_{0}^{1} f\left(a - \frac{1-t}{t}\right) \frac{1}{t^2} \, dt$$

$$\int_{a}^{\infty} f(x) dx = \int_{0}^{1} f\left(a + \frac{1-t}{t}\right) \frac{1}{t^2} dt$$

$$\int_{-\infty}^{\infty} f(x) \, dx = \int_{0}^{\infty} \left(f(x) + f(-x) \right) dx = \int_{0}^{1} \left[f\left(\frac{1-t}{t}\right) + f\left(\frac{-1+t}{t}\right) \right] \frac{1}{t^2} \, dt$$

where a represents a finite integration limit. An adaptive procedure, based on the Gauss 7-point and Kronrod 15-point rules, is then employed on the transformed integral. The algorithm, described by de Doncker (1978), incorporates a global acceptance criterion (as defined by Malcolm and Simpson (1976)) together with the ϵ -algorithm (Wynn (1956)) to perform extrapolation. The local error estimation is described by Piessens *et al* (1983).

4. Parameters

f

The function \mathbf{f} , supplied by the user, must return the value of the integrand f at a given point.

The specification of \mathbf{f} is:

```
double f(double x) \mathbf{x} Input: the point at which the integrand f must be evaluated.
```

boundinf

Input: indicates the kind of integration interval: if **boundinf** = Nag_UpperSemiInfinite, the interval is [bound, $+\infty$) if **boundinf** = Nag_LowerSemiInfinite, the interval is $(-\infty, bound]$ if **boundinf** = Nag_Infinite, the interval is $(-\infty, +\infty)$

Constraint: boundinf = Nag_UpperSemiInfinite, Nag_LowerSemiInfinite, or Nag_Infinite.

[NP3275/5/pdf] 3.d01amc.1

bound

Input: the finite limit of the integration interval (if present). **bound** is not used if $boundinf = Nag_Infinite$.

epsabs

Input: the absolute accuracy required. If **epsabs** is negative, the absolute value is used. See Section 6.1.

epsrel

Input: the relative accuracy required. If **epsrel** is negative, the absolute value is used. See Section 6.1.

max_num_subint

Input: the upper bound on the number of sub-intervals into which the interval of integration may be divided by the function. The more difficult the integrand, the larger **max_num_subint** should be.

Suggested value: a value in the range 200 to 500 is adequate for most problems.

Constraint: $max_num_subint \ge 1$.

result

Output: the approximation to the integral I.

abserr

Output: an estimate of the modulus of the absolute error, which should be an upper bound for $|I - \mathbf{result}|$.

 $\mathbf{q}\mathbf{p}$

Pointer to structure of type Nag_QuadProgress with the following members:

```
num_subint - Integer
```

Output: the actual number of sub-intervals used.

fun_count – Integer

Output: the number of function evaluations performed by nag_1d_quad_inf.

```
sub_int_beg_pts - double *
sub_int_end_pts - double *
sub_int_result - double *
sub_int_error - double *
```

Output: these pointers are allocated memory internally with max_num_subint elements. If an error exit other than NE_INT_ARG_LT, NE_BAD_PARAM or NE_ALLOC_FAIL, occurs, these arrays will contain information which may be useful. For details, see Section 6. If nag_1d_quad_inf is to be called repeatedly, then the user should free the storage allocated by these pointers before any subsequent call is made.

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library. Users are recommended to declare and initialize **fail** and set **fail.print** = TRUE for this function.

5. Error Indications and Warnings

NE_INT_ARG_LT

On entry, max_num_subint must not be less than 1: $max_num_subint = \langle value \rangle$.

NE_BAD_PARAM

On entry, parameter **boundinf** had an illegal value.

NE_ALLOC_FAIL

Memory allocation failed.

NE_QUAD_MAX_SUBDIV

The maximum number of subdivisions has been reached: $max_num_subint = \langle value \rangle$.

The maximum number of subdivisions has been reached without the accuracy requirements being achieved. Look at the integrand in order to determine the integration difficulties. If the

3.d01amc.2 [NP3275/5/pdf]

d01 – Quadrature d01amc

position of a local difficulty within the interval can be determined (e.g. a singularity of the integrand or its derivative, a peak, a discontinuity, etc.) you will probably gain from splitting up the interval at this point and calling the integrator on the sub-intervals. If necessary, another integrator, which is designed for handling the type of difficulty involved, must be used. Alternatively, consider relaxing the accuracy requirements specified by **epsabs** and **epsrel**, or increasing the value of **max_num_subint**.

NE_QUAD_ROUNDOFF_TOL

Round-off error prevents the requested tolerance from being achieved: **epsabs** = $\langle value \rangle$, **epsrel** = $\langle value \rangle$.

The error may be underestimated. Consider relaxing the accuracy requirements specified by epsabs and epsrel.

NE_QUAD_BAD_SUBDIV

Extremely bad integrand behaviour occurs around the sub-interval ($\langle value \rangle$, $\langle value \rangle$).

The same advice applies as in the case of NE_QUAD_MAX_SUBDIV.

NE_QUAD_ROUNDOFF_EXTRAPL

Round-off error is detected during extrapolation.

The requested tolerance cannot be achieved, because the extrapolation does not increase the accuracy satisfactorily; the returned result is the best that can be obtained.

The same advice applies as in the case of NE_QUAD_MAX_SUBDIV.

NE_QUAD_NO_CONV

The integral is probably divergent or slowly convergent.

Please note that divergence can also occur with any error exit other than NE_INT_ARG_LT, NE_BAD_PARAM or NE_ALLOC_FAIL.

NE_QUAD_BAD_SUBDIV_INTS

Extremely bad integrand behaviour occurs around one of the sub-intervals ($\langle value \rangle$, $\langle value \rangle$) or ($\langle value \rangle$, $\langle value \rangle$).

The same advice applies as in the case of **NE_QUAD_MAX_SUBDIV**.

6. Further Comments

The time taken by the function depends on the integrand and the accuracy required.

If the function fails with an error exit other than **NE_INT_ARG_LT**, **NE_BAD_PARAM** or **NE_ALLOC_FAIL** then the user may wish to examine the contents of the structure **qp**. These contain the end-points of the sub-intervals used by nag_1d_quad_inf along with the integral contributions and error estimates over the sub-intervals.

Specifically, for i = 1, 2, ..., n, let r_i denote the approximation to the value of the integral over the sub-interval $[a_i, b_i]$ in the partition of [a, b] and e_i be the corresponding absolute error estimate.

Then, $\int_{a_i}^{b_i} f(x) dx \simeq r_i$ and $\mathbf{result} = \sum_{i=1}^n r_i$ unless nag_1d_quad_inf terminates while testing for divergence of the integral (see Piessens et~al~(1983), Section 3.4.3). In this case, \mathbf{result} (and \mathbf{abserr}) are taken to be the values returned from the extrapolation process. The value of n is returned in $\mathbf{num_subint}$, and the values a_i, b_i, r_i and e_i are stored in the structure \mathbf{qp} as

```
\begin{split} &a_i = \mathbf{sub\_int\_beg\_pts}[i-1],\\ &b_i = \mathbf{sub\_int\_end\_pts}[i-1],\\ &r_i = \mathbf{sub\_int\_result}[i-1] \quad \text{and}\\ &e_i = \mathbf{sub\_int\_error}[i-1]. \end{split}
```

[NP3275/5/pdf] 3.d01amc.3

6.1. Accuracy

The function cannot guarantee, but in practice usually achieves, the following accuracy:

$$|I - \mathbf{result}| \le tol$$

where

$$tol = \max\{|\mathbf{epsabs}|, |\mathbf{epsrel}| \times |I|\}$$

and **epsabs** and **epsrel** are user-specified absolute and relative error tolerances. Moreover it returns the quantity **abserr** which, in normal circumstances, satisfies

$$|I - \mathbf{result}| \le \mathbf{abserr} \le tol.$$

6.2. References

De Doncker E (1978) An Adaptive Extrapolation Algorithm for Automatic Integration ACM Signum Newsletter 13 (2) 12–18.

Malcolm M A and Simpson R B (1976) Local Versus Global Strategies for Adaptive Quadrature ACM Trans. Math. Softw. 1 129–146.

Piessens R, De Doncker-Kapenga E, Überhuber C and Kahaner D (1983) QUADPACK, A Subroutine Package for Automatic Integration Springer-Verlag.

Wynn P (1956) On a Device for Computing the $e_m(S_n)$ Transformation Math. Tables Aids Comput. 10 91–96.

7. See Also

nag_1d_quad_gen (d01ajc)

8. Example

To compute

$$\int_0^\infty \frac{1}{(x+1)\sqrt{x}} \, dx.$$

8.1. Program Text

```
/* nag_1d_quad_inf(d01amc) Example Program
 * Copyright 1991 Numerical Algorithms Group.
 * Mark 2, 1991.
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagd01.h>
#ifdef NAG_PROTO
static double f(double x);
#else
static double f();
#endif
main()
  double a;
  double epsabs, abserr, epsrel, result;
  Nag_QuadProgress qp;
```

3.d01amc.4 [NP3275/5/pdf]

d01 - Quadrature d01amc

```
Integer max_num_subint;
        static NagError fail;
        Vprintf("d01amc Example Program Results\n");
        epsabs = 0.0;
        epsrel = 0.0001;
        a = 0.0;
        max_num_subint = 200;
        d01amc(f, Nag_UpperSemiInfinite, a, epsabs, epsrel, max_num_subint,
                &result, &abserr, &qp, &fail);
        Vprintf("a
                           - lower limit of integration = 10.4f\n, a);
        Vprintf("b
                           - upper limit of integration = infinity\n");
        Vprintf("epsabs - absolute accuracy requested = %9.2e\n", epsabs);
Vprintf("epsrel - relative accuracy requested = %9.2e\n\n", epsrel);
        if (fail.code != NE_NOERROR)
          Vprintf("%s\n", fail.message);
        if (fail.code != NE_INT_ARG_LT && fail.code != NE_BAD_PARAM)
              \begin{tabular}{ll} Vprintf("result - approximation to the integral = \%9.5f\n", result); \\ Vprintf("abserr - estimate of the absolute error = \%9.2e\n", abserr); \\ \end{tabular} 
             Vprintf("qp.fun_count - number of function evaluations = %4ld\n",
                       qp.fun_count);
             Vprintf("qp.num_subint - number of subintervals used = %4ld\n",
                       qp.num_subint);
             exit(EXIT_SUCCESS);
        exit(EXIT_FAILURE);
     #ifdef NAG_PROTO
     static double f(double x)
     #else
           static double f(x)
           double x;
     #endif
        return 1.0/((x+1.0)*sqrt(x));
8.2. Program Data
     None.
8.3. Program Results
     d01amc Example Program Results
              - lower limit of integration =
              - upper limit of integration = infinity
     epsabs - absolute accuracy requested = 0.00e+00
epsrel - relative accuracy requested = 1.00e-04
     result - approximation to the integral =
     abserr - estimate of the absolute error = 2.65e-05
     qp.fun_count - number of function evaluations = 285 qp.num_subint - number of subintervals used = 10
```

[NP3275/5/pdf] 3.d01amc.5