
d01 – Quadrature d01amc

nag 1d quad inf (d01amc)

1. Purpose

nag 1d quad inf (d01amc) calculates an approximation to the integral of a function f(x) over an
infinite or semi-infinite interval [a, b]:

I =
∫ b

a

f(x) dx.

2. Specification

#include <nag.h>
#include <nagd01.h>

void nag_1d_quad_inf(double (*f)(double x), Nag_BoundInterval boundinf,
double bound, double epsabs, double epsrel, Integer
max_num_subint, double *result, double *abserr,
Nag_QuadProgress *qp, NagError *fail)

3. Description

nag 1d quad inf is based on the QUADPACK routine QAGI (Piessens et al (1983)). The entire
infinite integration range is first transformed to [0, 1] using one of the identities:

∫ a

−∞
f(x) dx =

∫ 1

0

f

(
a − 1− t

t

)
1
t2

dt

∫ ∞

a

f(x) dx =
∫ 1

0

f

(
a+

1− t

t

)
1
t2

dt

∫ ∞

−∞
f(x) dx =

∫ ∞

0

(f(x) + f(−x)) dx =
∫ 1

0

[
f

(
1− t

t

)
+ f

(
−1 + t

t

)]
1
t2

dt

where a represents a finite integration limit. An adaptive procedure, based on the Gauss 7-point and
Kronrod 15-point rules, is then employed on the transformed integral. The algorithm, described by
de Doncker (1978), incorporates a global acceptance criterion (as defined by Malcolm and Simpson
(1976)) together with the ε-algorithm (Wynn (1956)) to perform extrapolation. The local error
estimation is described by Piessens et al (1983).

4. Parameters

f
The function f, supplied by the user, must return the value of the integrand f at a given
point.
The specification of f is:

double f(double x)

x
Input: the point at which the integrand f must be evaluated.

boundinf
Input: indicates the kind of integration interval:

if boundinf = Nag UpperSemiInfinite, the interval is [bound, +∞)
if boundinf = Nag LowerSemiInfinite, the interval is (−∞, bound]
if boundinf = Nag Infinite, the interval is (−∞,+∞)

Constraint: boundinf = Nag UpperSemiInfinite, Nag LowerSemiInfinite, or Nag Infinite.

[NP3275/5/pdf] 3.d01amc.1

nag 1d quad inf NAG C Library Manual

bound
Input: the finite limit of the integration interval (if present). bound is not used if
boundinf = Nag Infinite.

epsabs
Input: the absolute accuracy required. If epsabs is negative, the absolute value is used. See
Section 6.1.

epsrel
Input: the relative accuracy required. If epsrel is negative, the absolute value is used. See
Section 6.1.

max num subint
Input: the upper bound on the number of sub-intervals into which the interval of integration
may be divided by the function. The more difficult the integrand, the larger max num subint
should be.
Suggested value: a value in the range 200 to 500 is adequate for most problems.
Constraint: max num subint ≥ 1.

result
Output: the approximation to the integral I.

abserr
Output: an estimate of the modulus of the absolute error, which should be an upper bound
for |I − result|.

qp
Pointer to structure of type Nag QuadProgress with the following members:

num subint – Integer
Output: the actual number of sub-intervals used.

fun count – Integer
Output: the number of function evaluations performed by nag 1d quad inf.

sub int beg pts – double *
sub int end pts – double *
sub int result – double *
sub int error – double *

Output: these pointers are allocated memory internally withmax num subint elements.
If an error exit other than NE INT ARG LT, NE BAD PARAM or NE ALLOC FAIL,
occurs, these arrays will contain information which may be useful. For details, see
Section 6. If nag 1d quad inf is to be called repeatedly, then the user should free the
storage allocated by these pointers before any subsequent call is made.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
Users are recommended to declare and initialize fail and set fail.print = TRUE for this
function.

5. Error Indications and Warnings

NE INT ARG LT
On entry, max num subint must not be less than 1: max num subint = 〈value〉.

NE BAD PARAM
On entry, parameter boundinf had an illegal value.

NE ALLOC FAIL
Memory allocation failed.

NE QUAD MAX SUBDIV
The maximum number of subdivisions has been reached: max num subint = 〈value〉.
The maximum number of subdivisions has been reached without the accuracy requirements
being achieved. Look at the integrand in order to determine the integration difficulties. If the

3.d01amc.2 [NP3275/5/pdf]

d01 – Quadrature d01amc

position of a local difficulty within the interval can be determined (e.g. a singularity of the
integrand or its derivative, a peak, a discontinuity, etc.) you will probably gain from splitting
up the interval at this point and calling the integrator on the sub-intervals. If necessary,
another integrator, which is designed for handling the type of difficulty involved, must be
used. Alternatively, consider relaxing the accuracy requirements specified by epsabs and
epsrel, or increasing the value of max num subint.

NE QUAD ROUNDOFF TOL
Round-off error prevents the requested tolerance from being achieved: epsabs = 〈value〉,
epsrel = 〈value〉.
The error may be underestimated. Consider relaxing the accuracy requirements specified by
epsabs and epsrel.

NE QUAD BAD SUBDIV
Extremely bad integrand behaviour occurs around the sub-interval (〈value〉, 〈value〉).
The same advice applies as in the case of NE QUAD MAX SUBDIV.

NE QUAD ROUNDOFF EXTRAPL
Round-off error is detected during extrapolation.
The requested tolerance cannot be achieved, because the extrapolation does not increase the
accuracy satisfactorily; the returned result is the best that can be obtained.
The same advice applies as in the case of NE QUAD MAX SUBDIV.

NE QUAD NO CONV
The integral is probably divergent or slowly convergent.
Please note that divergence can also occur with any error exit other than NE INT ARG LT,
NE BAD PARAM or NE ALLOC FAIL.

NE QUAD BAD SUBDIV INTS
Extremely bad integrand behaviour occurs around one of the sub-intervals (〈value〉, 〈value〉)
or (〈value〉, 〈value〉).
The same advice applies as in the case of NE QUAD MAX SUBDIV.

6. Further Comments

The time taken by the function depends on the integrand and the accuracy required.

If the function fails with an error exit other than NE INT ARG LT, NE BAD PARAM or
NE ALLOC FAIL then the user may wish to examine the contents of the structure qp. These
contain the end-points of the sub-intervals used by nag 1d quad inf along with the integral
contributions and error estimates over the sub-intervals.

Specifically, for i = 1, 2, . . . , n, let ri denote the approximation to the value of the integral over the
sub-interval [ai, bi] in the partition of [a, b] and ei be the corresponding absolute error estimate.

Then,
∫ bi

ai
f(x) dx � ri and result =

n∑
i=1

ri unless nag 1d quad inf terminates while testing for

divergence of the integral (see Piessens et al (1983), Section 3.4.3). In this case, result (and abserr)
are taken to be the values returned from the extrapolation process. The value of n is returned in
num subint, and the values ai, bi, ri and ei are stored in the structure qp as

ai = sub int beg pts[i − 1],
bi = sub int end pts[i − 1],
ri = sub int result[i − 1] and
ei = sub int error[i − 1].

[NP3275/5/pdf] 3.d01amc.3

nag 1d quad inf NAG C Library Manual

6.1. Accuracy

The function cannot guarantee, but in practice usually achieves, the following accuracy:

|I − result| ≤ tol

where

tol = max{|epsabs|, |epsrel| × |I|}

and epsabs and epsrel are user-specified absolute and relative error tolerances. Moreover it returns
the quantity abserr which, in normal circumstances, satisfies

|I − result| ≤ abserr ≤ tol.

6.2. References

De Doncker E (1978) An Adaptive Extrapolation Algorithm for Automatic Integration ACM
Signum Newsletter 13 (2) 12–18.

Malcolm M A and Simpson R B (1976) Local Versus Global Strategies for Adaptive Quadrature
ACM Trans. Math. Softw. 1 129–146.

Piessens R, De Doncker-Kapenga E, Überhuber C and Kahaner D (1983) QUADPACK, A
Subroutine Package for Automatic Integration Springer-Verlag.

Wynn P (1956) On a Device for Computing the em(Sn) TransformationMath. Tables Aids Comput.
10 91–96.

7. See Also

nag 1d quad gen (d01ajc)

8. Example

To compute
∫ ∞

0

1
(x+ 1)

√
x

dx.

8.1. Program Text

/* nag_1d_quad_inf(d01amc) Example Program
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagd01.h>

#ifdef NAG_PROTO
static double f(double x);
#else
static double f();
#endif

main()
{

double a;
double epsabs, abserr, epsrel, result;
Nag_QuadProgress qp;

3.d01amc.4 [NP3275/5/pdf]

d01 – Quadrature d01amc

Integer max_num_subint;
static NagError fail;

Vprintf("d01amc Example Program Results\n");
epsabs = 0.0;
epsrel = 0.0001;
a = 0.0;
max_num_subint = 200;

d01amc(f, Nag_UpperSemiInfinite, a, epsabs, epsrel, max_num_subint,
&result, &abserr, &qp, &fail);

Vprintf("a - lower limit of integration = %10.4f\n", a);
Vprintf("b - upper limit of integration = infinity\n");
Vprintf("epsabs - absolute accuracy requested = %9.2e\n", epsabs);
Vprintf("epsrel - relative accuracy requested = %9.2e\n\n", epsrel);
if (fail.code != NE_NOERROR)

Vprintf("%s\n", fail.message);
if (fail.code != NE_INT_ARG_LT && fail.code != NE_BAD_PARAM)

{
Vprintf("result - approximation to the integral = %9.5f\n", result);
Vprintf("abserr - estimate of the absolute error = %9.2e\n", abserr);
Vprintf("qp.fun_count - number of function evaluations = %4ld\n",

qp.fun_count);
Vprintf("qp.num_subint - number of subintervals used = %4ld\n",

qp.num_subint);
exit(EXIT_SUCCESS);

}
exit(EXIT_FAILURE);

}

#ifdef NAG_PROTO
static double f(double x)
#else

static double f(x)
double x;

#endif
{
return 1.0/((x+1.0)*sqrt(x));

}

8.2. Program Data

None.

8.3. Program Results

d01amc Example Program Results
a - lower limit of integration = 0.0000
b - upper limit of integration = infinity
epsabs - absolute accuracy requested = 0.00e+00
epsrel - relative accuracy requested = 1.00e-04

result - approximation to the integral = 3.14159
abserr - estimate of the absolute error = 2.65e-05
qp.fun_count - number of function evaluations = 285
qp.num_subint - number of subintervals used = 10

[NP3275/5/pdf] 3.d01amc.5

