where i = sqrt(-1)
Addition | z1 + z2 = x1 + x2 + i (y1 + y2 ) |
Multiplication | z1 z2 = x1 x2 - y1 y2 + i (x1 y2 + y1 x2 ) |
Complex Conjugation | z* = x - i y
|
No matter how complicated the form of a complex expression, its complex conjugate can be found by replacing i by -i everywhere i occurs in the expression. |
Powers of i | ||
---|---|---|
|
Draw the vector form of z and z*: |
Draw the sum of two complex numbers: |
Using
Re ( z1 + z2 ) = x1 + x2
Im ( z1 + z2 ) = y1 + y2
You can easily see how to represent complex addtion graphically.
Draw z + z*: |
and using
Re ( z + z* ) = 2 x
Im ( z + z* ) = 0
You can easily see z + z* = 2 Re (z) graphically.
Draw z - z*: |
Re ( z - z* ) = 0
Im ( z - z* ) = 2 i Im(z)
You can easily see z - z* = 2 i Im(z) graphically.
Drawing of z, Re z, and Im z |
z = |z| [cos(f) + i sin(f) ]
where we remember that
|z| = sqrt( Re(z)2 + Im(z)2 ).
Interestingly, it can be shown that
cos(f) + i sin(f) = e i f
so that we can write the exceedingly simple form
z = |z| e i f
(z1 z2 )* = z1* z2*
|z1 z2| = |z1| |z2|
but
Re(z1 z2) = Re(z1)Re(z2)
- Im(z1)Im(z2)
Re (I0 e i w t)
=
Re [ |I0| ei f
e i w t ]
=
|I0| cos(w t + f)
e i f = cos(f) + i sin(f)
2 cos(f) =
e i f + e
- i f
e - i f = cos(f) - i sin(f)
2 i sin(f) =
e i f
- e - i f
Useful Relations
1 z*
- = ----
z |z|2
d dz
-- Re(z) = Re ( -- ) [etc.]
dt dt
(z1 + z2 )* = z1* + z2*