Classical | Quantum |
---|---|
Can know position at given time | Can know probability of being at a position at a given time |
r(t) | P(r,t) =
|y(r, t)|2 with ytot(r, t) = y1(r, t) + y2(r, t) + ... |
Classical | Quantum |
---|---|
p = constant | y =
e ik.r
- iwt with p = hbar k and E = hbar w = p2 / (2m) |
Classical | Quantum |
---|---|
- ÑV(r) = m d2r/dt2 | Hyn
= i hbar ¶yn/¶t = En yn [static case] H |n> = En |n> where H = p2/(2m) + V(r) |
Classical | Quantum |
---|---|
v(t) = ò t
a(t') dt' r(t) = ò t v(t') dt' E = (1/2)mv2 = p2/(2m) p = mv |
<Qoperator(t)>
= ò
yn*
Q yn dV = <n | Q | n > |