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Abstract: In this paper, we examine a reformulation of the Bagnold sedi-
ment transport formula, based on using friction velocity to express bottom shear
stress. This modification allows the transport formulation to retain the effect
of phase lag between free stream velocity and bottom stress, neglected in Bag-
nold’s original formula and usually associated with flow acceleration (or, in other
words, pressure gradient). Friction velocity is computed using a linearized 1-D
bottom boundary layer model. The modified Bagnold model can predict net
onshore sediment transport for asymmetric, zero skewness waves. Results for
analytical waveforms are compared with previous work based on discrete parti-
cle simulations and two-phase flow methods and show qualitative consistency.

INTRODUCTION

The Bagnold Model
Bagnold (1963, 1966) derived a stream-based sediment transport model. In that model,

Bagnold assumes the sediment is transported in two modes, i.e., the bedload transport and
the suspended transport. The bedload sediment is transported by the flow via grain to grain
interactions, the suspended sediment transport is supported by fluid flow through turbulent
diffusion. The total load sediment transport rate i reads (Bagnold, 1966)

i =

[

εb

tan φ − tan β
+

εs(1 − εb)

(w/ub) − tan β

]

ω (1)

where ω is the available fluid power, w is the fall velocity of sediment. εb and εs are the
bedload and suspended load efficiencies, respectively. They both smaller than one. tanβ is
the bottom slope, and φ is the particle friction angle. The available fluid power ω is the work
done by the bottom shear stress ~τb

ω = ~τb · ~ub (2)
where ~ub is the near bed free stream velocity. The bottom shear stress is parameterized using
the quadratic drag law

~τb = ρcf |~ub|~ub (3)
with cf the bottom friction coefficient.
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Wave-averaged Bagnold Model-The BBB Concept
Substituting (2)-(3) into (1), and considering the bottom slope effect, Bailard and Inman

(1981) obtained the total sediment transport rate~i written in terms of free stream velocity

~i = ρcf

εb

tan φ

[

|~ub|
2~ub −

tan β

tan φ
|~ub|

3

]

+ ρcf

εs(1 − εb)

w

[

|~ub|
3~ub −

εs(1 − εb)

w
tan β|~ub|

5

]

(4)

The first bracket in (4) represents the bedload sediment transport, and the second bracket
represents the suspended sediment transport. Both contain the sediment transport in the
direction of the instantaneous velocity(the first and third term), and the sediment transport
down slope (the second and fourth term). In (4), the near bed free stream velocity ~ub is taken
to be the near bed orbital velocity.

Bailard (1981) took a time-average of (4) for the wave period T to obtain the total net
sediment transport rate <~i > due to waves and currents.

<~i > = ρcf

εb

tan φ

[

< |~ub|
2~ub > −

tan β

tan φ
< |~ub|

3 >

]

+ ρcf

εs(1 − εb)

w

[

< |~ub|
3~ub > −

εs(1 − εb)

w
tan β < |~ub|

5 >

]

(5)

Here < f > denotes the wave-averaging of arbitrary variable f ,

< f >=
1

T

∫ T

0

fdt (6)

Equation (5) is often referred to as the ”BBB energetics model”, with BBB representing
Bagnold (1963,1966), Bowen(1980) and Bailard (1981).

Limitation of the Bagnold-type Models
The Bagnold model (1)-(3) and its wave-averaged version (5) relate the total sediment

transport rate to the near bed free stream velocity. This model lacks information on flow
acceleration or pressure gradient effects within the bottom boundary layer, and, in particular,
predicts zero sediment transport in wave fields with zero velocity skewness.

Recent field observations (Gallagher et al., 1998; Elgar et al., 2001) have shown net
onshore sediment transport between storms (manifested mainly by net onshore motion of
shore-parallel bars) when unbroken waves are strongly skewed but undertow over the bar
crest is weak. The BBB transport formula successfully predicts offshore sediment trans-
port and bar crest movement during energetic wave events, buts fail to predict the onshore
bar motion in lower energy conditions when calibrated with coefficients that are appropri-
ate for offshore transport (Gallagher et al., 1998). Based on field observations, Elgar et al.
(2001) noticed that the onshore sediment transport (or bar crest motion) is strongly corre-
lated to cross shore gradient in a wave-averaged acceleration skewness, indicating that the
local transport rate is likely to be directly dependent on this statistic as well. Numerical
computations based on a discrete particle method (Drake and Calantoni, 2001) have also
shown that net transport can occur under zero-skewness waves, and is correlated with flow
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acceleration. Base on this as a starting point, Drake and Calantoni (2001) introduced an ad
hoc extra term aspike =< (∂ub/∂t)3 > / < (∂ub/∂t)2 > into the BBB model to account for
the difference in the magnitude of the acceleration under the front and back of the wave. The
extra sediment transport rate to be added into the BBB formula (5) due to acceleration was
given as

<~ispike >=

{

Ka(aspike − sgn[aspike]acrit) |aspike| >= acrit

0 |aspike| < acrit
(7)

where acrit is the critical value of aspike that must be exceeded before acceleration enhances
the sediment transport, and Ka is the model parameter. The total net sediment transport rate
is then

<~i > = ρcf

εb

tan φ

[

< |~ub|
2~ub > −

tan β

tan φ
< |~ub|

3 >

]

+ ρcf

εs(1 − εb)

w

[

< |~ub|
3~ub > −

εs(1 − εb)

w
tan β < |~ub|

5 >

]

+ <~ispike > (8)

The modified BBB formula (8) has been tested using measured near bed velocities (Hoe-
fel and Elgar, 2003) and showed favorable results to the original BBB formula (5) when
comparing with data. Long and Kirby (2003) have also used an extended Bagnold model,
incorporating an instantaneous acceleration term, to model transport in a phase-resolving
Boussinesq model calculation, and were able to predict qualitatively accurate onshore bar
migration in a model prediction using only incident wave conditions measured offshore.

A REFORMULATED BAGNOLD MODEL

Despite the success of the extended Bagnold models discussed above, it is clear that the
added acceleration (or pressure gradient) effects are incorporated in an ad hoc manner which
does not have a clear theoretical foundation. More recently, attention has turned to a more di-
rect examination of the bottom boundary layer mechanics and the relation between unsteady
free-stream velocity and resulting bed shear stress. Hsu and Hanes (2004) have considered
the calculation of bed stress using artificial skewed and asymmetric free stream velocities,
and have shown that predictions of a detailed two-phase transport model can be recovered
by a simple application of the Meyer-Peter Muller formula using the calculated bed stress.
Henderson et al. (2004) have used a similar approach and have shown, using measured data
to drive a 1-D vertical boundary layer model, that both erosional and accretionary behavior
of sand bar crests can be modelled and that good agreement with field observation can be ob-
tained. Long et al (2004) have used a similar approach but employ free stream data predicted
by a Boussinesq model to similarly predict onshore bar migration using computed bed stress
and the Meyer-Peter Muller transport formula.

The Bagnold model and its wave-averaged version, the BBB model, do not account for
flow with strong acceleration or pressure gradient. This limitation is introduced when the
bottom shear stress is parameterized using the near bed free stream velocity through the
quadratic drag law (3) through Reynolds similarity. We recognize that for flows with a
free surface, where gravitational forces (pressure gradient due to free surface) must be con-
sidered, the parameterization of the bottom shear stress using (3) is not valid (Schlichting,
1960). This is also pointed out by Nielsen (2002) and Nielsen and Callaghan (2003). They
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acknowledge that the Bagnold type formula written in terms of the odd moments of near bed
free stream velocity ”fail spectacularly under some real waves”. Based on laminar bottom
boundary layer theory, Nielsen (1992) obtains the bottom shear stress written in terms of
near bed free stream velocity and a phase shift ϕτ , in which ϕτ is the phase lag between the
bottom shear stress and the free stream velocity, and found to be around 40 degree based on
the data they tested. Here, we employ a more brute force approach and compute the bot-
tom shear stress and friction velocity ~u∗ using a bottom boundary layer (BBL) model (see
Appendix), in the spirit of Hsu and Hanes (2004).

In the following, we replace (3) with the expression

~τb = ρ|~u∗|~u∗ (9)

which is the fundamental definition of friction velocity. However, the parameterization for
the fluid power ω is not straightforward and needs further discussion. Here, we follow Bag-
nold (1963) and consider that the work done on the sediments is at the center of pressure,
and the velocity at that point is parameterized as ~u′ = cr~u∗. cr needs to be determined
experimentally. Then the work done by the bottom shear stress is

ω = ~τb · ~u
′ = ρcr|~u∗|

2~u∗ (10)

Therefore, the modified Bagnold formula is

~i = ρ
εbcr

tan φ

[

|~u∗|
2~u∗ −

tanβ

tan φ
|~u∗|

3

]

+ ρ
εs(1 − εb)cr

w

[

|~u∗|
3~u∗ −

εs(1 − εb)

w
tanβ|~u∗|

5

]

(11)

It is seen that (11) is very similar to (4), except we replace the free stream velocity ~ub by
the friction velocity ~u∗. It is worthwhile to point out that the effect of pressure gradient is
implicitly included in the friction velocity ~u∗, but not in the free stream velocity ~ub.

By performing wave-averaging, we obtain the modified BBB model

<~i > = ρ
εbcr

tan φ

[

< |~u∗|
2~u∗ > −

tan β

tan φ
< |~u∗|

3 >

]

+ ρ
εs(1 − εb)cr

w

[

< |~u∗|
3~u∗ > −

εs(1 − εb)

w
tan β < |~u∗|

5 >

]

(12)

It will be shown in the next section that using < |~u∗|
2~u∗ > results in net onshore sediment

transport for asymmetric, zero skewness waves, whereas using < |~ub|
2~ub > produces no

net sediment transport. Finally, the wave-averaged net bedload flux < ~q > is related to the
immersed weight transport rate <~i > (Drake and Calantoni, 2001),

< ~q >=
<~i >

g(ρs − ρ)
ρs (13)
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RESULTS

In this section we examine the performance of the BBB type formula written in terms
of the near bed free stream velocity and the friction velocity, respectively. We study the
instantaneous and wave-averaged bedload sediment transport under zero-skewness saw-tooth
shape waves. Saw-tooth shape waves are of interest because they are similar to broken waves,
and the BBB formula fails to predict any onshore sediment transport due to zero skewness.
However, both field observations and numerical modelings using discrete particle method
(Drake and Calantoni, 2001) and two-phase flow approach (Hsu and Hanes, 2004) show
extensive sediment transport due to flow acceleration (or pressure gradient).

In Drake and Calantoni (2001), the near bed free stream velocity ~ub is driven by the
pressure gradient F (t), and F (t) follows

F (t) ∝

4
∑

n=0

1

2n
sin

[

(n + 1)
2π

T
t + nφ

]

(14)

and φ is defined as the ”waveform parameter”. The typical saw-tooth wave is that of φ = π
2
.

In Hsu and Hanes (2004), the saw-tooth shaped free stream velocitiy is described by

ub(t) = U0s

5
∑

n=1

1

2n−1
sin

[

n
2π

T
t + (n − 1)π

]

= U0s

4
∑

n=0

1

2n
sin

[

(n + 1)
2π

T
t + nπ

]

(15)

in their Equation (17), with U0s the velocity amplitude. However, we found that the near bed
free stream velocity in Drake and Calantoni (2001) do not response to the pressure gradient
force F (t) linearly, and the wave form discussed in Hsu and Hanes (2004) do not correspond
to equation (15)(Equation (17) in their paper). In the present work, the saw-tooth wave is
constructed using

ub(t) =

4
∑

n=0

1

2n
sin

[

(n + 1)
2π

T
t

]

(16)

This result roughly corresponds to the saw-tooth wave with waveform parameter φ = π
2

in
Drake and Calantoni (2001).

Figure 1 shows the results for this saw-tooth wave. The upper panel of Figure 1 shows
the free stream velocity (solid line) and the flow acceleration (dashed line). The lower panel
of Figure 1 shows corresponding friction velocity |~u∗|

2~u∗ (solid line) and near bed veloc-
ity |~ub|

2~ub (dashed line). It shows in Figure 1 that |~ub|
2~ub is symmetric, and equals to zero

upon wave-averaging. Whereas |~u∗|
2~u∗ is asymmetric and the wave-average is positive (on-

shore directed). If we consider the bed slope is very small, and bed-load sediment transport
dominates, then |~ub|

2~ub and |~u∗|
2~u∗ are proportional to the time-dependent bed load flux ~q.

And if we compare this result with that shown in Drake and Calantoni (2001), we see that
the bed-load flux computed using the friction velocity ~u∗ and (12) is very similar to the re-
sults of Drake and Calantoni (2001). Moreover, this result is also qualitatively similar to
that presented by Hsu and Hanes (2004) in their Figure 2, if we integrate their results verti-
cally. However, it is noticed that Figure 1 shows virtually no sediment transport where the

5 Zhao and Kirby



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

0

1

t/T

PSfrag replacements
ub(m/s)

∂ub

∂t
(m/s2)

m3/s3

Fig. 1. Results corresponding to Drake and Calantoni (2001), φ = π/2. Upper panel:
Free stream velocity (solid line) and flow acceleration (dashed line). Lower panel:
|~u∗|

2~u∗ (solid line) showing net on shore sediment transport when averaged over wave
period T , and |~ub|

2~ub(dashed line) showing no net sediment transport due to zero skew-
ness. The magnitudes of the variables are adjusted to fit the figure.

free stream velocity is zero, whereas Hsu and Hanes (2004) showed limited rate of sediment
transport. We think this may be due to the fact that in the present work we neglected the non-
linear convective terms in the BBL equations, so that we may miss some phase information
in the bottom shear stress. Nonetheless, the important feature is that the modified Bagnold
formula can predict net onshore sediment transport under asymmetric zero skewness wave-
forms provided the bottom friction is parameterized using the friction velocity.

For comparison, a case of a symmetric, skewed wave form is shown in Figure 2. The near
bed free stram velocity is calculated using

ub(t) =

4
∑

n=0

1

2n
sin

[

(n + 1)
2π

T
t + (n +

3

2
π)

]

(17)

and it corresponds to the waveform parameter φ = 0, Figure 5 in Drake and Calantoni (2001)
and Figure 8-9 in Hsu and Hanes (2004). For this case, both |~u∗|

2~u∗ and |~ub|
2~ub predict net

onshore sediment transport due to wave skewness.

Next we compare the wave-averaged bedload flux < ~q > versus the third moments of free
stream velocity < u3

b > for different wave forms on a flat bottom. The results are computed
using (12) and (13). The wave period is T = 6.0s and the maximum free stream velocities
are 0.5, 0.75, 1.0, 1.25, 1.5m/s. The wave forms roughly correspond to φ = 0, π

4
, π

2
in Drake

and Calantoni (2001), though a precise match of the wave forms is found difficult to achieve.

Parameters generally suggested for the use of the BBB formula (Gallagher et al., 1998)
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Fig. 2. Results corresponding to Drake and Calantoni (2001), φ = 0. Both cases show
net onshore sediment transport due to wave skewness. Legends are the same as the
previous figure.

are used here with tan φ = 0.63 and εb = 0.12. The parameter cr in (10) is chosen to be 5
for the present study. We see that Figure (3) shows strikingly similar pattern to that shown
in Drake and Calantoni (2001) for their Figure (7). However, our results are significantly
smaller than those presented by Drake and Calantoni (2001). The reason is not clear, but
we notice that the Drake and Calantoni (2001) results were obtained using a unusually large
bedload efficiency, εb = 1.03, whereas physics requests the bedload efficiency to be less
than one. Besides, field comparisons using the Drake and Calantoni (2001) formula (14)-(8)
showed that their Ka is orders larger than the calibrated value(see Hoefel and Elgar, 2003,
Long and Kirby 2003).

CONCLUSIONS

In this paper we rederive the Bagnold formula and we found that the net onshore directed
sediment transport is correlated to the bottom shear stress. The BBB-type formula written in
terms of odd moments of free stream velocity was derived using the parameterized bottom
shear stress for quasi-steady flow. Because this parameterization for bottom shear stress is
not valid for flow with acceleration, the BBB-type formula was unable to predict net onshore
sediment transport under zero skewed sawtooth waves. Using bottom shear stress computed
from the BBL equations, the corrected BBB-type formula can predict net onshore sediment
transport. Results for analytical waveforms are discussed and compared with previous works
using discrete particle (Drake and Calantoni, 2001) and two-phase flow method (Hsu and
Hanes, 2004) and showed qualitative consistency.
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Fig. 3. Computed bedload flux versus odd moments of the free stream velocity < u3

b >
for different wave forms. The wave period is T = 6.0s and the maximum free stream
velocities are 0.5, 0.75, 1.0, 1.25, 1.5 m/s.

APPENDIX: SOLVING THE BOTTOM BOUNDARY LAYER EQUATIONS

The continuity and momentum equations inside the bottom boundary layer (BBL) read,

∂u

∂x
+

∂w

∂z
= 0 (18)

and
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
=

∂ub

∂t
+ ub

∂ub

∂x
+

1

ρ

∂τzx

∂z
(19)

where ub and u are the near bed free stream velocity and velocity inside the BBL, respec-
tively. The boundary conditions for (18) and (19) are

u = 0; w = 0; at z = z0 (20)
u = ub; w = 0; at z → ∞ (21)

with z0 the bed level.

Assuming the nonlinear convective terms are higher order terms, we obtain the linearized
BBL equation (Trowbridge and Madsen, 1984),

∂u

∂t
=

∂ub

∂t
+

1

ρ

∂τzx

∂z
(22)

The Boussinesq assumption relates the shear stress to the gradient of velocity through

τzx = ρ(ν + νT )
∂u

∂z
(23)
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where ν and νT are the kinematic and turbulent eddy viscosity, respectively. And νT is
computed using a turbulence model. In general, turbulence models that record flow history,
such as the k − ε type models, are more accurate than those don’t. However, we also notice
that virtually almost all turbulence models impose the ”log law” (also termed as the ”wall
function”) at the wall. And previous researches (Wilcox, 1998 for example) show that the
BBL results are not sensitive to turbulence models used near the bottom. Therefore, in this
research, we will use the more efficient mixing length model. Then the eddy viscosity is
computed through the friction velocity

νT = κ|u∗|z (24)

where κ = 0.40 is the Karman coefficient, and z is the distance from bed. | · | denotes the
absolute value of a variable. Imposing the ”log law”, the friction velocity relates to the near
bed velocity

u∗ = κu1 ln

(

z

z0

)

(25)

where u1 is the BBL velocity at the first numerical grid point following Launder and Spadling
(1974), and z0 is the bed level and normally taken as z0 = kN/30. The bed roughness kN

relates to the grain diameter d through kN = Nd. Here d = 0.11mm and kN = 15d is chosen
for this study.

The above linearized BBL problem is a typical diffusion problem. Without loose of gen-
erality, we assume the the boundary layer thickness δ = 15cm and solve it using the FTCS
(forward time, center space) scheme. 60 grid points are solved in the vertical direction and
the time step is computed so that the diffusion in one time step is smaller than one grid size.
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