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ABSTRACT

Boussinesg-type equations with second order dispersion are derived for an arbitrary
distribution of vorticity. The governing equations have the velocity at an arbitrary
depth as a dependent variable and terms involving vorticity are kept as integrals. Linear
dispersive properties are shown to be accurate to the order of dispersion when compared
to the exact solution. Current input conditions (from a large scale hydrodynamic
model) and the scheme for the numerical model are obtained in order to later test
model results against measurements from an experiment in a wave flume for the case
of waves propagating against a vertically sheared current.

INTRODUCTION

Boussinesq-type wave models have proved to be efficient and accurate instru-
ments for calculation of the transformation of nonlinear and dispersive waves in
coastal waters where horizontal vorticity is considered null. There is actually no
need to assume null horizontal vorticity though and Boussinesq equations provide
an ideal framework for the treatment of the fully rotational problem. Recently,
researchers have included the effect of horizontal vorticity in the governing equa-
tions in order to treat fully rotational problems, such as interaction of waves with
vertically sheared currents (Rego and Neves 1997; Rego and Neves 2001) and
wave breaking (Veeramony and Svendsen 2000). Incorporation of the interaction
of nonlinear waves with depth varying currents within large scale coastal models
is of great interest. The combined effects of waves and vertically sheared cur-
rents are important in coastal engineering problems ranging from determination
of design parameters for coastal structures, estimation of flow kinematics near
the bottom for sediment transport, to wind driven wave generation.

Two-dimensional Boussinesq-type equations with second order accurate dis-
persion are derived here for an arbitrary distribution of vorticity. The stream
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function is used to obtain the expression for the velocity. The depth-integrated
governing equations have the velocity at an arbitrary depth as a dependent ve-
locity variable and the terms involving vorticity are kept as integrals. Linear
dispersive properties of the model are shown to be accurate to the order of dis-
persion of the model. Current input conditions (from a large scale hydrodynamic
model) and the scheme for the numerical wave model are obtained in order to
later test model results against measurements from an experiment in a wave flume
for regular waves propagating against a vertically sheared current. It is assumed
that the current is pre-existing and the vorticity is associated only to the current
motion.

GOVERNING EQUATIONS
We use the definition of the velocity in the vertical plane in terms of derivatives
of the scalar stream function ,

The vorticity is then given by
5 =Uy, — Wy , (2)

we obtain the equation for the stream function

The nondimensional variables are defined as follows:
x' 2! Vghot' hou! h2w'
T=—F 2= t= u = W= —— (4)
l ho l aop\/ gho aol\/ gho
h2§’ ! wl h a
f=—0_ =L y D=2, (5)

B aov/ gho Qo - aov/ gho a ! B h_o

where the primes denote dimensional variables.
Integrating equation (3) twice from —h to z, we obtain

¢=(z+h)ub+/zh/zh§dz2—MQ/Z/Z%deQ : (6)

where the following definitions have been made

Up = Yy |s=—n Y= =0 . (7)

To the leading order, we have that
www = ubhz:c + Qhwubw + higb + (Z + h) [ubzz + hwfw‘fh + (hmfb)w]

+/1 /1 Eexdzdz +O(p?) . (8)

2 Rego, Kirby and Thompson



Note the extra terms, if compared to that obtained by Veeramony and Svendsen
(2000), that depend on the vorticity at the bottom, which is not taken to be zero
here.

The following expression for the stream function, up to second order disper-
sion, results:

z z h 2
Y= (2 + h)uy + / / £dz? — 1 { (z+h) (2hpUpg + Uphgy + h2E)
—hJ—h

+%[um+hmgm|_h+ (hob)s ////Smdz}JrO( SN C)

We choose to work with the velocity at an arbitrary depth, z3 = Bh, as the
velocity variable as did Nwogu (1993), and find the following expressions for the
horizontal and vertical velocities:

. . . 1 .
u=1g+q — 1 [(Zh — By)(2h, g, + Uphyy) + §(Z,f — Bi)umz + qz] (10)

w(z,2,t) = —pP[lghy + Zpiigs + qs] (11)
where

aﬂ =up — /: fdz (12)

¢ (z, 2,t) = /_1 &dz ;o gs(z, 2, t) = 8%/_1 /_Zh £dz? (13)
o(x, 2, ) ///§mdz —/Zﬂ/Zﬂ/ Epd2®

+5(22 = B+ (2~ BY (&l + ()] (14)
and the following notation has been introduced:
Zn=z+h ; B,=z2+h ; H=en+h . (15)

The resulting expression for pressure is:
z - 1 -
p(z,z,t) =n— P ©? [(H — Zp)Upthy + §(H2 — Z)iigts + X3:|

- L 1 - .
et |(H = 20) @ o+ hatns) + G~ ) pinas — ) + x| 4O
(16)

The mass and momentum equations are given by:

0 . o [ [ H? . .
77t+% Hig + x1 — p T_HB’Z (thuﬂm+u,3hmx)

+ (2 ) = 0y )
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gt + 11s + X5 + €(lgligs + X6) + 1 (Vi + x7) + eu* (Vo + xs) = O(u") ,  (18)

where ,

) e + en(hamw} (19)

Vi= 5 )

ﬂ'ﬂtww + Zﬂ(haﬂt)ww -

o |

Vs = {%[(hﬂﬂ)m + enliga]” — (25 — en)ip (hilg) zz — %[Z/% - (677)2]%@5”}

T

(20)
The terms that depend on the vertical profile of vorticity are given by:
€n €n a €n
X1 = / q1dz X2 = / g2dz X3 = = q3dz (21)
h _h ot J,

o [ . - . - -
Xa = 8_3;/ [(tpha + Zntiga)qy + (s + q1)gs]dz + [2(Ughe + Zntigs) + gs]gs

— (@she + Higz) 1z (22)

10 110 [ _. .
X5 = E%; X6 = H [% /h (205 + q1)qudz — “BXM} (23)
_ 1 Ox2 a [
X7 = H <X3‘—h,h;c - W - 8_:6 N ngz) (24)

1 . . 1 -
X8 = E {X4|—hhz + [(H - Bh)(2uﬂzha: + Uﬂha;z) + §(H2 — Bi)uﬂmm:| X1z
- o [ .
+UpX2z — 8_/ {xa +2(is + q1)g2

T J—h
+(Zh - Bh) [(4’&/31h$ + 2ﬂgh$$) + (Zh + Bh)’ﬁ&w] C]l} dZ} . (25)

LINEAR DISPERSIVE PROPERTIES
From here on, the variables will be dimensional and the primes will be dropped.
The velocity, g, is decomposed into current, 45 = uj + ffi &dz, and wave,
tg = ujg, components, assuming that the vorticity is only associated to the cur-

rent motion. The linearized governing equations for a flat bottom, steady and
spatially uniform current with arbitrary over depth vorticity read

M+ (@5 + hyo)ns + hih, + (o +1/3) @, = 0 (26)

a%]t + Nzt (ag’ +7 = ’Yoh)ﬂgx + ahZQgta:a:
+ [ah®if — o — o (0 + 1/3) B®] U, =0, (27)
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where three terms depending on the vertical distribution of vorticity appear:

1 0 9 0 z )
_1 _2 28
w=g [ e =i [ [ 28)

72:%{/_1 [(z,f—Bi)/;gdz] dz—i—/_(;/zo (Zh/;fdz) d,:/:?} . (29)

In the case of a linear and plane wave, it results in the following dispersion
relation:

@*[1 = a(kh)?] = (gk — &y0)kh[1 = (a +1/3) (kh)?] + @k(n + k*72)
— Wkhyo[l — a(kh)?] , (30)

where the intrinsic frequency is given by:
W =w — ku; (31)

and ug = ug + Yoh is the current velocity near the surface.

Figure 1 shows the normalized model phase velocity, relative to the exact
phase velocity obtained from the Raleigh equation (see Appendix 1), which shows
the same order of error of the extended second order Boussinesq models without
horizontal vorticity (Nwogu 1993).

NUMERICAL MODEL

The numerical model is based on an implementation of the scheme described in
Wei et al. (1995), only with the new matrices E, and F, containing the horizontal
vorticity terms:

m = E(n,ig) + Ex(n, ug) + E.(n,€) (32)
Ut(aﬁ) = F(naaﬂ) +F2(77a’a/3’aa/3’t) +F1"(777 aﬁag) ’ (33)

where
E, =(=x1+ Xx2)x Fo=—(s+x6+x7+Xxs) - (34)

The time derivatives in F, are treated the same manner as those in F5. The
vertical distribution of vorticity due to the pre-existing current is known and
approximated by Chebyshev polynomials in E, and F,. All intermediate terms
involving vorticity are calculated using special properties of the Chebyshev poly-
nomials which allow for the use of FFT.

The incident boundary condition is obtained from the linearized mass equa-
tion, which reads:

e+ (U5 + hyo)ne + hitg, + (0 +1/3) B, =0 . (35)
The wave component of the velocity is obtained:

~

k[l — (a +1/3) (kh)?2]"

(36)

~w
'U/ﬂ—
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FIG. 1. Normalized phase velocity (model phase velocity, c;, divided by the
exact phase velocity calculated from the Raleigh equation, c.) and associated
current profiles: a) 1/7 power law and b) cubic polynomial.

where the intrinsic frequency is given by (31), and results in the total velocity:

A

. w

0= 5T B[ (o + 1/3) (kR

(37)

When reflection at the incident boundary is significant, a non-reflective bound-
ary condition is implemented:

c
Nt — CRNz = (1 + C—R> T (38)
1

where I and R stand for incident and reflected wave, respectively.
When absorbing waves and transmitting currents, the following scheme is used
for both the velocity and surface elevation variables

U; = U;ef + (U;ef - 'U«z)/cs(l) (39)
Cy (i) =™ for i=nz—L,.nx , (40)

as in Chen (1997), where ref indicates values due to the pre-existing current.
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TEST CASE

The laboratory experiment that will be used to test the model consisted of
regular waves propagating against a strongly sheared current over a trapezoidal
bar as depicted in Figure 2. Surface elevation and velocity time series along 9 to
14 depths were measured at 11 different locations.

measurement points

Lol liiiil

) f =
waves 1 1 current
: i h=.3m
h=.55m v
: 1:5.68 1:3.72
¥
16.08m 4.36m 9.56m

FIG. 2. Experimental setup.

Current modeling

In order to obtain densely spaced current data to be used as input to the wave
model, the current in the wave tank was simulated using the Princeton Ocean
Model (POM) (Blumberg and Mellor 1973). POM is a quasi-three-dimensional
hydrodynamic model, which assumes hydrostatic pressure and includes a turbu-
lence closure model, therefore permitting the representation of the bottom bound-
ary layer. The results shown in Figure 3 were obtained using a 2DV version of
POM, inflow and outflow boundaries were posed for both external (vertically av-
eraged equations) and internal (solution of vertical structure) modes. The vertical
dimension was discretized using 21 grid points with varying (log) spacing near
the bottom, horizontal spacing of .05 m was used with a time step of .1953 s for
both the internal and external modes. Figure 3 shows the importance of the shear
due to the bottom boundary layer that is reproduced by POM. The discrepancies
between the measured current profile and POM data are believed to be resulting
from three dimensional effects in the wave tank, and may be further investigated
elsewhere.

Wave modeling

Current research efforts are concentrated on the wave modelling and compar-
ison of model results with experimental measurements and will be published in a
forthcoming publication.
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FIG. 3. Measured (o) and POM output (-) values for horizontal current
velocity.

CONCLUSION

Boussinesg-type equations of second order dispersion were obtained for an
arbitrary distribution of vorticity. Linear dispersive properties of the model were
shown to be accurate to the order of dispersion of the model when compared to
the exact solution of the Raleigh equation for idealized current profiles. Current
input conditions for the wave model and the scheme for the numerical model
presented here will be used to test model results against measurements from an
experiment in a wave flume for the case of waves propagating against a vertically
sheared current. and over a trapezoidal bar. Further investigation of the nonlin-
ear interactions between waves and sheared currents should include changes in
current profile (since up until now, the model has only been used to calculate the
transformation of waves on a pre-existing current).

ACKNOWLEDGEMENTS

V. Rego was funded through scholarship from CNPq - Brasil. The work of J.
Kirby and D. Thompson was supported by the NOAA Office of Sea Grant, De-
partment of Commerce, under Grant No. NA96RG0029. The U. S. Government
is authorized to produce and distribute reprints for governmental purposes, not
withstanding any copyright notification that may appear hereon.

APPENDIX I. EXACT SOLUTION TO THE RALEIGH EQUATION
For a stream function given by ¢ = f (z)eik(’”’“), we have that the vertical
distribution function, f, is given by the Raleigh equation:
d’f d*U

_ - v 2 - — _
(c U)(dz2 kf)+d22 0 for h<z<0 |, (41)
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TABLE 1. Expressions for v and c for idealized current profiles.

e SRE) B W 1
1/7 2p2 | 6 Oo(1+z)1% q(0)
Us(l + Z’) / k h E [175(1—}—z’)1/71 (5_1)[5_1_%5“0)]
6(202+6032") q(0)
[14o12' 40222 +032'3]-1 | (6—1)[6—1—016¢(0)]

Us(14 012" + 022" + 032") | k*h* + 5

with boundary conditions

df dU
—o)2L = — (U - = 42
U-PL=lg+U-0lf at 2=0 (42)
f= at z=—h (43)
Defining:
P_ % n_ [z
WE=UE) - =2 q@hw%;, (4
the Riccati equation is obtained:
dq 201 2 2/ .1 272 W 1
—=1- h = —— 4
7 v ()", where () =EA A+ ogm (45)
and now the free surface boundary condition is given by:
[F(0)]? W (0) dF dw h
0) = here F'(0) = ——= and —(0) = —(0)4/—. (46

Table 1 presents expressions for 72 and ¢ (as a function of ¢) for idealized current
profiles, U(z), for the cases of a 1/7 power law type profile obtained by Fenton
(1973) and for a polynomial profile obtained here, where § = %
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