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ABSTRACT

This dissertation provides a detailed description of the turbulence structure

and its effects on the mean flow of fully-formed quasi-steady spilling breakers. Lab-

oratory experiments are conducted for an air-entraining turbulent hydraulic jump

in Froude similitude with saturated surf-zone breakers. Particle image velocimetry

measurements are used to investigate the mean and turbulent structure of the flow,

with particular attention to the surface intermittency. The streamwise variation

of the turbulent length scales and growth rates in the breaker shear layer are in

good agreement with values found in mixing layers. The combined effects of flow-

deceleration and adverse pressure gradient upstream of the foot of the breaker are

responsible for the separation of the shear layer causing breaking. A theoretical

model is developed for the evolution of the turbulent dynamics in a spilling break-

ing wave. The theoretical model provides an accurate mathematical incorporation

of the effects of the two-phase surface layer, unsteadiness, curvature, rotation, and

non-hydrostatic effects. Evolution equations are derived for the mean flow and tur-

bulent kinetic energy in the breaker shear layer. Several physical mechanisms of

the flow in different regimes are studied through geometric and kinematic scaling

assumptions and comparisons made with experimental observations. The governing

equations are then integrated across the shear layer to develop boundary conditions

for the irrotational flow underneath. Coherent turbulent structures are analyzed

through kinematic and statistical techniques applied to the experimental data. The

sizes and topologies of these structures provide valuable insights into the dominant

modes of turbulence in the breaker shear layer.
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Chapter 1

INTRODUCTION

The breaking of a wave cannot explain the whole sea

Vladimir Nabokov

Turbulence generation by water-wave breaking is the dominant mechanism

governing the mass, momentum, and energy transfer processes that occur in water

bodies exposed to atmospheric forcings. In the open ocean, it plays an important

role in influencing the Earth’s weather and climate through air-sea exchanges of

heat and gases, surfactant transport, and marine aerosol production (Melville et al.,

2002). Water quality and aquatic life are directly influenced by such interactions

as well. In deep water, where wind-generated surface waves are not directly af-

fected by variations in bed topography, breaking typically results in the formation

of “whitecaps”. The water falling down the face of the wave appears white due to

the entrainment and ejection of air-bubbles at the surface. However, micro-breakers,

where surface-tension is high enough to prevent air-entrainment, are also believed

to be significant in the air-sea exchange processes. In addition to direct wind ef-

fects, wave-wave and wave-current interactions can also lead to breaking events that

are inherently unsteady. On a much larger and more violent scale, wave breaking

poses numerous hazards to navigation at sea. Wave breaking is often induced by

ship-wakes. The structural safety of vessels and offshore structures is determined

by the wave-breaking environment. A comprehensive review of various aspects of

deep-water breaking is provided in Banner and Peregrine (1993).
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In shallower water, to a large extent, the turbulence generated by depth-

limited wave breaking is directly responsible for the sediment suspension and trans-

port through momentum and energy transfer from the waves to the sediment. Fur-

ther, the breaker turbulence modifies the cross-shore and longshore currents, which

in turn affect the accretional and erosional characteristics of the coastline. Some

of the earliest classifications of breakers in shallow water were suggested based on

experimental observations by Iverson (1952) and Mason (1952). Galvin (1968) pop-

ularized the terminology of spilling, plunging, and surging breakers in the surf-zone.

As evident from their nomenclature, plunging breakers, typically found on steep

beaches, are characterized by a rather spectacular forward overturning of the en-

tire front face of the wave. The moving sheet of water plunges down into the

water in front causing significant splashes (sometime reversed in direction) and air-

entrainment. Several splash-up cycles can occur before the organized motion due

to the wave becomes fully turbulent. This makes them difficult candidates for ex-

perimental and theoretical investigations, and knowledge of the resulting turbulent

flow remains scarce. Further details can be found in experimental studies of Perlin

et al. (1996) and Liiv (2001). An inviscid mechanism has also been proposed for the

break-up of the jet in a plunging breaker (Longuet-Higgins, 1995).

Compared to plunging breakers, the dynamics of spilling breakers are better

understood, and the turbulence generated differs from that in a plunging breaker

primarily in the method of energy transfer from the wave motion to turbulent motion

(Ting and Kirby, 1995, 1996). Spilling breakers are visually less spectacular, and

more subtle processes govern the inception of turbulence. In addition to their ubiq-

uitous presence in deep water, they commonly occur on moderately steep beaches.

A spilling breaker is characterized by white water formation on the front face of

the wave. A laboratory generated spilling breaking wave is shown in Figure 1.1.

The wave propagates from left to right. Numerous theoretical (Longuet-Higgins
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Figure 1.1: Laboratory generated spilling breaker. Photograph provided by Dr.
B. K. Haus and Dr. M. A. Donelan, Rosenstiel School of Marine and
Atmospheric Science, University of Miami.

and Cleaver, 1994; Longuet-Higgins et al., 1994; Longuet-Higgins, 1994; Longuet-

Higgins and Dommermuth, 1997; Longuet-Higgins, 1998b) and experimental (Dun-

can et al., 1994; Lin and Rockwell, 1995; Duncan et al., 1999; Qiao and Duncan,

2001) investigations have contributed to a reasonable understanding of the incipient

stages of breaking in a spilling breaker. It is believed that breaking starts from a

nonlinear shear instability of the crest flow. The origin and details of the instabil-

ities are strongly dependent on the wave-length, since short wave-length breakers

are dominated by surface tension effects. It seems generally true that for longer

wave-lengths, the breaking process is started by the development of a coherent jet

at the crest when the horizontal component of the fluid velocity reaches the linear

group velocity of the dominant wave component. For shorter wave-lengths, the jet is

replaced by a rounded bulge, and the fluid velocity remains less than the wave phase

speed. Both experimental and theoretical results show capillary waves appearing at

the leading edge (toe) of the breaker because of the large curvature. The breaking

proceeds with the bulge moving down the front face of the wave. As the curvature
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at the toe increases, a small-scale separated mixing layer develops, and the capillary

pattern is replaced by large-scale distortions of the free surface (Liu and Duncan,

2003).

With the progression of breaking and the development of a fully-formed

breaker, the two-phase and fully turbulent region engulfs most of the forward face of

the wave. In this region, the turbulent velocities are equal to or exceed the mean ve-

locities, and the effect of turbulence on the mean flow becomes important (Peregrine

and Svendsen, 1978; Peregrine, 1983). The motion in a fully-formed breaker is of

continuous shearing with a direct and continuous transformation of wave motion into

turbulence (Battjes, 1988). The role played by the curvature of the surface and flow

streamlines is essential in the evolution of this shearing process. Further, the energy

transfer processes occur on varying time scales, and intense coherent events have

often been observed under spilling breakers which are ascribed to three-dimensional

obliquely descending eddies (ODE) and organized turbulence (Nadaoka, 1986; Ting

and Kirby, 1996; Cox and Kobayashi, 2000). In the following, only two-dimensional

spilling breakers are discussed. Readers interested in three-dimensional breakers are

referred to experimental studies described in She et al. (1994), Nepf et al. (1998),

and Roth et al. (1999).

In a recent exhaustive review of spilling breakers, Duncan (2001) notes the

visual similarity between the depth-limited unsteady spilling breakers studied by

Mason (1952) and laboratory-generated, deep-water spilling breakers (Rapp and

Melville, 1990). Spilling breaking waves in the saturated inner surf-zone also have

distinct similarities with unsteady bores, and are typically modeled as such (Hibberd

and Peregrine, 1976; Svendsen and Madsen, 1984). The distinction between the two

is made primarily in the fraction of the wave front covered by turbulence. Depending

on whether the turbulent region occupies part of the crest or the whole front face,
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the breaker is termed a spilling breaker or a bore (Peregrine, 1983). In the post-

breaking regime, the void fraction and turbulence in the aerated region for a spilling

breaker can even exceed that for a plunging breaker (Cox and Shin, 2003). In a

frame of reference moving with the bore, the unsteady bore reduces to a stationary

turbulent hydraulic jump, the classical case of a two-dimensional steady spilling

breaker. It is important to note that the analogy between surf-zone spilling breakers

and hydraulic jumps can be made only for low Froude number, or weak jumps, and

similar upstream to downstream depth ratios (Peregrine and Svendsen, 1978; Battjes

and Sakai, 1981). Further, as noted by Duncan (2001), weak hydraulic jumps have

a very similar appearance to hydrofoil-generated spilling breakers. Two-dimensional

steady breakers, such as those produced by submerged hydrofoils are all classified

as spilling breakers (Duncan, 1981; Battjes and Sakai, 1981; Mori, 1986). Strictly

speaking, they are quasi-steady, since low-frequency oscillations of the spilling zone

have been observed by many investigators (Duncan, 1981; Banner, 1988). Spilling

breaking waves in the surf-zone are also referred to as quasi-steady in a frame of

reference moving with the wave, since the evolution of the breaker occurs at a time

scale larger than that for a particle to cross the layer. However, they are unsteady

when compared to the motion of the underlying wave, which has a longer time scale

of evolution (Peregrine, 1992).

For quasi-steady, fully-formed spilling breakers, which is the focus of this

dissertation, there are few theoretical and experimental studies which provide a

detailed description of the turbulence. In the following, only a brief introduction

of the key elements of these studies is provided. A detailed discussion is deferred

until subsequent chapters when they are referred to in context. One of the ma-

jor limiting factors towards a direct theoretical or experimental investigation of the

turbulent dynamics of spilling breakers has been the associated surface intermit-

tency and air-entrainment. Straightforward Reynolds-averaging techniques fail due
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to the two-phase nature of the flow near the interface, and conditional sampling

techniques become necessary for an accurate description of the flow (Brocchini and

Peregrine, 2001a,b) (hereafter referred to as BP1 and BP2, respectively). Apart

from the present study, the author is not aware of their incorporation, even in a

mean sense, in any theoretical description of the flow in a breaker. Instead, “bulk”

models have been developed, which, while accounting for some of the effects of the

turbulence, have made simplified assumptions such as static pressure or neglecting

unsteady contributions to the mean flow (Madsen and Svendsen, 1983)(hereafter,

MS83). Most of these models have also been physical, guided by the overall breaker

characteristics (Tulin and Cointe, 1988; Cointe and Tulin, 1994), and theoretical

developments in explicitly including the role of turbulence have been entirely dis-

regarded. Instead, the focus has been on a global representation of the forces on

a breaker, with the primary aim of prediction the oscillations of the spilling zone.

Further, the role of curvature in modifying the turbulence and, consequently, the

mean structure of the breaker shear layer has not been paid any attention. The

model for a turbulent bore developed by Svendsen and Madsen (1984), which is

essentially an extension of MS83 for unsteady motion, provides a simple framework

for the present theoretical approach. A comparison of the physical mechanisms and

mathematical details are discussed in Chapter 4.

The theoretical models described above have been motivated and, at times,

heavily influenced by experimental observations. Some of the earliest experimental

descriptions of spilling breakers were limited to qualitative investigations. Through

flow visualization techniques, Peregrine and Svendsen (1978) analyzed the similar-

ity between hydraulic jumps, bores and spilling breakers, and suggested that in all

three flow configurations, the turbulence spreads downstream of the toe in the form

a mixing layer. The qualitative results of Jansen (1986) indicated that in spilling

breakers, high concentrations of entrained air were confined above the still water
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level. Most experimental studies of the quantitative turbulence structure under

fully-formed spilling breakers have been done with point measurement techniques

(Battjes and Sakai, 1981; Nadaoka, 1986; Longo, 2003; Stansby and Feng, 2005).

Battjes and Sakai (1981) suggested that the turbulence structure far downstream

of the breaker resembled a self-preserving wake. Even though they provide valu-

able information about the turbulence statistics at various spatial locations, these

methods cannot provide a detailed spatial picture of the flow except in an ensemble-

averaged sense. Even then, the procedure of manually shifting the probes to the

desired location requires pain-staking and tedious manual labor. Instantaneous pic-

tures of the flow cannot be realized. This limitation was overcome with the advent

of particle image velocimetry (PIV)(Adrian, 1991; Willert and Gharib, 1991), which

has since then developed into an established non-intrusive measurement technique

to obtain instantaneous spatial maps of the velocity field. For stationary flows,

turbulent fluctuations are obtained by subtracting an ensemble of realizations from

each instantaneous realization. Lin and Rockwell (1994) were perhaps the first to

provide a detailed instantaneous quantitative structure of a steady spilling breaker.

They found that the rapid distortion of the flow along the free surface led to flow

separation, in turn giving rise to a mixing layer with concentrated patches of vortic-

ity. Similar conclusions were reached by Lin and Rockwell (1995)(hereafter, LR95).

However, the substantial fluctuations of the free surface precluded a meaningful av-

erage, and the turbulence fluctuations of either the surface or the velocities could

not be estimated. In the study by Chang and Liu (1999), significant aeration at

the crest prevented any measurements in that region. They found that under the

trough level, turbulence production and dissipation were of the same order of mag-

nitude. With a normal light sheet and digital correlation video-imaging techniques,

Govender et al. (2002a) and Govender et al. (2002b) obtained measurements well

into the aerated region of spilling breakers. The highest turbulence intensities were
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found in the front part of the wave crest, and because they were significantly higher

than earlier measurements restricted to the trough level, it was suggested that ex-

isting descriptions of the surf-zone flow field were inadequate. Coherent turbulent

structures were not analyzed.

In recent years, with steadily increasing computing resources, numerical mod-

eling of unsteady breaking waves has progressed significantly (Chen et al., 1997;

Dimas and Fialkowski, 2000; Iafrati et al., 2001; Song and Sirviente, 2004; Iafrati

and Campana, 2005). Typically, mean flow characteristics, and at times, the mag-

nitude and shapes of turbulence statistics are satisfactorily estimated. Qualitative

results have also been obtained for large-scale coherent turbulent motions underlying

the breaking wave (Christensen and Deigaard, 2001; Rogers and Dalrymple, 2005).

However, an accurate resolution of the finer details of the turbulence structure,

particularly in the post-breaking phase, still poses computational challenges and

conceptual difficulties in a robust formulation for the model. Further, the modeling

efforts have been primarily directed at plunging breakers. Spilling breaking waves

have received far less attention, and Rhee and Stern (2002) is the only related work

that the author is aware of. Quite a few numerical simulations have been performed

for turbulent hydraulic jumps (Long et al., 1991; Chippada et al., 1994; Ma et al.,

2001; Zhao et al., 2004b), but the agreement of turbulence statistics with measure-

ments, especially near the interface, remains at best qualitative. In addition, the

small-scale features of the turbulence are modeled rather than resolved.

Despite their obvious importance, there is still very little understanding of the

turbulent dynamics of spilling breakers. This dissertation is aimed at investigating

some of those aspects from a theoretical and experimental study of two-dimensional

quasi-steady spilling breakers. As eloquently described by Yip (1995), there are

two styles of scientific thinking which can be applied to any problem: Analytical,
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following a logical train of thought and symbolic reasoning from premises to conclu-

sions, and visual, an analogous representation of the problem so that symbolic and

perceptual processes can aid deductive reasoning. For the present problem, whose

complexity discourages a direct analytical approach, a certain amount of qualitative

and visual imagination is needed to provide the necessary understanding of the phys-

ical phenomena. Once the picture is clear, a mathematical approach can take over

and lead more efficiently to logical conclusions. These can then be verified by the ex-

perimental observations. In Chapter 2, laboratory experiments for an air-entraining

weakly turbulent hydraulic jump are described. The jump is set up in Froude simil-

itude with saturated surf-zone breakers. Data-analysis algorithms to estimate the

instantaneous air-water interface and velocities are developed. In Chapter 3, the

turbulent dynamics of the air-water interface and the mean flow structure are an-

alyzed in detail, with particular attention to the breaker shear layer. Chapter 4

presents a theoretical model for the single-phase turbulent shear layer. Curvilinear

coordinates are used to derive governing equations for the flow. Scaling assumptions

based on the kinematics and geometry of the layer are then introduced to evaluate

the contribution of various physical mechanisms. The equations are then analyt-

ically integrated across the layer. The contributions of the two-phase part of the

flow are embedded in the boundary conditions applied at the top of the single-phase

layer. With this procedure, boundary conditions are derived at the lower edge of this

layer which forms the boundary with the irrotational flow below. With the objective

of examining the dominant characteristics of the turbulent flow, Chapter 5 investi-

gates the presence of coherent structures in the breaker shear layer through various

analytical and statistical techniques. Conclusions from the theoretical results and

experimental observations are presented in Chapter 6, followed by a discussion of

ongoing and future work at the end of the dissertation.
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Chapter 2

EXPERIMENTAL SET-UP AND DATA ANALYSIS

ALGORITHMS

An investigator starts research in a new field with faith, a foggy idea, and a few

wild experiments. Eventually, the interplay of negative and positive results guides

the work. By the time the research is completed, he or she knows how it should

have been started and conducted.

Donald Cram

2.1 Introduction

Hydraulic jumps are very common in nature and can be as easily observed

in the kitchen sink as in the spillways of dams. They have long been of interest to

hydraulic engineers as efficient energy dissipators in the design of control structures.

From a different perspective, a hydraulic jump is believed to provide a simplified

description of the complicated processes accompanying wave breaking on gently

sloping beaches. Spilling breakers in the inner surf-zone are essentially quasi-steady

bores. Hornung et al. (1995) applied PIV to study the vorticity and angular mo-

mentum balance in the unsteady flow induced by a traveling hydraulic jump. Even

though the governing equations of unsteady bore motion can be reduced to those

of a stationary hydraulic jump, there are physical differences between the two that

arise from the boundary conditions, particularly in the bottom boundary layer (Yeh

and Mok, 1990). Dabiri and Gharib (1997) (hereafter referred to as DG97) have
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Figure 2.1: Schematic sketch of hydraulic jump.

suggested, based on their PIV experiments, that the turbulent structure of a sta-

tionary hydraulic jump can be used to model the local flow of a quasi-steady spilling

breaker in the decelerating shear layer below the free surface. They had focussed

primarily on the vorticity generation mechanisms.

The similarity of surf-zone spilling breakers with hydraulic jumps is particu-

larly true at low Froude numbers, where the downstream-to-upstream depth ratio

(ξ ≡ h1

h0
) is similar to that of typical surf-zone breakers (Battjes and Sakai, 1981).

This has important consequences for increasing our knowledge of the underlying flow

structure because of the relative ease with which hydraulic jumps can be set up in

the laboratory. In the saturated breaking zone for irregular waves, whether narrow

or broad banded, both laboratory (Ting, 2002) and field measurements (Thornton

and Guza, 1983) have shown that the wave height-to-water depth ratio, known as

the breaker index, varies from 0.4 to about 0.7. For a bore, or equivalently, a hy-

draulic jump, this gives ξ varying from 1.2 to 1.35. Based on Belanger’s equation

(see equation 3.2), the corresponding upstream Froude number (Fr) varies from

1.15 to 1.26. For such low Froude number jumps, to draw a closer analogy with

surf-zone breakers, the energy dissipation in the transition region from supercritical

to subcritical flow has to come primarily from sheared turbulence accompanied by

free surface air-entrainment. The resulting two-phase flow in this breaker region is
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highly intermittent in space and time and encompasses a wide range of temporal and

spatial scales. This makes it a challenging flow to be investigated experimentally.

In this chapter, the PIV experimental set-up and the data analysis meth-

ods to calculate the instantaneous interfaces and velocities are described. Section

2.2 describes the flume geometry, the flow parameters and the PIV set-up. The

calibration procedure is discussed in detail. Due to the sensitivity of the flow to ex-

ternal perturbations, intrusive measurement techniques were not considered feasible

to measure either the air-water interface or the instantaneous flow velocities. Since

detailed streamwise and cross-flow variations of the flow were to be investigated, in-

stantaneous whole field spatial maps, as against point measurements, were desired

for both quantities. Therefore, an algorithm based on image processing methods

was developed to estimate the air-water interface directly from the raw PIV images.

This is described in section 2.3. The parameters in the algorithm are tuned by com-

paring the interface estimate for a single image with visually interpreted results. The

rest of the ensemble is processed in an automated manner without further human

intervention. Finally, section 2.4 describes the phase-correlation based algorithm to

calculate the instantaneous velocities from the PIV image pairs. The algorithm was

developed specifically for these experiments. The accuracy and robustness of the

algorithm is evaluated with standardized test images and typical images from the

present experimental datasets. The bias errors due to pixel-locking are analyzed in

detail, and the relative accuracy of two sub-pixel estimators are compared.

2.2 Experimental set-up

The experiments were performed in a recirculating Armfield S6 tilting flume

that is 4.8 m long and 30 cm wide, with glass side walls that are 9 mm thick, and

a solid opaque bottom. Figure 2.2 shows a schematic diagram of the flume and the

PIV system configuration. Water was pumped into the upstream end of the channel

through a number of screens and flow straightening devices, after which it flowed
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Figure 2.2: Experimental set-up.

past an undershot weir. The undershot weir was constructed from a plexi-glass

plate with a thickness of 1 cm, and was wedged in between the flume walls. A metal

support fixes the plate to the side rails of the flume. The distance from the bottom

of the flume to the bottom edge of the weir can be controlled by a screw attached

to the metal support. The lower end of the plate was machined in order to yield

a sharp uniform edge on the upstream side to minimize lateral variations of the

inflow. The gaps between the weir and the side walls of the flume were made water

tight by inserting flexible plastic tubes through grooves cut into the sides of the

plate. The flow rate and the height of the weir were used to control the upstream

flow velocity and water depth, thereby determining the upstream Froude number.

After passing the weir, the supercritical flow transitions to a subcritical flow by

dissipating energy through the formation of a hydraulic jump (Henderson, 1970).

Further downstream, the water flows over the downstream gate (which was lowered

or raised to fix the location of the jump) and into the reservoir. A board floats

on the upstream water surface to damp surface fluctuations, and the honeycomb
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section prevented large turbulent structures from entering the channel. Just before

the weir, the free surface was capped by a foam board to damp out the waves formed

on the upstream side (Bakunin, 1995). Even then, concentrated vortical motions

sucked down air bubbles into the water passing under the gate. These structures

are inherent to such a geometry (see Figure 1.10 in Kobus, 1991) and lead to pre-

jump entrainment of air. The toe of the jump, defined here as the point of largest

surface curvature, and distinct from the breaking location, was approximately 20 cm

downstream of the weir. The flume was kept horizontal throughout the experiments.

The PIV set-up consisted of a 120 mj/pulse Nd-Yag New Wave solo laser

source with a pulse duration of 3 to 5 nanoseconds. This was mounted onto a

custom-built submersible waterproof periscope which was lowered into the water.

The optics were arranged in such a way that the laser beam emerged as a planar light

sheet parallel to the flume wall. The laser sheet was aligned with the center plane of

the flume, away from the side wall boundary layers. Although the submersible was

suitably streamlined, it did change the location of the jump, and had to be adjusted

so as to keep the jump stationary within the camera target area. It was kept far

enough downstream of the jump to minimize flow interference, and did not cause

any visible changes to the flow. The flume bottom and the undershot weir were

painted with water resistant black marine paint to minimize reflections from the

laser sheet. The water was seeded with 14 µm diameter silver coated hollow glass

spheres with a specific gravity of 1.8, obtained from Potters Industries. For particles

with densities larger than the density of the surrounding fluid, and diameters small

compared to the length scales of the flow, the equation of motion can be described

using a simplified form of the equation in Maxey (1987),

dvp

dt
= −vp − uf

Tp

, (2.1)

where vp is the velocity of the particle, uf is the velocity of the fluid at the particle

position, and Tp is the response time of the particle. The particle Reynolds number

14



Table 2.1: Parameters for experimental datasets

Dataset Target area CR F ∆ t D
x(cm) × y(cm) (cm/pix) (cm) (µsec) (cm)

I 23.1 × 23.3 0.023 2.5 300 70.20
II 11.09 × 11.18 0.011 6 300 83.45

in this case is much smaller than unity, and a linear Stokes Drag law can, therefore,

be used (Wang et al., 1998). This gives

Tp =
2ρaa

2

9ρfν
, (2.2)

where ρa and ρf are, respectively, the particle and fluid densities, a is the particle

radius, and ν the kinematic viscosity. The response time Tp of the particle is calcu-

lated to be Tp = 1.96 × 10−5s. Flow time scales comparable to Tp or larger should

be faithfully represented by the particles. A Kodak Megaplus 1.0 camera, with a

1016 (vertical) × 1008 (horizontal) pixel charged coupled device (CCD) array, with

its image plane parallel to the flume wall, was used to visualize the flow. The active

area was 9.2 mm (vertical) by 9.1 mm (horizontal). The fill factor was 55%. A 532

nm filter was put on the lens to reduce noise due to any ambient light. A Dantec

acquisition system was used to acquire the 8-bit gray scale images and store them

onto a hard drive. The laser pulses were synchronized with the 30 Hz camera frame

rate, which ultimately led to a 15 Hz sampling rate for the instantaneous velocity

fields. The time interval between two pulses in each image pair was 300 µ seconds.

Each experimental run consisted of an ensemble of 1020 image pairs, equivalent to

1020 instantaneous velocity maps.

There were two conflicting requirements faced when fixing the camera target

area. With a given CCD array size, its resolution, and lens set-up, increasing the

distance between the object and image plane leads to a larger target area with a

resulting decrease in resolution, and vice-versa. Since the aim was to capture the

details of the flow not just in the breaker shear layer, but also the upstream (of
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the foot) and downstream (the wake) regions, several lenses were utilitized with

varying focal lengths and the distance between the object and the image plane was

adjusted simultanesously. The parameters for the two datasets I and II, which will

be presented in this dissertation, are shown in Table 2.1. x and y are the horizontal

and vertical coordinates. F is the focal length, ∆t is the time interval between two

images in each pair, CR is the calibration ratio, and D is the distance from the CCD

array to the laser sheet. For each set-up, the camera had to be calibrated with a

calibration grid which should ideally have been placed in the plane of the laser sheet.

However, it was observed that such an intrusion changed, often irreversibly, the flow

characteristics, and would have precluded a meaningful comparison of the different

datasets. Therefore, a calibration grid was placed flush with the front side wall

of the flume. A section of the Canny (a commonly used edge-detection algorithm

developed by Canny, 1986) edges detected for the calibration grid from dataset I

is shown in Figure 2.3. Each square has a physical edge length of 2.54 cm. The

cm/pixel ratio was calculated from an average of 12 squares and was equal to 0.0188

cm/pixel in both vertical and horizontal directions (2.54 cm corresponded to 135.64

pixels). The scale factor due to the refraction of light through the glass and the

water was calculated in the following way. In Figure 2.4, the dashed line denotes

the light ray and the dash-dot lines are perpendicular to the flume wall and the

laser sheet. The refractive indices for toughened glass and water are ng=1.52 and

nw=1.34 respectively. PQ is the image of a single square-edge of the calibration

grid on the CCD array, and, in physical distance units, is equal to y0 = 135.64 pixels

× 9 µ m/pixel = 0.1221cm. RS=y1=2.54 cm is the actual physical measure of the

square edge on the calibration grid. Xf=2.5 cm is the focal length, Xg=0.9 cm is

the thickness of the glass wall and Xw=14.8 cm is the distance of the laser light

sheet from the inner side wall. Xa is, as yet, unknown. From simple trigonometric
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Figure 2.3: Canny detected edges for the calibration grid from dataset I.

arguments for similar triangles,

Xa = Xf

(
y1

y0

− 1

)
, (2.3)

Xa =49.51 cm.

θ = tan−1

(
y0

Xf

)
= 0.049 rad (2.4)

From Snell’s law,

φ = sin−1

[
sin(θ)

ng

]
, (2.5)

which gives φ =0.032 rad. So, JK = Xg tan(φ) = 0.3 mm. Applying Snell’s law again

to the glass-water interface, α = 0.0364 rad, which gives LN = Xw tan(α)=0.54 cm.

LW is the actual physical projection of the calibration grid on the laser light sheet

and is thus given by LW = LN + JK + y1 = 3.11 cm. Therefore, the scale factor

which accounts for refraction through the glass and the water is S = LW
y1

= 1.2244.

The final calibration ratio is given by S × 0.0188 = 0.023 cm/pixel. In a similar

manner, for dataset II, the calibration ratio is found to be 0.011 cm/pixel, or in

other words, yielding approximately twice the resolution of dataset I.
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Figure 2.4: Geometry for calculating the refraction scale factor.

2.3 Estimating the instantaneous air-water interface

Before describing the algorithm to estimate the air-water interface, it is in-

structive to underline its importance in the context of PIV experiments with interfa-

cial flows. Frequently, PIV studies focus on flows where the air-water interface is free

(Qiao and Duncan, 2001, dealing with gravity wave breaking) or forced (Donelan

et al., 2004, investigating wind shear over gravity waves). It is often desirable to

obtain detailed instantaneous flow velocities in either or both phases near the inter-

face. This necessitates an accurate (to, at least, the measurement resolution of the

velocities) estimation of the interface. At times, the spatio-temporal characteristics

of the interface itself are of interest. Typically, the scalar interface is concurrently

visualized by a technique called laser induced fluorescence (LIF), in which fluores-

cent dye is added to one phase and excited to a particular wavelength by the laser.

LIF, in addition to its use as a technique to visualize the flow, is also used to mea-

sure the scalar concentrations (Dewey, 1976). In the context of determining the
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scalar interface, the LIF images are transformed into binary images by a threshold-

detection method and the sharp gradient in the binary image yields the interface

(Westerweel et al., 2002). However, there are various associated complications with

evaluating scalar interfaces of turbulent flows from LIF images. For example, the

treatment of false interfaces, resulting from moderate to high intensity turbulence

fluctuations, needs specific thresholding methods applied to the squared gradient

and the Laplacian of pixel intensities (Prasad and Sreenivasan, 1989).

Therefore, a simultaneous PIV and LIF experiment requires two separate

imaging systems: one camera, with a suitable filter, which records only the par-

ticular wavelength of light scattered by the seeding particles to measure the flow

velocities, and the other, recording the light emitted by the dye used to vizualize

the interface. Recently, in addition to obtaining flow velocities, there have been

attempts to estimate the interfaces in fluid-fluid flows directly from the PIV images.

Due to the voluminous amount of images generated in a typical PIV experiment,

the manual calculation of the interface remains a daunting and, owing to the sub-

jectivity of human perception, an ambiguous task. Hassan et al. (1996) identified

the interface by tracking illuminated floating particles which, due to their own de-

grees of freedom, cause frequent interruptions in the calculated surface and might

even interfere with the flow. Peirson (1997) used a multiple pulsed single frame PIV

technique to study the viscous sub-layer at a wavy air-water interface. Two sepa-

rate cameras were used to simultaneously measure the wave phase and the particle

velocities. This method cannot be used to track the evolution of a time-dependent

surface. The author also points out that reliable measurements were not possible in

regions of small surface undulations. Law et al. (1999) used a fluorescent dye and

a gradient based edge detection routine along with optimally adjusted viewing mir-

rors to estimate the shear-free surface for a confined submerged jet in a tank. The
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calculated surface compared reasonably well with single point wave gage measure-

ments. Intensity or luminance based edge detection methods fail when “spurious

particle reflections” (described later) are present in the PIV image. This problem is

exacerbated in the presence of surface irregularities and cross-plane variations. To

overcome similar difficulties, Lin and Perlin (1998) developed a customized water

channel and optics configuration set-up based on the Brewster angle for the air-

water interface. They point out that their set-up could lead to image distortion

which requires further corrections. The method is labor intensive as it involves ex-

tensive trial and error arrangements. Some researchers have also used a posteriori

methods to determine the interface after the velocities have been calculated. Tsuei

and Savaş (2000) have proposed a first order accurate method to calculate interfaces

in fluid-fluid flows. Their method utilizes the velocity information embedded in a

pair of PIV images to extend the image data fields across the interface. This is done

by locally translating and reflecting across the interface and reversing the order of

images. When dealing with moving or compliant interfaces, the velocities at mater-

ial points on the interfaces have to be supplied as an input to the algorithm. Dabiri

and Gharib (1997) used a no-shear boundary condition on the calculated velocity

to determine the free surface in their experiments with spilling breaking waves. It

is obvious that such methods imposing kinematic or dynamic constraints on the

interface cannot be applied universally.

There is a clear need for a robust, objective, and automated method which

would be able to calculate the interface solely based on the information available in

a typical PIV image. It is understood, as will become clear further, that the level of

accuracy achievable by the proposed method will not be comparable to that offered

by LIF. The current methodology is therefore not implied as a replacement for LIF

in determining the scalar interface. Instead, given a typical ensemble of PIV images,

the aim is to calculate the instantaneous interface efficiently and with a reasonable
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Figure 2.5: Schematic side-view of the flume showing the real and spurious air-
water interfaces. See text for description

degree of accuracy. A consequential benefit is the exclusion of possible “spurious

particle reflections” arising from a standard optical set-up (see Figure 2.5), which

contribute a finite but false correlation in the velocity estimation process. Further,

this would obviate the extensive preliminary adjustments required for the imaging

equipment, as also the need to impose physical constraints on the flow kinematics

when estimating the interface.

The instantaneous air-water interface in the present case is inherently un-

steady, with multiple time scales of fluctuations. It is also free, in the sense that

the interface does not support any shear. Hereafter, the interface is thus referred

to as the “free surface” or simply as the “surface”. It was essential to calculate

the air-water interface prior to calculating the velocities, since there were “spurious

particle reflections” near the interface arising from the perspective viewing angle of

the camera. This is shown schematically in a two-dimensional side-view of the flume
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Figure 2.6: Typical raw PIV image showing spurious particle images and the in-
terface estimates. Magenta line : flume bottom, red line : boundary
between surface reflection region and air, and green line : calculated
actual free surface

in Figure 2.5. O is the center of projection of the camera. The actual interface is

defined as the intersection of the laser light sheet with the water surface, and is

given by the point C. CD is the spuriously imaged water surface. In addition to

the water velocities near the surface, the instantaneous surface itself was of interest

for analyzing the intermittency of the turbulent surface fluctuations, and tracking

the toe of the jump in time. The detailed corrugations and break-up of the surface

were not of primary interest, and in the breaker region, the surface transition from

supercritical to subcritical flow is assumed to be smooth and unbroken.

A typical cropped raw image is shown in Figure 2.6. The flow is from right

to left. The specularity seen in the raw image near the toe of the jump is from air-

bubble entrainment due to turbulent shear and breaking. The physical dimensions of

the cropped raw image shown in Figure 2.6 are approximately 23 cm (horizontal) by

16.4 cm (vertical). Due to the rather large size of the target area, the laser light sheet

attenuates from left to right, and can be clearly seen visually. A quantitative analysis
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of the effect of this attenuation on the image properties of interest is discussed later.

Four distinct regions can be seen in the image. The intersection of the laser light

sheet with the bottom divides the lower region in the image into the fluid region

and the solid flume bottom. This boundary is easily detected by standard edge

detection techniques such as Canny or Sobel edge methods, and the result is shown

as the magenta line. The black region at the top of the image is air and forms a

sharp boundary from the rest of the image. This boundary is the intersection of

the water surface with the glass flume wall. This interface is also calculated by a

Canny edge algorithm, and is shown in the figure as the red line. The “diffuse”

region between this boundary and the real surface is the image of the water surface

between the laser light sheet and the flume wall. This is the region which gives a

finite non-zero correlation when calculating the PIV velocities near the interface,

and leads, ultimately, to an artificial shear layer above the real surface. However,

the illuminated seeding particles in the fluid region have a distinctive footprint. In

the following, the structure of the particle footprint is used to calculate the actual

air-water interface, which is the upper limit of the seeding particles dispersed in the

fluid phase. Computer vision texture segmentation methods are particularly suited

to this task of quantifying and classifying such image information.

Texture classification and segmentation methods such as those based on

gray level co-occurrence matrices, abbreviated as GLCM (Haralick et al., 1973),

cross-diagonal texture matrix methods (Al-Janobi, 2001), texture spectrum (He and

Wang, 1991), Gabor filters (Grigorescu et al., 2002) and wavelets (Chang and Kuo,

1993), to name a few, are powerful and continually advancing, in robustness and

accuracy, tools which can be adapted to estimate deformable interfaces undergo-

ing non-rigid motion (Kambhamettu et al., 1994). In conjunction, parametric and
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geometric active contours, commonly known as “snakes”, are used extensively to lo-

cate object boundaries through edge-detection techniques in segmentation and mo-

tion tracking (Leymarie and Levine, 1993; Xu and Prince, 1998; Akgul and Kamb-

hamettu, 2003). In the following, an algorithm based on GLCM and “snakes” is

developed to calculate the complex turbulent air-water interface directly from the

PIV images.

2.3.1 Image segmentation

GLCM (also known as Gray Tone Spatial Dependence matrices) are proven

image processing tools to classify and separate the information content of an im-

age (Tuceryan and Jain, 1998). Information measures of image properties such as

correlation, variance, contrast, and entropy are used to calculate the inter-pixel de-

pendence of tone and texture (Haralick et al., 1973). The GLCM, a subset of second

order structural methods, makes use of the gray level probability density function,

which is computed as the conditional joint probability of pairs of pixel gray levels

in a local area of the image. A selection of the appropriate quantization level is

therefore essential to the level of precision of the texture classifier. However, the

computational burden increases with the level of quantization. Marceau et al. (1990)

have shown that, for purposes of image classification accuracy, there is very little

difference between 4-bit and 5-bit quantization. In addition, the statistical valid-

ity of GLCM is greatly improved for a 4-bit quantization as compared to an 8-bit

quantization since there are more non-zero occurrences for any given intensity value,

leading to more robust probability measures. A detailed discussion of quantization

effects on co-occurrence texture statistics can be found in Clausi (2002). In the

following, the 4-bit values obtained from a down-quantization of the original 8-bit

grayscale data are used.

The main assumption behind the GLCM is that the texture-content informa-

tion is represented by the average inter-pixel gray level spatial relationships. The
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co-occurrence of gray levels is represented mathematically by the probability, or

relative frequencies of occurrence, conditional on the inter-pixel distance δ (pixels),

and the relative orientation θ (degrees). In the following, a brief description of the

GLCM is given. The relative frequency of occurrence is given by

Cij =
Pij∑N

i,j=1 Pij

, (2.6)

where Pij is the frequency of occurrence of gray levels pair i and j, which are the

horizontal and vertical pixel indices respectively. The summation is over the total

number of distinct gray levels in the quantized image. N is therefore dependent

upon the level of quantization (m = 4 in the present case), and N = 2m = 16.

Once Cij has been calculated, the texture classes can be defined. Three examples

are given here, which are the texture classes used in the present algorithm, and

which, because of their physical significance, are easier to interpret intuitively than

the others. For a definition of other classes, see Haralick et al. (1973). The contrast

texture is given by
N∑

i=1

N∑
j=1

Cij(i− j)2. (2.7)

The horizontal mean is defined in terms of the weighted GLCM itself as

N∑
i,j=1

iCij. (2.8)

The texture class called difference entropy is calculated as

−
N∑

k=1

pi−j(k)log{pi−j(k)}, (2.9)

where pi−j(k) =
∑N

i=1

∑N
j=1 Cij, |i − j| = k, and k = 1, 2, ..., N . The primary

reason that these are chosen over other classes is because of their low degree of

correlation with each other. For classification purposes, it is often advisable to

choose one of the contrast measures (contrast, homogeneity, and dissimilarity), one
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of the orderliness measures (entropy, difference entropy, and energy) and one or more

of the descriptive statistical measures (standard deviation and mean). Typically,

either a linear discriminant analysis or maximum-likelihood estimation method is

used to assess the contribution of several variables to the classification accuracy

(Barber and LeDrew, 1991). Here, a simple trial-and-error method has been used to

select the best possible candidates which gave the closest fit to the visually calculated

interface for a single image used for tuning the set of parameters in the algorithm.

For the images considered here, a different choice of other texture classes, one from

each category, gave very similar results. For more information on feature selection

and pattern classification, see Weszka et al. (1976) and Duda et al. (2000).

2.3.2 Pre-processing

Before the GLCM is calculated, the image is pre-processed to make it a more

robust candidate for the texture segmentation algorithm. To save computation

time, only a section of the raw image spanning the diffuse region is analyzed. The

section (hereafter referred to as “image”) size is 300 pixels (vertical) × 1008 pixels

(horizontal), spanning the interface. The magnitude of the gradient of this image is

calculated as

Im =

√√√√
(

∂I

∂x

)2

+

(
∂I

∂y

)2

, (2.10)

where I(x, y) is the grayscale intensity, x, and y are pixel coordinates in the horizon-

tal and vertical directions. The seeding particles show up as cross-shaped features

in the gradient image, and can be clearly seen in a zoomed-in region shown in Fig-

ure 2.7. The structure of these features shows that the particle image footprint is

approximately equal to 1 pixel, which can be verified using the formula for particle

image diameter (Prasad, 2000),

dτ =
√

M2d2
p + [2.444(1 + M)f#λ]2. (2.11)
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Figure 2.7: Seeding particle footprint in gradient image. Axes numbers are pixel
coordinates.

dτ is the particle image diameter, M is the magnification (=0.04), dp is the particle

diameter (=14 µm), f# is the f−number of the lens (=6), and λ is the wavelength of

the laser (=532 nm). Since the pixel spacing on the CCD is dpix = 9µm, dτ

dpix
= 0.9.

Based on the particle footprint, a template for a particle is chosen in the form

T =




0 1 0

1 0 1

0 1 0


 .

To enhance the contribution of the real seeding particles in the image, the template

is cross-correlated with the gradient magnitude image and then multiplied with the

raw image to yield a “weighted” image shown in Figure 2.8. The fluid region with

the particles can be seen separated from the diffuse reflection region and the air

above.
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Figure 2.8: Weighted image. Axes numbers are pixel coordinates.

2.3.3 Gray level co-occurrence matrix

The next step is to choose a window size for calculating the GLCM, since the

texture statistic is computed as a single measure of the total information content.

The size of the window is a trade-off between the robustness of the estimate (directly

proportional to the window size) and the resolution (inversely proportional to win-

dow size). A window of 24×24 pixels with no overlap was found to work reasonably

well. The displacement between the reference and neighbor pixels was chosen as 3

pixels, i.e., |δ| = 3. All four possible relative orientations were taken into account

by western (θ = 0), southern (θ = 90), northwestern (θ = 135), and southwestern

(θ = −135) offsets. The opposite orientations were accounted for when constructing

the symmetric GLCM. The raw GLCM was first formed by summing the frequen-

cies of co-occurrence of gray level values over all possible pixel pairs given by the

range of δ and θ values in the window. The symmetric GLCM was calculated by

adding the transpose of the raw GLCM to itself. Therefore, it was assumed that
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the pixel pair gray scale values had no preferred orientation. This is intuitively jus-

tified, since the seeding particles are distributed randomly in the fluid phase. The

symmetric GLCM was then normalized by its sum, thereby yielding the relative fre-

quencies of occurrence. The normalized texture classes (horizontal mean, contrast

and difference entropy) were then calculated, and are shown in Figure 2.9. There

is, surprisingly, a remarkable qualitative similarity between them. Considering that

these particular texture classes are not well-correlated by definition, the similarity

is therefore an indication of the comparable degree of representation of the image

content in each of the texture classes. The effect of the light sheet attenuation is

evident in the decreasing magnitudes of all the texture classes from left to right and

this is more clearly seen in Figure 2.10. The values at each horizontal location have

been obtained after averaging vertically.

2.3.4 Singular value decomposition

It has been shown that the information contained within the GLCM is not

fully represented by any single texture class (Conners and Harlow, 1980). With

that in mind, the texture classes were combined into a single matrix by perform-

ing principal component analysis on the texture class covariance matrix (Turk and

Pentland, 1991). Each texture class was thus collected together to form A = [T1, T2,

· · · , TM ], where Ti are the individual texture classes, and each row of A corresponds

to a collocated position from each of the classes. The texture covariance matrix can

be computed as C = ΦΦT , where Φ = A− Ā, with Ā being the average texture.

A single matrix can be calculated by projecting the texture class data points along

K (K ≤ M) orthonormal principal vectors obtained by eigenvalue decomposition of

the texture covariance matrix. In the computations, it was observed that the first

eigenvalue-eigenvector pair provided sufficient robustness to the subsequent stages

of the process.
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Figure 2.9: Normalized texture classes: (a) Contrast, (b) Horizontal mean, and
(c) Difference entropy. Axes numbers are pixel coordinates.

The edge map of the singular value decomposition matrix was calculated

using a Canny edge detection method. The edge map was then blurred using a

Gaussian convolution. It may be less clear why there is any interest in blurring the

edge map. However, it does perform a useful intermediate step, and is commonly

used in edge-detection routines in image processing (Gonzales and Woods, 2002).

A Gaussian Blur is a general purpose low-pass blur filter. This removes fine image

detail and noise inherent to an edge detection method (such as Canny) leaving only

larger scale changes. Therefore, Gaussian Blurs produce smoothing without side
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Figure 2.10: Normalized texture classes: Correlation(∗), Difference entropy(+),
Dissimilarity(♦), Contrast(◦), and Intensity(∆)

effects. Obviously, the level of detail retained depends on the size of the filter, which

is given by the standard deviation. In the present, the Gaussian kernel selected was

3 × 3 pixels with a standard deviation of 1 pixel. The “Laplacian of the Gaussian”

operator can also be used to do both operations (smoothing and edge detection) at

once (Marr and Hildreth, 1980).

2.3.5 Active contours

The next step was to determine how to represent the set of first approximation

discrete points, obtained from the gradient of the Gaussian blurred image, that have

been assumed to lie on an edge, which in the present case is the turbulent interface.

Kass et al. (1987) were the first to propose a model called active contours or “snakes”,

in which the final form of the contour is influenced by a feedback from a higher

level process essentially minimizing the “energy”. “Snakes” were previously used

by Duncan et al. (1999) to calculate the crest profile evolution for gentle spilling
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breakers. Hermite cubic polynomials were used to represent the “snakes”. The

experimental and camera set-up were, however, tuned to solely measure the scalar

interface from the dye visualization, and the images analyzed are therefore closer

to typical LIF images than PIV images. According to the classical definition, the

“snake” is a deformable contour x(s) = [x(s), y(s)] parameterized by the arc-length

s ∈ [0, 1]. The contour is controlled by balancing the internal energy terms (Eint)

emanating from the shape of the contour, with the external energy (Eext) extracted

from the image and/or obtained from a higher level image understanding processes

(such as the texture information provided by the GLCM). The energy functional to

be minimized takes the form

E∗ =

∫ 1

0

[α|x′(s)|2 + β|x′′(s)|+ γEext]ds. (2.12)

Primes denote differentiation with respect to s, and the vertical bars represent the

absolute value. The first two terms form the internal energy, while the last term

denotes the external energy. The internal energy is responsible for the smoothness

of the contour, while the external energy attracts the contour towards the object

boundary. The parameters α, β and γ control the importance of each term towards

the net energy functional. There are many external energy functionals possible,

with the image gradient Eext = −|∇I(x(s))| being the most common choice. This

is the functional used in the present algorithm.

The discrete approximation of the active contour renders the minimization

of the energy functionals over N discrete samples of x(s), also known as snaxels

(xi = [xi, yi], i = 1 · · ·N). The discrete form of the energy functional is given by

E∗ =
N∑

i=1

[αEcont(xi) + βEcurv(xi) + γEext(xi)]. (2.13)

The derivatives present in the internal energy terms can be replaced by the discrete

counterparts as Econt(xi) = (davg − ‖xi − xi−1‖)2, which is a first-order continuity

constraint similar to the first-derivative term in Kass et al. (1987), and seeks to keep
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points spaced equally along the curve. Ecurv(xi) = ‖xi+1−2xi +xi−1‖2 is analogous

to a second derivative term which seeks to minimize the curvature. davg is defined

as the average distance between the contour points, and is required so that the

contour does not shrink towards itself. Note that each term has to be normalized by

dividing by the largest value of that term within the neighborhood of the search. In

the algorithm, the external energy that is used to control the active contour is based

on the data obtained from the texture classes. Thus, the magnitude of the gradient

of the texture classes between the seeding particle zone and the non-particle zone

is minimized under the constraint that the contour so obtained satisfies first and

second order continuity. The contour estimation is repeated with the estimate at one

stage forming the initialization to the subsequent stages until the contour stabilizes

over the texture classes. In the implementation, the “greedy” algorithm described

by Williams and Shah (1992) is used instead of the classical formulation. Here, a

local search is performed at the position of each discrete point, and the position

that minimizes the energy functional is selected as the new updated position. The

local search neighborhood is maintained at 15 vertical pixels (7 on either side) at

each iteration. Finally, a cubic spline is used to interpolate the discrete snaxels, and

to obtain a continuous contour giving the free surface estimate.

A single randomly selected image is used to tune the parameters discussed

above by comparison with the visually-interpreted (hereafter, VI) surface (see 2.3.6)

for that image. The rest of the images in the ensemble are batch processed without

any further intervention. Nonetheless, to test the algorithm, several images were

randomly selected, and on comparing the GLCM surface with the VI surfaces, good

agreement was found between the two for the fixed set of parameters (α = 0.52,

β = 0.7, γ = 0.12).
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Figure 2.11: Comparison of GLCM and visually calculated interfaces for a typical
image (A) in dataset I. Axes numbers are pixel coordinates.

2.3.6 Results

Since the flow is very susceptible to external perturbations, no intrusive

probes were used to measure the instantaneous surface. Therefore, in-situ mea-

surements were not available as ground truth. However, there are several ways

to test the accuracy of the instantaneous as well as ensemble averaged calculated

interfaces. In this section, the instantaneous results are assessed with respect to

human perception. In Chapter 3, the accuracy of the estimated interface is further

demonstrated by comparing the interface fluctuations with theoretical profiles of

the intermittency factor. In the same chapter, an indirect check for the location of

the interface is provided by integrating the computed velocities over the depth and

comparing the volume flux at each vertical section.

The results from the algorithm were assessed first with respect to human

perception. Ten randomly selected (from the ensemble) PIV images were distributed
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Figure 2.12: Comparison of GLCM and visually calculated interfaces for a typical
image (B) in dataset I. Axes numbers are pixel coordinates.

to each of a group of ten participants. A short problem description was provided and

the subjects were asked to click on the image where they perceived the position of the

true interface. Since the inputs from the subjects could be sparse and not coincident

with the GLCM calculated positions, a cubic spline was used to interpolate the

VI surface at the GLCM locations. The mean position of the contour was then

computed as the average of the contours obtained from the ten participants. Figure

2.11 and Figure 2.12 show the GLCM and VI surfaces for two randomly selected

images (A and B) in the ensemble. The overall qualitative agreement is good, even

in the breaker region, where the surface is broken up and there is two-phase flow

resulting from ejection of water particles into the air and entrainment of air bubbles

in the water. As noted earlier, an unbroken smooth contour is assumed through the

breaker region. The quantitative disagreement between the GLCM and VI surfaces

35



is shown in Figure 2.13 by plotting the error

ε(x) = h(x)GLCM − h(x)V I . (2.14)

h(x) is the local water depth. Negative values of ε therefore imply that the GLCM

surface is below the VI surface and positive values indicate that it is above. A

first qualitative, and reassuring, conclusion which can be drawn is that there is

no consistent bias towards under- or over-prediction by the GLCM method. The

mean, averaged in the horizontal direction, absolute errors for the two images are

εA = 5.77 pixels (=1.3 mm) and εB = 3.85 pixels (=0.9 mm), which were within

the measurement location resolution for the calculation of the PIV velocities (=8

pixels). The mean non-dimensionalized (by the horizontally averaged GLCM depth)

absolute error percentages are εA
′
= 1.31% and εA

′
= 0.87%. As to computational

efficiency, in a MATLAB (version 7.0, R14) implementation of the algorithm on a

personal computer, with a 3 GHz Intel processor and 1.5 Gb of physical memory,

the GLCM surface is calculated for a single image in approximately 15 secs.

Dataset II was collected from an optically zoomed-in target area in the

breaker region to study the detailed turbulence structure of the roller region and

the breaker shear layer. The physical dimensions were 11.09 cm × 11.18 cm. The

surfaces were estimated with the same GLCM and snake parameters, and the VI

surface is compared to the GLCM surface in Figure 2.14. The error bars denote

one standard deviation of the VI surface. The horizontally averaged absolute error

ε in this case is 7.9 pixels (=0.8 mm). In dataset II, the specularity in the breaking

region occupies a larger (approximately twice) portion of the image. In this region,

as noted before, the definition of a smooth unbroken interface is highly subjective

and this can be seen in the increasingly wide error bars in that region. However, it

is noted that the GLCM does a reasonable job of estimating most of the small scale

perturbations of the surface even in this two-phase breaker region.
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Figure 2.13: Error (ε) between GLCM and VI interfaces for image A (solid line)
and image B (dashed line) for dataset I.

2.4 The PIV motion estimation algorithm

Typically, algorithms that have been developed for computing velocities from

PIV images are region based methods that compute the cross correlation between

the interrogation regions obtained from the two images (Adrian, 1991; Willert and

Gharib, 1991). Region based techniques estimate the average motion of small groups

of particles, thereby making the method noise tolerant and robust (Prasad, 2000).

Among the various modifications to the region based methods, Scarano and Ri-

ethmuller (1999) proposed an algorithm where the displacement is predicted and

corrected by means of an iterative procedure. As reported by the authors, the win-

dow displacement iterative multigrid (WiDIM) method is extremely robust. The

method proposed in this section is similar to the WiDIM method, but has an ad-

ditional advantage wherein the total motion is decomposed into a global motion

field and a local motion field. This increases the robustness in the estimation of the

37



VI surface

GLCM surface

Figure 2.14: Comparison of GLCM and VI interfaces for a typical image in dataset
II.

motion of the seeding particles.

Unlike the region based methods, where the intra-region motion is assumed

to be accurately modeled as a translation of coherent groups of particles, intensity

based differential methods (Quenot et al., 1998) estimate the motion via the optic

flow equation (Horn and Schunck, 1981). The biggest disadvantage with the differ-

ential methods is the requirement of strong gradient information in the images for

the displacement estimates to be accurate. In synthetic images, this condition can be

easily fulfilled, but in real images, particularly in the present data, this requirement

is frequently violated, leading to inaccurate results.

A consequent and frequently necessary post-processing step involves the de-

tection and replacement of spurious displacements that arise from image “noise” or

deficiencies in the evaluation method (Westerweel, 1994; Raffel et al., 1998). For ex-

ample, the occurrence of spurious vectors can result from a locally low particle image
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density or background noise from reflections (Bolinger, 1999). Nogueira et al. (1997)

describe various post-processing steps for validating the estimated displacements in

a PIV experiment, and also provide algorithms for the correction of spurious vec-

tors using interpolating filters. In the PIV validation technique presented by Green

et al. (2000), forward and reverse projected vectors are computed at chosen analysis

points, and the projected vectors are used to test the validity of the vector estimated

at the analysis point. This coherence-based validation scheme provides accurate re-

sults. However, the estimation of the forward and reverse projected vectors cause a

three-fold increase in the computational complexity.

In this section, an algorithm is presented that estimates the motion by first

computing a global motion field and then uses the global motion field as an initial-

ization in estimating the local motion. This decomposition into a two level hierarchy

of flow estimation helps accurately achieve very high spatial resolution. The global

motion field is estimated using phase correlation (Thomas, 1987), while the local

motion is obtained using a robust voting scheme composed of both the phase correla-

tion and cross correlation estimates in order to accurately identify possible spurious

vectors.

The organization of this section is as follows. First the motion estimation

technique is described. This is followed by the details of the implementation, where

the global and local motion estimation modules are implemented. Finally, the results

of the experiments with the standardized images from JPIV (Okamoto et al., 2000)

and the PIV Challenge 2001 (Stanislas et al., 2003) are presented to test the validity

of the scheme. Peak-locking errors are analyzed with the standardized images as

well as with images from dataset I. Most of the material that follows has appeared

in Thomas et al. (2005a), and is reproduced here by permission of the authors.
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2.4.1 Motion estimation techniques

When a time-lagged pair of images is viewed under the constraint of a small

spatio-temporal difference, the “correspondence problem” can be cast as the problem

of estimating the apparent motion of the image brightness pattern (Truco and Verri,

1998). Estimating this apparent motion or the optic flow leads to the fundamental

equation of motion analysis, the image brightness constancy assumption, dE(x,y,t)
dt

=

0, where E(x, y, t) is the image intensity, (x, y) are the spatial coordinates, and t is

time.

Among the various techniques developed, differential techniques derive di-

rectly from optic flow. Due to inherent difficulties in performing numerical differ-

entiation, region-based matching techniques provide a possible alternative in esti-

mating the displacement vector field (Barron et al., 1994). This is done by either

minimizing an error criterion such as “Sum of Squared Difference” (ε), or maximiz-

ing a similarity measure such as “Normalized Cross Correlation” (ρ) between the

current image block and potential candidates within a predefined search window in

the previous frame.

ε =
∑

x,x′
[E(x, t)− E(x′, t + ∆t)]2. (2.15)

ρ =

∑
[E(x, t)− E(x, t)][E(x′, t + ∆t)− E(x′, t + ∆t)]√∑

[E(x, t)− E(x, t)]2
∑

[E(x′, t + ∆t)− E(x′, t + ∆t)]2
, (2.16)

where x and x′ are the spatial positions in the time lagged (∆t) images, E(·) is

the mean of the region under consideration and
∑

is defined over all x′ (x′ =

x + d) within a predefined search window, with d being the displacement to be

estimated. The phase correlation algorithm presented in the section below falls

under the general class of region based motion estimation.
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2.4.2 Phase correlation

Phase correlation, like cross correlation, is derived from the Fourier Shift

Theorem, which states that the time lag of a one dimensional signal is equivalent to

a phase change in the frequency domain. Thus, for two continuous functions f(x)

and g(x) related by g(x) = f(x + d) in the two dimensional Euclidean space, the

cross correlation between the two can be obtained as the Inverse Fourier transform

of the product of the individual Fourier transforms.

<fg(d) = =−1(=(f(x))×=(g(x))?) = =−1(F (u)F ?(u)e−j2πuT d), (2.17)

where F (u) and G(u) are the corresponding Fourier transforms of f and g with (∗)
being the complex conjugate and u being the frequency components in the Fourier

space. From the shift theorem, G(u) = ej2πuT dF (u).

Given the correlation surface, motion is estimated by finding the position of

the maximum. But due to the aperture problem (Horn and Schunck, 1981), there

are situations where the correlation surface contains multiple peaks. Selecting the

maximum from the correlation surface in those cases does not necessarily provide

the best estimate. A solution to this problem is to sharpen the true cross correlation

peak by using “whitening” zero-phase FIR filters, H1 = |F (u)| and H2 = |G∗(u)|
(Manduchi and Mian, 1993). Thus, prior to computing the inverse transform, the

magnitude components from F (u) and G∗(u) are eliminated using the FIR filters.

This modified correlation equation provides a Dirac delta function centered at the

translation parameters, which can be estimated easily and more accurately.

℘fg(d) = =−1(
F (u)

H1

G∗(u)

H2

) = =−1(
F (u)

|F (u)|
F ?(u)e−j2πuT d

|F ?(u)| )

= =−1(e−j2πuT d)

= δ(x− d). (2.18)

Extensive studies on the use of phase correlation for motion estimation have

been provided in Thomas (1987) and Vernon (2001), and in general, the technique
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is extremely robust when estimating large displacements. An important advantage

of motion estimation methods based on phase correlation is their insensitivity to

illumination variation, since the magnitude terms are removed by the whitening

filters (Manduchi and Mian, 1993). This was particularly relevant to the analysis

of the present datasets because of the effects of laser attenuation and specularity

due to breaking. On the other hand, algorithms based on the cross correlation

metric perform a selection which is biased towards points having higher intensities

and thus could provide incorrect displacements represented by local maxima. The

phase-based techniques are also characterized by their insensitivity to correlated

and frequency-dependent noise, which render them robust in the estimation space

(Foroosh et al., 2002).

The other notable advantage of phase correlation is that the affine parame-

ters, such as rotation, shear and scale, which are coupled in the spatial domain,

are separated from the translation components into the magnitude and the phase

spectrum respectively in the Fourier domain. This is evident from the affine Fourier

theorem as proposed by Bracewell (1993), which provides the generalization to the

Fourier Shift theorem under an affine transformation. The affine Fourier theorem

describes the separation of the affine terms and the linear terms in the frequency

space. The estimation of the displacement parameters can thus be performed in the

phase spectrum, while the parameters of the motion governed by the affine para-

meters can be estimated from the magnitude spectrum (Reddy and Chatterji, 1996;

Kruger and Calway, 1996).

In the case where the local motion can be approximated as linear, both cross

correlation and phase correlation would have a peak at the correct location. If the

underlying motion contains strong affine components, most region based techniques

would provide the average motion of the region that is analyzed by the interrogation

block. Being a sharpened version of the cross correlation peak, phase correlation is
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more sensitive to the presence of affine components in the motion field. It there-

fore provides a stronger metric in determining the presence of non-linear motion

within the interrogation block. This idea forms the basis of the reliability measure

used here, i.e., given the phase correlation peak and the cross correlation peak, the

estimate is considered extremely reliable in the cases where the peaks of the two es-

timated metrics coincide. If the peaks of the two surfaces do not coincide, the region

under consideration does not have a unique linear velocity, and any linear model

would only provide an approximation of the motion. The important advantage of

this robust voting scheme is that both the similarity metrics are derived from the

Fourier components of the same regions under consideration. Thus, performing the

2-D Fast Fourier transform once does not significantly add to the computational

complexity over other cross correlation based techniques.

2.4.3 Algorithm implementation

In computing the optic flow, all techniques face two interdependent problems

which arise due to the choice of the analysis window. The smaller the analysis win-

dow, the greater the number of potential candidates which have a high correlation

with the interrogation block. On the other hand, there is a higher probability of

having a combination of various motions when the windows size is large. This prob-

lem is called the “generalized aperture problem” and defines the upper bound on

the availability of accurate motion estimates at high spatial resolutions (Horn and

Schunck, 1981). One approach used in dealing with this problem is to handle the

motion estimation at multiple resolutions (Black, 1992). This enables percolation

of information from a coarser resolution to a finer resolution in a computationally

efficient fashion. The disadvantage with this hierarchical process is that any motion

smaller than the degree of decimation is lost during the process of creation of the

resolution hierarchy. The method implemented here has three processing compo-

nents. The first component estimates the global motion that is taking place between
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the image pairs using a multi-resolution image hierarchy (Burt and Adelson, 1983).

The second component estimates the sub-pixel level local rectilinear motion, and

the third component performs the outlier removal and data validation.

2.4.4 Global motion estimation

The global motion field is estimated by performing phase correlation at each

level of the image pyramid hierarchy. The image pyramid is computed for each

image of the image pair using a Gaussian filter followed by a 1:2 signal down-

sampling. This helps reduce the aliasing artifacts that otherwise arise due to the

down-sampling (Proakis and Manolakis, 1995). At each level of the pyramid, the

down-sampled image pair is divided into a tessellation of blocks and the motion

field is computed by performing phase correlation over the entire tessellation of

blocks. The global displacement field is median filtered to remove spurious vectors

before percolating the estimate from the coarser levels of the pyramid towards the

finer resolutions. At the finest resolution of the image hierarchy, the global motion

field is obtained. Due to the periodic nature of the discrete Fourier transform, the

maximum measurable displacement using the Fourier transform of a signal within

a window of size W is W/2. Thus, to capture translations of magnitude d, the

window size should be at least 2 ∗max(dx, dy), where dx and dy are the components

of the displacement along the two coordinate directions.

2.4.5 Local motion estimation

The global motion field obtained from the previous stage provides the initial

estimate for the local motion estimation. The local motion field is obtained in a

similar manner as the global motion estimation, in that phase correlation is per-

formed on a tessellation of blocks over the entire image. To improve the accuracy
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Figure 2.15: Reliability verification using cross correlation (left figure) and phase
correlation (right figure).

of the estimate, the position of the peaks obtained by phase correlation is verified

by comparing with the position of the peak from the cross correlation surface.

Ψ(d) = [E(x, t)− E(x, t)][E(x′, t + ∆t)− E(x′, t + ∆t) (2.19)

Both Ψ and ℘ can be computed from the Fourier transform of the image block, and

each is used to cross verify the accuracy of the other. If the positions of the two peaks

are unchanged, the estimate can be considered a very reliable estimate within the

region of comparison as shown in Figure 2.15. Thus, it provides a strong verification

metric on the reliability of the estimate. The presence of a mismatch between the

peaks indicates the possibility that the region under consideration has significant

non-linear motion. This can be seen in Figure 2.16, where two interrogation blocks

from a region undergoing non-linear motion are shown. Regions shown in the ellipses

have been picked manually to give an indication of the non-linear motion taking place

within the region.

Given the two image blocks, the peaks of the cross correlation and phase

correlation have a positional mismatch, and as can be seen in Figure 2.17, the

maximum of the phase correlation has another strong component in the vicinity.
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Figure 2.16: Image blocks undergoing non-linear motion. Left figure: block from
image 1, right figure: block from image 2.

This positional mismatch indicates the possibility of multiple motions being present

in the interrogation blocks. Any linear region based scheme would provide an average

estimate of the motion within the window, which would be inaccurate. To rectify

this, a set of potential candidates (C) are computed from the phase correlation and

cross correlation surface if there is a mismatch between the peaks.

C = {phasei}
⋃
{max(Ψ(d))}, (2.20)

where
⋃

denotes the union set, phasei = κ∗max(℘(d)) are the positional candidates

from the phase correlation surface and max(Ψ(d)) is the position of the maximum

from the cross correlation surface. κ = 0.75 was seen to provide reasonable can-

didates. The reason that the candidates are selected from the phase correlation

surface as against the cross correlation is because of the reduced surface spread

around each peak in the phase correlation surface. The best candidate is then ob-

tained by computing “normalized cross correlation” (ρ) at these candidate estimates

(C) and selecting the candidate having the highest value of ρ. This technique does
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Figure 2.17: Peak mismatch indicating strong non-linear motion using cross cor-
relation (left figure) and phase correlation (right figure).

not provide the parametrization of the higher order motion model, but within the

constraint of a piecewise linear motion model, the method provides the most robust

solution possible.

Having obtained the integer resolution motion field, sub-pixel level motion

interpolation is done by fitting a 3-point gaussian fit over the normalized cross cor-

relation (ρ) values in the neighborhood of the best estimate. Since the logarithm of

a Gaussian yields a second order polynomial, the sub-pixel estimate (δ) is estimated

by

δ =
ln ρ−1 − ln ρ+1

2(ln ρ−1 + ln ρ+1 − 2 ln ρ0)
(2.21)

where ρ−1, ρ0 and ρ+1 are the locations of the normalized cross correlation in the

neighborhood under consideration.

2.4.6 Outlier removal and de-noising

Though the voting scheme reduces the possibility of incorrect estimates, im-

age regions containing low gradient information due to insufficient seeding could still

provide incorrect estimates. Removal of these spurious vectors is done by using a
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modified median filter as proposed by Westerweel (1994), where the velocity vector

U2D(i, j) is considered valid if

|U2D(median)− U2D(i, j)| < εthreshold, (2.22)

where U2D(median) is the median of the vectors in the neighborhood of U2D(i, j)

and εthreshold determines the reliability of U2D(i, j). εthreshold was determined in

a manner similar to the “dynamic mean value filter” (Raffel et al., 1998). The

standard deviation of the vectors in the neighborhood, σU(i, j), was used to weight

two constants, C1 and C2 as C1 + C2σU(i, j). For the dynamic median filter in the

local motion estimation, the constants, C1 = 0.6 and C2 = 0.6 were found sufficient

for performing the outlier detection. From computations done with the standardized

images, the “dynamic median value filter” provided a better local neighborhood

filtering than the “dynamic mean value filter”.

2.4.7 Results

The algorithm has been implemented using a prototype written in Matlab

6.5 R13 by Mani Thomas (Department of Computer and Information Sciences, Uni-

versity of Delaware, Newark, DE 19716, USA). For the global motion estimation,

interrogation block sizes were maintained at a constant 32 × 32 pixels throughout

the image hierarchy so as to obtain an amplified and accurate translation at the

finer scales. For the local estimation, the interrogation block size was 16 × 16 pix-

els. Both global and local estimations were performed with a 50% overlap between

adjacent blocks. At each level of the image pyramid, the global motion field was

median filtered using a 3× 3 motion field neighborhood.

The images used for the validation of the algorithm were obtained from the

JPIV (PIV-STD Project) (Okamoto et al., 2000). In applying the algorithm for

standard images from JPIV, both the non-transient and transient case have been

evaluated to determine the utility of this method. An important part of a PIV
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Figure 2.18: Histogram plots of the estimated displacements for two sample actual
displacements. tx and ty are horizontal and vertical displacements.

algorithm is its ability to minimize the bias errors, specifically peak locking, robustly.

In investigating the robustness of the method described in handling the bias errors,

the standard images were first warped using known translations, and the motion was

estimated. Four specific JPIV test cases (#004, #005, #006, #007) were warped,

using bilinear interpolations, with translations in the range [2.0, 2.1, · · · , 8.0]. The

four test cases account for a typical displacement/seeding density scenario in a

standard PIV experiment.

Histogram plots for a few of the translations are shown in Figure 2.18. For

results of other cases, see Thomas et al. (2005a). As can be seen from the plot, the

sub-pixel estimator is considerably robust. Though the existence of peak locking
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cannot be ruled out completely when using the standard Gaussian interpolation

function (Roesgen, 2003), the most important point to be considered in analyzing

sub-pixel estimators is the error significance, which can be obtained as the ratio

between the deviation to the actual translation. This is shown in Figure 2.19, where

the percentage deviation has been plotted for the four test cases. The presence of

the error oscillations indicates the presence of peak locking, but as can be seen, the

amplitudes of the oscillations are within 2% of the actual displacement range. The

bias error variations, with increasing/decreasing seeding density and/or the pixel

diameter, agree with trends observed by Collicott (1993) and Prasad (2000). With

an increased seeding density, the errors seem larger than with lower seeding density.

With increasing particle size, the bias error deviations decrease, with bias error

being zero at full pixel and half pixel resolution. The above results were obtained

by running the simulations using an interrogations window size of 16 × 16 pixels
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Figure 2.20: Scatter plot for estimated vectors versus standardized vectors for
JPIV test case #001 (non-transient). See text for legend explana-
tions.

with 50% overlap.

Next, the non-transient case is considered. Figure 2.20 is a sample scat-

ter plot obtained from the magnitude and phase variation between the estimated

and the ground truth displacement vectors for spatially collocated positions. The

green markers in the scatter plots are the vectors whose magnitude are within 1

pixel difference from the standardized vectors while the red markers indicate those

estimates that deviate from the standardized vector by more than 1 pixel in mag-

nitude. ncomplete are the total number of estimates which have been compared and

ngood are the estimated vectors which are within 1 pixel difference of the ground

truth. RMSE denotes the root mean square error. The algorithm provides accurate

estimates when compared to the ground truth vectors for all image pairs, except

Image No. 2 (Thomas et al., 2005a). The main reason for this was due to the large

non-rigid motion present in the image pair. Most region based techniques fail for

this pair of images because of the extreme changes in the position of the particles
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and the gradient of the velocity vectors. For results with the transient case and

the PIV challenge (Stanislas et al., 2003) (both of which show very good agreement

between ground-truth and estimated vectors), see Thomas et al. (2005a).

2.4.8 Pixel-locking analysis

As mentioned in the introduction, one of the major causes of errors in velocity

estimation from PIV is peak-locking or pixel-locking; a bias error that in the presence

of actual sub-pixel displacements, biases the displacements calculated from a sub-

pixel estimator towards integer and half-integer values. Prasad et al. (1992) were

perhaps the first to systematically analyze the sources of this error. From tests

carried out with real PIV images of turbulent channel flow, they concluded that the

bias error results from an inaccurate resolution of the correlation peak. There was a

periodic behaviour of the error, with zero crossings at full- and half-pixel values, as

has already been seen from the test cases with the standardized images. They also

point out the bias errors resulting from inadequate pixel resolution for the position

of individual particles (quantified by the ratio of particle image diameter and pixel

spacing, dτ

dpix
) are not critical in PIV (unlike Particle Tracking Velocimetry), since

a displacement estimate from a finite window incorporates several particle images,

and the bias error should cancel out. However, Keane and Adrian (1990) had shown

earlier that the location of the correlation peak is proportional to this ratio, and

therefore, larger values should reduce bias errors. The RMS errors on the other hand,

increase with dτ . Westerweel (2000) showed that peak-locking effects are supposed

to occur when the particle-image diameter is less than two pixel units. Several other

sources of pixel-locking errors have been identified, such as in-plane loss of correlation

(Westerweel et al., 1997), image noise and correlation processing (Huang et al.,

1997), the size of the interrogation window (Nogueira et al., 2001) and the choice of

sub-pixel estimator itself (Forliti et al., 2000). Since peak-locking errors influence

not just the mean flow, but the turbulence statistics as well (Christensen, 2004),
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several precautions and remedies have been suggested to prevent and overcome

many of these problems. One such is the recent sinc-kernel based sub-pixel algorithm

suggested by Roesgen (2003), which was found to increase the accuracy compared

to the commonly used method of fitting a three-point Gaussian around the peak.

Even though the estimated vectors from the motion estimation algorithm have been

shown to be in good agreement with the ground-truth vectors for the standard

JPIV images, a 5-point (both in the horizontal and vertical directions) least squares

Gaussian sub-pixel estimator was implemented, which was seen to further increase

the accuracy of the estimated sub-pixel displacement for the real images. Reducing

the bias error was essential in reliably estimating the turbulent quantities, since

pseudo-turbulence can be generated in PIV datasets from bias errors due to pixel-

locking (Chang and Liu, 2000). The lower accuracy for a standard 3-point Gaussian

fit arises due to its inability to take into account background “noise”, which is

amplified in the real images as compared to the synthetic images. The non-linear

least squares algorithm uses the Levenberg-Marquardt method (Moré, 1977).

In the present study, the raw images, compared to typical PIV images, were

sub-optimal (due to the rather large field of view, low optical resolution, and visu-

ally observed laser sheet attenuation, among other random noise inherent to PIV).

A further source of concern was the relatively low average pixel displacement, which

was approximately 1 pixel. For such low displacements, bias errors, such as those

caused by pixel-locking, become large and are known to dominate over random er-

rors (Prasad, 2000). However, these trends are only confirmed for quadratic and

three-point Gaussian estimators. As will be seen, even in cases of low particle dis-

placements as in the present case, the least squares sub-pixel estimator reduces this

bias error to less than 1%. A high accuracy in the velocity field was essential toward

making sensible analyses of the mean and turbulent flow structure. Therefore, it

was imperative to test the algorithm’s accuracy with the present images.
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Figure 2.21: Section of scaled raw image from dataset I used for pixel-locking
analysis. Coordinates are in pixels and the colorbar shows intensity
levels.

A 256 × 960 section of a randomly selected image from the ensemble was

chosen as the first image for the tests, and is shown in Figure 2.21. It is stressed

that this is a real raw image from the dataset and not synthetically constructed.

The second image pair was constructed by warping (using a bilinear interpolation)

the first image with a prescribed known (integer ± sub-pixel) translational displace-

ment ∆actual. A range of displacements, typically found in the experiment, were

used. The window size was kept fixed at 16 × 16. The mean of the estimated

displacement (µ∆estimated
) was then calculated by averaging over the entire flow field.

Histogram plots of the estimated displacements are shown in Figure 2.22. The non-

dimensionalized error is shown as a function of the actual displacement in Figure

2.23. Several features are immediately obvious. The overall accuracy is very good,

and the maximum non-dimensionalized error is only 3%, at an actual total displace-

ment of 0.6 pixel. The modulus of the error decreases as the displacement increases.

The error is very close to zero at integer and half-integer displacements. There still

is clear evidence of the effect of pixel-locking, since, for actual displacements greater
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Figure 2.22: Histograms of actual and estimated mean and median displacements
for two sample actual displacements. tx and ty are horizontal and
vertical displacements.

than integer and half-integer displacements, the error is negative and vice-versa. The

large errors always occur at roughly 0.1 pixels away from integer and half-integer

value. The cause of this is not known. Since the estimated mean (averaged over

the entire domain) instantaneous pixel displacement in the experimental data, was

found to be around 1 pixel, the errors in the estimated displacement are therefore

within 1%. There was also no bias in the variation of the estimated displacements

in the horizontal direction, confirming that laser attenuation did not lead to any

degradation in the estimated vector fields.

Once the real surface and bottom have been calculated, the raw image was

cropped off at the location of the flume bottom, and above the envelope of the

highest surface fluctuations, to save computation time. All pixel values outside the

fluid domain of interest were replaced with zeroes. The cropped image was then

subdivided by finite windows of size 16× 16 pixels with a 50% (8 pixels) overlap in
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Figure 2.23: Non-dimensionalized error in estimated displacements. ∆actual (pix-
els) : actual displacement, µ∆estimated

(pixels) : mean of estimated
displacements.

the horizontal and vertical directions. The horizontal and vertical resolutions were,

respectively, ∆x = ∆y = 0.184 cm. The global window size is 32 × 32 pixels. In the

vertical direction, the first calculation point was 8 pixels below the instantaneous

surface, whereas the last calculation point was 16 pixels (y1 = 3.66mm) above the

calculated bottom. These limitations were imposed by the size of the window used

for computing the global motion. It was observed that typical vector fields after

the local flow estimation had less than 1% spurious vectors, which indicated the

robustness of the algorithm. Most of these were concentrated along the edges of the

image. The spurious vectors were then removed and substituted by the dynamic

median filter. For the range of displacements in the present experiment, the mean

error was approximately ±1%.
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2.5 Conclusions

The raw PIV images are analyzed to estimate the instantaneous complex air-

water interfaces using image processing methods. The algorithm presented in section

2.3, a second order statistical method based on GLCM, is simple to implement and

gives a first approximation to the location of the interface. Several pre-processing

steps are introduced to increase the robustness of the candidate for the GLCM. A

singular value decomposition is performed on the combined selected texture classes

to initialize the edge map for the subsequent contour mapping process. Active con-

tours, or “snakes”, minimizing energy functionals based on the internal (controlling

the shape of the contour) and external (characterizing image information) ener-

gies of the contour are used to increase the accuracy of the predicted interface. A

disadvantage with the algorithm is that the texture measures employed, and the

parameter values chosen for the contour extraction, are obtained from an empirical

evaluation. However, this is a small price to pay in light of the size of the ensemble,

since a single image is used to tune the algorithm and the rest of the ensemble is

analyzed in an accurate and computationally efficient manner. This process is com-

pletely automated. The estimated interface is compared to the visually interpreted

interface and the deviation is found to be within the measurement resolution for the

fluid velocities. For the two images shown, the horizontally averaged absolute errors

were 5.77 pixels and 3.85 pixels. An accurate estimation of the surface enabled the

exclusion of spurious inter-facial reflections in the images and ensured volume flux

conservation throughout the domain, which will be discussed in the next chapter.

A robust and accurate motion estimation algorithm based on phase-correlation

has been developed to estimate the instantaneous fluid velocities. This algorithm is

composed of a two stage technique, the global motion field estimation followed by

local differential motion estimation. This provides the best possible estimate that
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can be obtained using region-based schemes. A significant component of the algo-

rithm is the voting scheme, which is used to improve the reliability of the estimated

vectors. Cross correlation in itself is not illumination invariant, but in combination

with an illumination invariant metric such as phase correlation, it provides a more

accurate estimation of the flow velocities. One of the advantages of using the hier-

archical two stage estimation technique is the possibility of obtaining a smooth and

accurate motion field at high resolution (using interrogation windows up to 8 × 8

pixels with a 50% overlap). This accurate motion estimation is due to the initial-

ization of the local motion field estimation using the global motion. Standardized

PIV images are used to test the algorithm, and the comparative results between the

estimated vectors and the ground truth vectors indicate that the hierarchical phase

correlation is quite accurate for the estimation of the motion. This is mainly due to

the inherent robustness of phase correlation to illumination variation. The effect of

peak-locking is discussed in detail, both with respect to the standardized images and

images collected during the experiment. Increased sub-pixel accuracy is obtained

by fitting a least squares Gaussian to the displacement peak. The average errors for

the range of displacements obtained during the experiment are approximately one

to three percent.
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Chapter 3

ENSEMBLE-AVERAGED INTERFACE PROPERTIES

AND FLOW STRUCTURE

When Einstein stopped creating, it was because he stopped thinking in concrete

physical images and became a manipulator of equations

Richard P. Feynman

3.1 Introduction

In the attempt of clarifying the details of the flow structure for turbulent

hydraulic jumps, many laboratory experiments have been performed with various

techniques like hot-wire anemometry (Rouse et al., 1959; Resch and Leutheusser,

1972) and laser Doppler anemometry (Long et al., 1990). Cheaper and easier to use

point measurement probes such as micro acoustic Doppler velocimeters have also

been used by Liu et al. (2004) to investigate low Froude number (Fr ∼ 2.0, 2.5, 3.2)

jumps. The authors, however, found that the signal quality deteriorated with in-

creased noise levels near the free surface due to air-bubble entrainment. Conse-

quently, they were unable to obtain any information about the flow near the free

surface or in the roller region. It is also doubtful whether such an intrusive method is

appropriate to measure the kinematics of a flow which is very sensitive to perturba-

tions. Several experimental studies have also focussed on the aeration characteristics

of the two-phase region. A qualitative video study undertaken by Mossa and Tolve
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(1998) showed a correlation between the vortex pairing process and air concentra-

tion in the roller region. However, flow velocities were not measured. Chanson and

Brattberg (2000) used dual-tip conductivity probes to measure the void fraction and

bubble frequency distributions in the air-water flow region of jumps with partially

developed inflow. The turbulent velocities in the water were measured by a Pitot

tube. Resch and Leutheusser (1972), using hot-film anemometry, showed that the

air entrainment process, the momentum and energy transfer, and the energy dissi-

pation are strongly dependent on inflow conditions. Minor changes in the flow and

channel characteristics, such as bottom roughness (Henderson, 1970), inflow velocity

profile, and pre-jump air entrainment (Chanson, 1996) cause drastic qualitative and

quantitative changes in the nature of the jump. These are discussed further. Being

single point measurement techniques, these at best provide a sparse picture of the

flow field. Reconstructing a spatial map can only be done in an ensemble-averaged

sense.

Recently, Lennon and Hill (2004) did PIV experiments analyzing undular

jumps in the Froude number range 1.5 ∼ 3. They were unable to generate fully

turbulent breaking jumps at these low Froude numbers. The complete flow field

could not be investigated even using a mosaic of ensemble-averaged spatial maps

because the laser sheet access was blocked by optically-opaque metal supports on

the channel bottom. The free surface for the lower Froude number cases could not

be measured by a wave gage since it disturbed the flow and caused the jump to

move. Standard point gage and image processing techniques were used, but with

limited success. The flow field near the crest of the undular jump could not be

measured because of significant cross-channel deviations in the water surface slope

which obscured the optical path of the camera. They also focused primarily on a

detailed estimation of the bottom shear stress. All the above studies, and numerous

others that the author is aware of, have either focused on undular jumps, where
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the energy is swept downstream by propagating waves, or turbulent jumps with

Fr > 1.5. As pointed out by Battjes and Sakai (1981), the flow in these jumps are

not directly relevant to breakers on a beach. Moreover, there is very little detail

about the flow structure in the intermittent region.

The most comprehensive study to date of low Froude number, weakly tur-

bulent jumps with breaking and air entrainment is that of Svendsen et al. (2000)

(hereafter referred to as IS00), based on the LDV data obtained by Bakunin (1995).

The Froude numbers analyzed were 1.37, 1.48 and 1.62. They found that, con-

trary to the traditionally simplified formulations of a hydraulic jump, the effects of

non-uniform velocities and non-hydrostatic pressure are important for mass and mo-

mentum conservation. Although a significant amount of the turbulent structure was

mapped by vertical profiles of LDV data at several streamwise locations, simplified

analytical approximations and assumptions had to be made to calculate streamwise

gradients of flow properties, or to neglect the gradients altogether. Little attention

was focused on the intermittency of the surface and its influence on the flow struc-

ture. A single roller was found to reside in the region bounded from below by, what

the authors referred to as, a dividing streamline (above which the net volume flux

was zero), and from above by the mean surface. The peak values of the turbulence

intensities and Reynolds shear stress were found at the bottom of the roller.

Peregrine and Svendsen (1978), who had provided a qualitative mixing-layer

model describing the similarities between breakers, bores, and hydraulic jumps based

on photographic visualizations of bubble tracers in breaking waves, had suggested

that “the surface roller does not play a dominant role in the dynamics of the wave”.

The analogy with mixing layers is further supported by the photographic evidence

in Hoyt and Sellin (1989), which was based only on the structure of large scale

eddies since the high polymer solution used to visualize the flow suppressed the

smaller scale motions. An analogy between hydraulic jumps and plane turbulent
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Figure 3.1: Ensemble-averaged free surface (solid line) and Weibull function fit
(dashed line).

wall jets has also been suggested by several authors (Rajaratnam, 1965; Narayanan,

1975). Recently, Chanson and Brattberg (2000) have shown that a quantitative

comparison between the parameters of the two flows is significantly affected by the

air entrainment. This short summary reveals that many questions are still open

regarding both the detailed turbulence structure and dissipative mechanisms of a

quasi-steady fully-formed spilling breaker (Is the roller an appropriate topological

description? Can the breaker shear layer be classified as a mixing layer?) and the

extent to which it can be described in terms of a hydraulic jump.

3.2 Interface properties

Once the instantaneous interfaces have been calculated, the ensemble av-

eraged interface is easily obtained and is shown in Figure 3.1. The origin of the

coordinate system is defined in the supercritical region at the flume bottom. There-

fore, the flow appears from left to right in all the subsequent figures. x increases from
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supercritical to subcritical region, and y increases away from the bottom. The super-

critical and sub-critical depths (taken here as the distances from the flume bottom to

the end points of the ensemble-averaged free surface, where the horizontal gradient

of the surface was nearly zero) are found to be h0 = 8.62 cm and h1 = 10.85 cm re-

spectively, giving an upstream-to-downstream depth ratio, ξ = 1.26. The calculated

values agree well with visually-observed upstream and downstream instantaneous

depths of 8.5 cm and 10.9 cm respectively. It is interesting to note that a Weibull

function given by

ỹ = ỹ0 + a

[
1− exp

{
−

(
|x̃− x̃0 + bln(2)1/c|

b

)c}]
(3.1)

shown as the dashed line in Figure 3.1, fits the mean surface data well. x̃ ≡ x
h0

,

ỹ = y
h0

, a = 0.2609, b = 0.8222, c = 3.152, x̃0 = 0.8085, ỹ0 = 1.002. From Belanger’s

equation,

Fr =

√√√√1

2

h1

h0

(
h1

h0

+ 1

)
, (3.2)

the upstream Froude number is calculated to be Fr = 1.1932. Due to the error in

the surface estimation, the upstream depth is over-predicted, and this leads to an

under-prediction of the Froude number of about 3 %. The Froude number can also be

determined based on a depth-averaged flow velocity (or volume flux), and is explored

further in this chapter. It is perhaps surprising that a breaking jump (which showed

no visible undular characteristics) could be set up at such a low Froude number.

As mentioned in the introduction, the nature of the jump is very sensitive to the

flow conditions and channel characteristics, and it would require carefully designed

control experiments to determine the specific cause(s) of breaking. The possible

reasons for breaking occurrence in the present case are discussed later.

For laboratory-generated spilling breaking waves, dominant coherent motions

of the surface fluctuations and the breaker toe, with peak frequencies in the range

0.47-96 Hz, have been reported by various authors (Duncan, 2001). In the present
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Figure 3.2: Time stack of dimensionless surface fluctuations.

study, even though the sampling rate (15 Hz) is not high enough for capturing the

smaller turbulent time scales, it is instructive to look at the unsteady nature of the

fluctuations. Figure 3.2 shows a time stack of the dimensionless (with respect to

h0) surface fluctuations over the entire jump. The ensemble spans a total time of

67.93 secs. The downstream region shows the random turbulent fluctuations with

surface values clustered around the corresponding ensemble-averaged values. The

transitional breaking region however shows coherent oscillations, with a time scale

of about 20 s, or a frequency of 0.05 Hz. The intervals of relatively large turbulent

fluctuations in the upstream region coincide with the troughs of the low frequency

oscillation in the breaking region, around 20, 40 and 60 s respectively.

Low frequency motions in quasi-steady spilling breakers and turbulent hy-

draulic jumps have also been attributed to toe oscillations. The toe itself is often

loosely defined in the literature, as noted by Duncan (2001). The ambiguity is com-

pounded by a toe defined not just with respect to the topology of the free surface, but

also with respect to the roller. For incipient breaking of surface tension-dominated
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waves, the toe is defined as the leading edge of the bulge at the crest where the

slope of the surface undergoes an abrupt change (Qiao and Duncan, 2001). There

is a sharp curvature at this point, and on large scale, is marked by flow separa-

tion (Longuet-Higgins, 1994; Duncan et al., 1999). For a fully evolved quasi-steady

breaker with a roller on the front face of the wave, the underlying turbulence and

the significant corrugations of the surface make it difficult to precisely locate the

toe. Banner (1988) and Qiao and Duncan (2001) have referred to the leading edge

of the roller as the toe. In saturated breakers or bores, where the entire front face of

the breaker is turbulent, BP2 have recently proposed a descriptive terminology of a

“foot” as the base of the breaker. When looking down from above, the fluctuations

of the boundary between smooth and turbulent flow were defined as “toes”. In the

present case, the air-water interface is approximated by a smooth unbroken curve.

The toe is defined as the location of the maximum positive curvature of the free

surface. The curvature (κ) of the instantaneous free surface (η) is calculated as

κ =
d2η
dx2[

1 + dη
dx

2

]3/2
· (3.3)

An ensemble average of the locations of the maximum curvature calculated from

the instantaneous surfaces is found to coincide with the location of the maximum

curvature of the ensemble averaged surface at x̃ ∼ 0.47. The ensemble-averaged

curvature is shown in Figure 3.3. The negative peak for the curvature is located at

x̃ ∼ 1.18. The oscillatory nature of the curvature in the breaker region is linked to

the surface estimation process. In this region, the high specularity in the images

due to breaking and air bubbles leads to small bumps, which are amplified by the

second derivative in the curvature. It is interesting to note that in the present case,

the slope of the mean surface shown in Figure 3.3(b) at the location of the maximum

curvature is found to be around 11 degrees. This is close to the stable equilibrium

value (∼ 10 degrees) typically used in the inner surf-zone for Boussinesq modeling
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Figure 3.3: (a) Ensemble-averaged free surface, (b) slope of mean surface (de-
grees), and (c) Gaussian curvature of mean surface.

of broken waves (Schaffer et al., 1993). The slope is also in good agreement with

Longuet-Higgins (1973), who, in a theoretical model of flow separation at a free

surface, showed that immediately upstream of the toe, the free surface should be

inclined to the horizontal at angle lying between 10 and 20 degrees.

The toe motion in time can be tracked by computing the time series of

the location of the peak curvature. Since the length of the time series is small

for a reliable Fourier spectral analysis, and there are possible nonlinear effects in

the signal, wavelet and Hilbert-Huang transforms were also used to compute the

power spectrum of the time series. A wavelet spectrum of the “Morlet family” has

been used as computed from the toolbox developed by Torrence and Compo (1998).

The Hilbert-Huang transform was computed with 6 intrinsic mode functions and a

residual of 0.1. A 1024 FFT length with 50 % overlap and a Hamming window were

used to compute the Fourier spectrum. It is reassuring to see that all three peaks

coincide at a frequency of 0.05 Hz, which is the observed fluctuation frequency in
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the surface elevations. The puzzling origin of this very low frequency oscillation was

due to pump instabilities. Two Sontek acoustic Doppler velocimeters were placed

near the inflow and outflow sections of the channel, 200 cm upstream of the weir and

160 cm downstream of the toe. Time series of streamwise velocities were collected

at 25 Hz, and the spectral analyses showed a dominant peak at 0.05 Hz at both

locations (Figure 3.4). Therefore, the observed surface fluctuations in the breaker

region and the toe oscillations cannot be directly related to the breaker instability

since the 20 sec oscillation masks any faster-scale toe oscillations.

Next, the turbulent dynamics of the interface fluctuations are analyzed. Free

surface turbulent flows are known to be inherently intermittent in the outer regions

of the flow, with high frequency bursts of characteristic turbulent fluctuations fol-

lowed by intervals of weaker and slower fluctuations (Townsend, 1976). Therefore,

it was essential to implement a conditional averaging technique for defining ensem-

ble averages of the turbulent flow field, especially for the intermittent region. Note
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Figure 3.5: Intermittency factor γ. The solid magenta line is the ensemble-
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that the intermittency arises from both the fluctuation of the instantaneous surface

and the two-phase bubbly region due to the air entrainment and the break-up of

the surface due to turbulence. Here, the interface is assumed to be continuous and

unbroken, separating the air and water phases, and no attempt was made to resolve

the entrained bubbles in the flow. For a detailed description of the interaction be-

tween free surface aeration and turbulence, see Chanson and Toombes (2003) and

BP1. To deal with the interface intermittency, a zone-averaging technique (Antonia,

1981) is used. The zone-average is obtained as the ensemble of values during times

when a given point is either in water or air. An intermittency function I(x, y, i) is

defined at a spatial location (x, y) for the ith realization as

I(x, y, i) =





1, if η(x, i) > y, i.e if the point is in water

0, otherwise, i.e if the point is in air,

where η(x, i) is the instantaneous water surface.
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The zone-averaged intermittency factor γ(x, y) is given by

γ =

∑N
i=1 I

N
, (3.4)

where N is the total number of realizations (N = 1020), and is shown in Figure

3.5. Water is indicated by the red region with γ = 1, and air is indicated by the

blue region, with γ = 0. As expected, there is a smooth transition throughout the

breaking region. For fluctuating interfaces with multiple time scales of oscillations, a

definition of the mean is not always without ambiguity. An analogous problem with

reference to the shoreline oscillations on a beach has been analyzed by Brocchini and

Peregrine (1996). In the present case, the ensemble-averaged free surface is found

to coincide with the contour of γ = 0.5.

Corrsin and Kistler (1955) have shown that the inferred distributions of sur-

face displacement closely follow Gaussian error law distributions,

p(η) =
1√

2πσ2
exp

[
−1

2

(
y− < η >

σ

)2]
(3.5)

where < . > denotes an ensemble average. p(η) and σ are respectively, the prob-

ability density function and the standard deviation for the displacement η. The

intermittency factor is related to p(η) as

γ(x, y) =

∫ ∞

y

p(η, x)dη, (3.6)

and leads to an Error Function profile (BP2),

γ(x, y) =
1

2

[
1− erf

(
η− < η >√

2σ

)]
. (3.7)

Figure 3.6 shows the calculated intermittency factor compared to the Error Function

profile at various locations inside the breaker region. The calculated values fit the

profiles well, with accuracy increasing in the downstream direction. This shows that

the instantaneous surface is calculated accurately, and its unsteady fluctuations are

captured well by an automated calculation of the GLCM interface.
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Figure 3.6: Intermittency factor γ in the breaker region: measured data (o), Error
Function profile from equation 3.7 (–).

3.3 The flow structure

In this section, the ensemble-averaged flow structure is analyzed. The conditionally-

averaged mean velocities are calculated as

< v >=

∑N
i=1 Iv∑N
i=1 I

, (3.8)

and are represented hereafter as U and V in the x and y directions. v = (u, v),

where u and v are the instantaneous horizontal and vertical velocities respectively.

The horizontal root mean square (RMS) “turbulent velocity” is computed as

u′ =

√
ΣN

i=1[I(u− U)]2

Nγ
(3.9)
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and similarly for v′. γ has been defined in equation 3.4. The turbulent kinetic

energy (k) and Reynolds shear stress (τ ′) are computed as

k =
ΣN

i=1I
1
2
[(u− U)2 + (v − V )2]

γN
, (3.10)

τ ′ = −ΣN
i=1I(u− U)(v − V )

γN
. (3.11)

3.3.1 Mass flux conservation

Although there were no in-situ measurements of the flow velocities, the accu-

racy of the computed flow field can be checked by examining an integral constraint

based on mass flux conservation. Note that this can be used indirectly as a check

on the accuracy of the estimated surface as well. The mean volume flux across a

vertical section can be computed as

Q(x) = b

∫ h̃(x)

y1

U(x, y)dy. (3.12)

where b is the width of the channel, and the integration is done numerically. The

upper limit of integration, h̃(x), is the vertical location where γ = 0. Note that the

lower limit of integration is the upper boundary, y1, of the bottom boundary layer,

and not the flume bottom. The contribution to the flux near the bottom, including

the boundary layer, cannot be estimated because of lack of data. No attempts were

made to extrapolate the velocity to the bottom by fitting analytic profiles. The

standard deviation (Qσ) and mean (Q) are 0.5682 l/s and 21.6646 l/s respectively,

which gives Qσ

Q
= 0.0262. Similar estimates were found by Bakunin (1995) from

his LDV data. In addition to the bottom boundary layer, there are cross-channel

variations in the flow and side-wall boundary layers, the effects of which are not taken

into account. The artificial shear layer near the surface in the upstream region also

reduces the volume flux there. By fitting analytic velocity profiles to the data of

Bakunin (1995), and incorporating the non-negligible reductions in the total volume

flux due to side-wall and bottom boundary layers, IS00 found that the volume flux
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error could be reduced further. The mass conservation in the present study was also

checked locally by numerically calculating the divergence of the mean velocity field

to second-order accuracy, and was found to be satisfied within measurement and

discretization errors.

The Froude number can be calculated from the volume flux as

Fr′ =
Q

(bh′)
√

gh′
, (3.13)

where b is the width of the channel and h0
′ = h0−y1. The upstream Froude number

is thus calculated to be Fr′ = 1.023, which is smaller than Fr calculated from

equation (3.2). This is in agreement with Bakunin (1995) and IS00, who found that

the Froude number calculated from Belanger’s equation consistently over-predicted

a depth-averaged velocity or volume flux based estimate.

72



3.3.2 Mean flow structure

Figure 3.7 shows the vertical profiles of the mean horizontal velocity at x̃ =

0.15 and x̃ = 2.50. The dashed line is the elevation of the mean free surface at this

location. At the upstream location, artificial shear near the mean surface at the top

two measurement locations can be seen. Chanson (1996) has indicated (based on

the experimental data of Thandaveswara, 1974) that the turbulence level near the

free surface for fully developed inflow conditions is much higher than with partially-

developed inflow without pre-jump aeration. For fully-developed inflow conditions,

Leutheusser and Kartha (1972) found from their experiments (Fr > 10) that the

measured upstream Froude number was over-predicted by the Belanger equation,

as in the present study. Therefore, the upstream condition in the present case is a

combination of pre-jump entrainment of air resulting from the vortical structures

upstream of the weir (Chanson, 1996, Figure 7-3), and possibly a partially developed

boundary layer, since the toe of the jump was approximately 20 cm downstream of

the weir. These could be the reasons for breaking at such a low Froude number. At

the downstream location shown in the right panel, the thickness of the shear layer

is approximately 3 cm, showing that the flow has not relaxed to its depth-uniform

open channel configuration.

Since the spatially dense velocity measurements afford a whole map of the

flow, it is instructive to look at filled contour plots which present the whole spatial

map of the flow field. Note that the flow field is shown only up to the mean surface.

The flow structure in the intermittent region is analyzed later. In Figure 3.8, the

solid red line is the ensemble-averaged free surface. The mean horizontal velocity is

shown in the top panel. As the mean surface curves upward sharply at the toe, the

adverse pressure gradient induces a rapid axial deceleration of the upstream hori-

zontal flow velocity. Although the velocities are nearly uniform around mid-depth,
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Figure 3.8: Mean flow structure. (a) Ensemble-averaged horizontal velocity (U)
(m/s), (b) ensemble-averaged vertical velocity (V ) (m/s), and (c)
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there are significant deviations from the assumption of depth-uniform flow, particu-

larly in the “breaker shear layer”. This is the shear layer which spreads downstream

from the foot of the breaker, and whose dynamics differ from that of a typical shear

layer in several aspects which are clarified in the following. The momentum and

pressure correction factors are analyzed in detail by IS00. The bottom boundary

layer, with positive vorticity, also grows in the downstream direction. The vertical

velocity is almost an order of magnitude smaller than the horizontal velocity. It

reaches its peak value downstream of the foot at x̃ ∼ 0.68, ỹ ∼ 0.99. The large

negative values in V near ỹ ∼ 0.2, and near the bottom in the downstream region,
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are due to artifacts in the data caused by image noise arising from imperfections on

the flume wall. This was confirmed by looking at the raw PIV images.

There is a thin, concentrated region of negative vorticity in the breaker shear

layer. Near the toe, the negative vorticity decays rapidly away from the mean sur-

face, reaching 1% of its peak value at a distance of approximately 2.2 cm. Therefore,

the bulk of the flow can be modeled as irrotational. IS00 calculated the vorticity

based on an analytic fit to the horizontal velocity data. Since the measurements

were made only along a few vertical transects, they had to neglect the contribu-

tion from the streamwise gradient of the mean vertical velocity. Even when this

is justified in the calculation of the mean vorticity, small values of ∂V
∂x

can cause

significant changes in the turbulence structure of thin, curved shear layers due to

streamline curvature effects (Bradshaw, 1973). Curvature effects on the anisotropy

of the turbulent structure is discussed in detail in Chapter 4 and Chapter 5. The

vanishing vorticity at the mean surface in IS00 was a consequence of the zero mean

shear stress condition for the analytic fit to the horizontal velocity. In the present

study, there is non-zero vorticity at the mean surface. As shown in Figure 3.9(b),

the mean vorticity has its peak negative value at x̃ ∼ 0.41, ỹ ∼ 0.99, upstream of

the toe, and decreases in the downstream direction, parallel to the mean surface.

DG97, analyzing the thin (∼ 0.3 cm) layer of positive vorticity below the

surface and above the negative vorticity layer, have shown that the location of

the peak positive vorticity flux in their steady breaker coincided with the peak

of the deceleration of the fluid layer. The positive vorticity was due to the shear

generated by the high-speed surface layer (originating from the specific nature of

breaker generation) overlaying a slower layer of fluid. The coincident location of

the peaks in positive vorticity and curvature was attributed to the oscillation of

the vorticity layer. It was concluded that the source of vorticity was not due to

curvature or entrainment of bubbles due to breaking, as observed by Hornung et al.
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Figure 3.9: (a) Instantaneous vorticity (1/s), and (b) ensemble-averaged vorticity
(1/s).

(1995), but solely due to the deceleration effect.

However, LR95 observed from experiments done with spilling breaking waves

generated by a towed submerged hydrofoil, that the surface curvature serves as

a source of vorticity, thereby giving rise to a separated mixing layer. From in-

stantaneous realizations of incipient and fully-evolved breakers, they observed that

“detailed distortion of the flow adjacent to the free surface during the onset and

development of flow separation, in conjunction with the change in slope of the free

surface, plays a central role in determining the maximum vorticity”. They found a

very low-velocity separated region beneath the free surface. Longuet-Higgins (1998a)

has shown that for purely two-dimensional flow with a steady surface, the vorticity

(ω) is directly related to the curvature (κ) and the tangential velocity (q) of the
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surface

ω = −2κq (3.14)

In the present study, the mechanism for breaking is different from both DG97

and LR95. Further, as opposed to resolving the small-scale structure of the instan-

taneous flow field, the focus of the present study is to analyze the ensemble-averaged

quasi-steady flow. No attempt has therefore been made to resolve the detailed cor-

rugations of the instantaneous surface. The resolution in the present study (0.0229

cm) is also much coarser than DG97 (∼ 0.003 cm) and LR95 (∼ 0.0008 cm). Nev-

ertheless, no evidence of a high-speed surface layer was found in the instantaneous

velocity fields. For the instantaneous flow field, a negative vorticity layer is found

below the surface, shown in Figure 3.9(a).

To analyze the mean flow effects close to the mean surface, the mean surface

is treated as a streamline, and the coordinate system chosen is a mobile, locally

orthogonal, curvilinear system (s, n) fixed on the mean surface (Misra et al., 2004,

BP2). s and n are measured along the surface parallel and normal directions, re-

spectively. The deceleration is of interest close to the mean surface near the toe,

where the flow is highly curved. Since the gradients of scalar quantities are not co-

ordinate invariant, it is essential to perform a coordinate transformation to attach

a direct and more accurate physical significance to the calculated gradients. The

mean surface-parallel and surface-normal velocities are, respectively, calculated as

Ûs = U cos θ + V sin θ, and (3.15)

V̂n = −U sin θ + V cos θ. (3.16)

θ(x) = tan−1
[

∂<η(x)>
∂x

]
is the angle that the tangent to the mean surface makes

with the x−axis, shown in Figure 3.3(b). Since θ is determined from the local slope

of the mean surface, the transformation is accurate only near the mean surface,

where the streamlines closely follow the surface. The surface-normal and surface-

parallel gradients are therefore only shown until 5 measurement points below the
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mean surface. The deceleration effect due to Ûs
∂Ûs

∂s
is shown in Figure 3.10(b). The

Cartesian component (U ∂U
∂x

) is shown in the top subplot to illustrate the importance

of the coordinate transformation in aiding a correct physical interpretation of the

flow. As can be seen in the top subplot, in the region ỹ < 1, where the streamlines

are straight and nearly parallel to the x-axis, U ∂U
∂x

< 0 gives a correct physical

insight into the deceleration of the flow related with the adverse pressure gradient.

Near x̃ ∼ 0.75, the positive values indicate an unphysical convective acceleration.

This results from the improper representation of a curved flow in the Cartesian

coordinate system. Although the peak negative value occurs at x̃ ∼ 0.46, ỹ ∼ 0.98

(see figure 3.10 (b)), which is coincident within the measurement resolution with the

toe location, intense flow deceleration is seen to occur upstream of the peak vorticity
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Figure 3.11: (a) Mean surface-parallel velocity (Ûs) (m/s). (b) mean surface-
normal velocity (V̂n) (m/s). Dotted magenta line is the ensemble-
averaged free surface.

location. The localization of the deceleration, indicative of the strong reduction in

velocity over a small streamwise direction along the surface, is in good agreement

with LR95. Hornung et al. (1995) suggest that the vorticity seen downstream of a

hydraulic jump is due to air entrainment from breaking. In the present study, the

peak vorticity is upstream of the breaking location (approximated by the peak value

of air entrainment at x̃ ≈ 0.64) in agreement with the observations of DG97.

It seems intuitive that there should be a reverse flow near the surface due

to breaking as observed during the experiments, and its structure should be influ-

enced, if not wholly determined, by the topology of the mean surface. As discussed

in section 3.1, several researchers have confirmed, theoretically and from experimen-

tal observations, that there is a weak eddy residing above the dividing streamline.
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Before analyzing the flow in the roller region, it is noted that even though the mean

quantities are obtained by an ensemble conditional averaging and yield stable es-

timates, the values for the vertical velocities are close to uncertainty limits in the

estimated instantaneous velocities, and any quantitative analyses should be made

with caution. Figure 3.11 shows the mean surface-parallel (Ûs) and surface-normal

(V̂n) velocities in that region. The dotted magenta line is the mean surface. A weak

reverse flow (the largest negative velocity is found to be 2.38 cm/s) is clearly seen,

and is localized entirely above the mean surface. IS00 determine the location of

the dividing streamline by calculating the elevation at which the depth-integrated

volume flux (obtained from an analytic fit to the measured velocities) goes to zero.

This is in no way a trivial calculation. In the present case, there is not enough verti-

cal resolution in the very thin roller region to accurately estimate the flux. However,

if the roller is visualized as a recirculating region, intuitively, the bottom boundary

of the roller can be estimated by assuming that the positive velocities at the bottom

boundary should be approximately equal to the maximum negative velocity in the

reverse flow region. The bottom boundary is therefore just below the mean surface.

This is a different scenario than IS00, where the entire roller was interpreted to be

confined below the mean surface. The difference arises because of the treatment

of intermittency in the present case. Banner and Phillips (1974) had hypothesized

that “the definite location of the free surface in the breaking eddy must be replaced

by an intermittent zone”. This is certainly implemented in the present study, since

γ shows a smooth transition in this region, with the mean surface closely coincident

with γ = 0.5.

The surface-normal velocity is nearly zero in the reverse flow region. There

are large, positive values of V̂n near the bottom of the roller and are an indication

of the entrainment of water from below. This is in agreement with the ‘starting

plume’ model of Longuet-Higgins and Turner (1974) (see their Figure 7), where the
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spilling region is regarded as a turbulent gravity current riding down the front face

of a wave, with entrainment of water from below. The data of Bakunin (1995) also

shows positive values of V̂n along the lower boundary of the roller, even though

this was not explicitly investigated by IS00. It is also clear from the present data

that, though most of the entrainment occurs near the toe, inflow from below occurs

all over the roller length with approximately equidistant peaks of upwelling. This

seems in conflict with the perspective of the roller as a mass of fluid in global

rotation with no mass exchange with the fluid below. It also implies that the lower

boundary is not a dividing mean streamline. It should be pointed out that, even

though a large amount of confidence cannot be placed in the physical significance of

the small scale structure seen in the vertical velocity, it is nevertheless resolved by

the measurement location grid (∆x̃ = ∆ỹ = 0.0213), and is not merely an artifact

of the contour plotting routine. As opposed to the assumption made by IS00, the

mean shear is finite at the mean surface. Lastly, regarding the geometry of the

roller, the mean inclination is calculated to be 18.5 degrees. The length of the roller

is Lr =6.36 cm. For their lowest Froude number case (Fr = 1.38) IS00 found a

non-dimensionalized roller length of Lr

h0
∼ 1. In the present case Lr

h0
= 0.74.

3.3.3 Turbulence structure

Before looking at the turbulence structure, the convergence of the quantities

of interest were examined at a number of spatial locations. This was performed by

calculating running averages of the turbulence statistics over the entire ensemble.

A location in the breaker shear layer near the toe of the breaker, at x̃ = 0.51,

ỹ = 1.02 was chosen. The convergence rates for the turbulent statistics are shown

in Figure 3.12. Stable estimates are obtained near the end of the ensemble after

about 900 realizations. It is expected that convergence rates would be similar for

other locations in the breaker region, and faster as we progress away (downward)

from the surface and further downstream. This is seen in Figure 3.13 which shows
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Figure 3.12: Convergence of turbulence statistics in the breaker region at x̃ ∼ 0.51,
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(m2/s2), and (d) Reynolds shear stress (τ ′) (m2/s2).

convergence rates at x̃ ∼ 1.97, ỹ ∼ 0.42. The convergence of the mean quantities

are, everywhere, much faster than that of the turbulent quantities.

Figure 3.14 shows the spatial structure of the turbulence in the breaker shear

layer. Note that only a sub-section of the entire domain is shown here for more

detail and clarity. The spatial distribution shows that the turbulence is strongly

anisotropic, in agreement with experimental observations of turbulence in labora-

tory generated spilling breaking waves (Govender et al., 2002b; Stansby and Feng,

2005). As expected, the turbulence intensity decays rapidly over depth, only to in-

crease near the bottom due to the turbulence generated in the boundary layer. The

horizontal and vertical root mean square turbulent velocities in the shear layer are
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of the same order as the mean velocities, with u′ being slightly larger than v′. This

shows that the flow field near the mean surface is dominated by turbulent fluctua-

tions. The peak value for the horizontal turbulence intensity is found near the toe,

at x̃ ∼ 0.47, ỹ ∼ 1.0. For the vertical turbulence velocity, the largest values occur

at x̃ ∼ 0.80, ỹ ∼ 1.06. The turbulent kinetic energy has its peak value at x̃ ∼ 0.47,

ỹ ∼ 0.99, at the toe. The reason for this is that the dominant contribution to k

comes from the horizontal turbulence intensity, which originates from the intense

shear at the toe of the breaker. The Reynolds shear stress is negative throughout

the shear layer, implying an upward diffusion of momentum. The Reynolds shear

stress has its largest value at x̃ ∼ 0.59, ỹ ∼ 1, downstream of the toe. The location
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Figure 3.14: Turbulence structure. (a) RMS horizontal turbulent velocity (u′)
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of the maximum negative mean simple shear
(

∂U
∂y

)
occurs at x̃ ∼ 0.41, ỹ ∼ 0.98,

indicating that in addition to the simple shear, there are extra strain rates such as

streamline curvature which affect the Reynolds stress structure. This is discussed

further in Chapter 4. In the following section, the Reynolds shear stresses in the

roller and mixing layer regions are analyzed in more detail.
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Figure 3.15: Reynolds shear stress in the roller region, τ ′ (m2/s2).

3.3.4 The roller region

Figure 3.15 shows that there is a region of positive Reynolds shear stress just

below the mean surface, indicating a downward flux of momentum from the roller

region into the mixing layer. The magnitudes of the Reynolds stress are, on average,

smaller than the mixing layer values. The turbulent kinetic energy in the roller

region is an order of magnitude smaller than in the shear layer. The horizontal and

vertical turbulence intensities are qualitatively very similar to the turbulent kinetic

energy distribution, and decay monotonically away from the mean surface toward

γ = 0. They are also an order of magnitude smaller than their values in the mixing

layer region. These results indicate that the roller is essentially a stagnant and weak

eddy, in agreement with the findings of Cointe and Tulin (1994), who found that

the area integrated circulation in the roller was almost negligible.
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3.3.5 The mixing layer region

It is fairly well-established that there is an intense shear layer formed below

a fully-formed, quasi-steady spilling breaker, which spreads downstream from the

foot of the breaker. The dynamics of the breaker shear layer are different from those

of a typical shear layer in several aspects. The outer boundary of the shear layer is

marked by a turbulent interface with a strong density difference between air on one

side, and water on the other. The localized effects of an adverse pressure gradient

and streamline curvature, along with the entrained air and unsteadiness of the ex-

ternal flow, also modify the flow structure. There is still so little knowledge of the

detailed turbulence structure of a breaking wave, that it is indeed a tempting and

meaningful pursuit to search for similarities with well known turbulent flows, since

established results can then be used as a starting point for a more detailed under-

standing and modeling of the complicated processes accompanying wave breaking.

It should be kept in mind, that “for all we know, the turbulence below breakers does

represent a special type of turbulent flow, which in spite of similarities with other

known turbulent flows, has its own characteristics”(Svendsen, 1987). In the much

simpler context of stationary hydraulic jumps, as already discussed, Rajaratnam

(1965) has provided evidence that the hydraulic jump can be modeled as a wall

jet. Banner and Phillips (1974) were the first to suggest that the turbulent flow

downstream of the breaking region resembled a wake, which was confirmed by the

results of Battjes and Sakai (1981). This was based on the observed downstream

variations of the mean velocity defect, turbulence intensity and shear-layer thick-

ness. The far field was analyzed sufficiently downstream from the physical origin of

the shear layer, so that the flow had settled down to self-preservation. Peregrine and

Svendsen (1978) were perhaps the first to suggest that the breaker region should be

modeled as a mixing-layer. This was based on qualitative observations of bubble

clouds which acted as tracer particles in experiments conducted with propagating
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Figure 3.16: Reynolds shear stress, τ ′ (m2/s2) in the mixing layer. Black dotted
line is the mean surface. The magenta line is the contour of maximum
shear, and the top and bottom light blue lines are contours of U0 =
0.12 m/s and Us = 0.74 m/s, respectively.

breaking waves, hydraulic jumps and bores. They mention that other authors had

earlier suggested the presence of a “mixing zone” in hydraulic jumps. Lin and Rock-

well (1994) had found coherent vortical motions, and concentrated vorticity along

a “mixing layer” originating from the toe. However, this was visualized in a frame

of reference moving at half the free-stream velocity and the suggestion of a vortical

motion in the mixing layer was, as noted by them, an artifact of the particular

reference frame of observation. However, there has been no detailed experimental

evidence for the suggested classification of the shear layer in a fully-formed breaker

as a mixing layer.

In Figure 3.16, the detailed structure of the Reynolds shear stress in the shear

layer below the mean surface (the black dotted line) is shown. The structural simi-

larity of the main turbulent motion was compared with other plane shear flows, as
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indicated by the parameters listed in Townsend (1976), but without any conclusive

results. This is not unexpected, since the percentage difference in the listed parame-

ters, from one type of flow to the other, is very small, and the scatter is attributed

not just to contributions from large eddies, but also to errors of measurement. A

more robust classification of the comparative structure of two-dimensional plane

wakes, jets and mixing layers has been suggested by Tennekes and Lumley (1972)

by describing the typical downstream variation of Us, l and Rl. Us is defined as the

scale for the cross-stream variation of the streamwise mean velocity component, and

for shear layers, is equal to the maximum free-stream velocity. l is the cross-stream

length scale, defined as the distance from the center line to the location at which

(U − U0) is equal to 1
2
Us, where U0 is the scale for the velocity of the mean flow in

the streamwise direction. Rl is the local Reynolds number defined as Rl ≡ ũ′l
ν

, where

ũ′ is the turbulence velocity scale, and ν is the kinematic viscosity. It is expected

that for mixing layers, Us is constant, and l and Rl increase linearly with down-

stream distance. In turbulent mixing layers, the turbulent region is separated from

the irrotational region by irregularly distorted bounding curves as a consequence of

entrainment. In a practical sense, a finite percentage value of the maximum mag-

nitude of the Reynolds shear stress in the region of interest has to be chosen to

define the boundaries of the mixing layer. At low values of τ ′ used to define the

boundaries, the results were too noisy to allow any robust and conclusive arguments.

This is evident from the complicated turbulent structure seen in Figure 3.16. The

boundaries are chosen at the location where the Reynolds shear stress decayed to

10% of its maximum value (τ ′max ∼ −0.0067 m2/s2). The contours are shown as

the light blue lines in Figure 3.16. It was found that the mean streamwise velocity

contours of 0.12 m/s and 0.74 m/s fit the τ ′ contours reasonably well, as shown in

Figure 3.16 and Figure 3.17. These values were approximately 10% of the maximum

mean streamwise velocity in this region, and were chosen as U0 and Us respectively.
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The constancy of Us with downstream distance is thus automatically satisfied. The

centerline of the layer was defined as the location of maximum shear, and is shown

as the magenta line in Figure 3.17. The velocity contour for Ul ≡ U0 + Us

2
= 0.49

m/s is shown as the black line. The length scale is thus calculated as the distance

from this line to the centerline.

In the visualization studies with mixing layers done by Brown and Roshko

(1974), the virtual origin for the downstream coordinate was defined based on char-

acteristic thicknesses calculated from their density and velocity profiles. The inter-

section of a linear fit to these thicknesses with the x-axis yielded the virtual origin.

A similar approach was used by Battjes and Sakai (1981) based on a linear fit to

the calculated velocity defects. In the present case, a simpler visual approach is

taken. By drawing tangents to the 10 % contours of the Reynolds stress, the loca-

tion of their intersection is found at x̃0 ∼ 0.4, upstream of the toe. This seems a
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Figure 3.18: (a) Dimensionless width of the mixing layer , W
h0

, and (b) dimension-

less length scale, l
h0

.

physically reasonable choice for the virtual origin, since the Reynolds shear stress

reaches its characteristic value further downstream of this location. The width of

the mixing layer, W , is calculated and made dimensionless with h0. From Figure

3.18, in terms of the absolute coordinate x̃ =
[
0.4 +

(
x−x0

h0

)]
, it is seen that there

is a linear increase in the width until about x̃ ∼ 1.2, after which it becomes ap-

proximately constant. This is in good qualitative agreement with the spreading

rate of mixing layers, where the “wedge” is known to spread in a linear fashion.

The dimensionless length scale is shown in the bottom subplot. This shows a linear

increase from x̃ ∼ 0.6 till x̃ ∼ 1.2 after which it attains a constant value. This

indicates that the breaker shear layer can be classified as a mixing layer, with its

origin downstream of the toe and extending downstream till it changes to a wake

type flow. This transition occurs at approximately the location of the peak negative

curvature.
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Another parameter of interest is the ratio W
x−x0

, referred to as the growth rate

by Brown and Roshko (1974). In Brown and Roshko (1974), the linear fit to the

data for a density ratio of unity is

W

x− x0

= 0.38

[
Us − U0

Us + U0

]
. (3.17)

For Us−U0

Us+U0
= 0.72 (Us and U0, here, are taken equivalent to U1 and U2 in their case),

this gives W
x−x0

= 0.27. This is in good agreement with the mean value (averaged

over the values from x̃ ∼ 0.6 to x̃ ∼ 1.2) for the growth rate in the present case,

equal to 0.29. Even as the above results indicate, qualitatively and quantitatively,

that the flow structure upstream of the toe bears resemblances to a mixing layer

followed by a wake further downstream, a more robust quantification of the length

scales can be obtained by an analysis of the coherent turbulent structures, and this

is discussed in Chapter 5.

3.3.6 Entrainment

For free turbulent flows, the ratio of standard deviation to the mean value

of the interface fluctuations (R = σ(η)
η0

) is a measure of the corrugations of the

bounding surface, and in conjunction with the intensity of the interface vortices,

gives a measure of the turbulent entrainment at the interface (Townsend, 1976). R

is known to vary considerably depending on the turbulent flow regime, and since

the definition of η0 is dependent on the choice of the datum, it is first necessary

to choose an appropriate length scale characterizing the surface fluctuations. The

width of the intermittent region (where γ varies from 0 to 1) is chosen as η0. The

calculated entrainment ratio is shown in Figure 3.19 (b). It is noted that the tur-

bulence entrainment for a free air-water interface (with a density ratio ∼ 1000),

approximately ranging between 0.05 and 0.25, is smaller than across a turbulent

interface (between the irrotational and turbulent regions of the same fluid or com-

parable density fluids) for typical jets (R ≈ 0.22) and wakes (R ≈ 0.38). The order
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Figure 3.19: (a) Ensemble-averaged free surface, and (b) ratio of standard devia-

tion to ensemble mean of the free surface, R = σ(η)
η0

.

of magnitude agreement between the present values for R and the values reported

by Townsend (1976) (Table 6.2) is obviously dependent on the choice of η0, which

seems adequate for the present flow. The entrainment ratio is seen to increase into

the breaker region, where it stays approximately constant, and then decreases fur-

ther downstream. This gives a good qualitative insight into the variation of the

intensity of the surface turbulence of the flow.

There are several factors which influence the entrainment. A qualitative, and

admittedly simplified, argument can be made for the trends observed in R by look-

ing at the curvature of the ensemble-averaged surface shown in Figure 3.3(c). A

positive curvature implies concavity of the surface. Therefore, the normal pressure

gradient (with the positive normal being directed away from the surface) is nega-

tive. This in turn implies an increase in entrainment downstream, since a parcel of

entrained fluid encounters a favorable pressure gradient. The situation is reversed

92



for convexity, when the curvature is negative, leading to a positive pressure gradient

which opposes entrainment. In the presence of an adverse pressure gradient, as in

the present case, the influence of the curvature on the entrainment is reduced, com-

pared to a zero-pressure-gradient case, since the outer region streamlines are less

curved than the surface (Simpson, 1989). This might be a reason for the increase

in entrainment taking place further upstream compared to the location of the peak

positive curvature. Although the pressure was not directly measured, the mean pres-

sure gradients can be calculated from the Cartesian momentum equations, where

it is assumed that the flow is steady, i.e., ∂U
∂t
≈ 0, ∂V

∂t
≈ 0. Note that this neglects

the quasi-steady dynamics associated with the toe oscillations. The horizontal and

vertical pressure gradients are thus calculated as

1

ρ

∂P

∂x
≈ −U

∂U

∂x
− V

∂U

∂y
− ∂

∂x

(
< u′2 >

)
− ∂

∂y

(
< u′v′ >

)
, (3.18)

1

ρ

∂P

∂y
≈ −U

∂V

∂x
− V

∂V

∂y
− ∂

∂x

(
< v′2 >

)
− ∂

∂x

(
< u′v′ >

)
. (3.19)

P is the ensemble-averaged pressure. The streamwise and surface-normal gradients

are given by

∂P

∂n
= − sin(θ)

∂P

∂x
+ cos(θ)

∂P

∂y
, (3.20)

∂P

∂s
= cos(θ)

∂P

∂x
+ sin(θ)

∂P

∂y
. (3.21)

As can be seen from Figure 3.20 (b), there is a strong adverse (positive)

streamwise gradient of the specific pressure (per unit density), with its peak value

located at x̃ ∼ 0.42, ỹ ∼ 0.98, which is slightly upstream of the toe. The sharp

curvature of the surface is thus induced by the flow separation, which in turn is

caused by the adverse pressure gradient. A short distance upstream of the peak

value, the magnitude of the streamwise pressure gradient decreases drastically. This

is typical of flows approaching separation, and is attributed to the rapid thickening

of the layer as a separation point is approached (Townsend, 1976). The normal
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gradient has a negative peak at x̃ ∼ 0.42, ỹ ∼ 0.98. The overall rate of entrainment

is also known to be typically enhanced by the presence of shearing of the mean flow

which aligns the boundary vortices with the mean interface, hence, making them

more efficient in engulfing the ambient fluid (Mobbs, 1968). A highly anisotropic

turbulence also contributes to a larger entrainment.

It is known that the local air entrainment in the surface roller of a hydraulic

jump occurs in a manner similar to that in a plunging jet (Kobus, 1991). The

entrainment is followed by transport and detrainment. The detrainment rate is

directly proportional to the transport capacity of the flow, among other parameters

such as bubble size distribution. Even though the detrainment rate variation in the

downstream direction depends on inflow conditions, the decay is rapid, with most

of the air bubbles escaping back into the atmosphere. An estimate of the location

of the maximum air entrainment at the surface can be obtained by considering an
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ensemble average of the processed raw images. Since the air bubbles show up as

bright spots in any instantaneous image, the mean intensity map should give the

location of the highest concentration of bubbles. It was observed that the scattering

of the laser light from the bubbles and the clumping of seeding particles (which

are silver coated to maximize laser light scattering), also show up as high-intensity

regions. This should, however, decrease on ensemble averaging, because of their

random spatial distribution. Even then, the footprints of the randomly distributed

seeding particles are first removed by doing a morphological opening (Horebeek

and Tapia-Rodriguez, 2001) on the instantaneous grayscale images. A disk-shaped

structural element (which acts like a convolution kernel) with a radius of 2 pixels is

used. A median filtering yields nearly identical results. The filtered image is then

averaged over the entire ensemble, and the resulting intensity map is shown in Figure

3.21. The location of the peak intensity is seen to occur at x̃ = 0.64 and ỹ = 1.03.
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This is in good agreement with visual observation of the location of the reverse-

flow impingement at the surface, which was downstream of the toe. It is seen that

the slightly lower intensity patch, characterized by the fluctuation of the breaking

location, and the downstream bubble transport, extends, while decaying (due to

bubble collapse and detrainment) downstream, to x̃ ∼ 1.2, where the curvature

attains its maximum negative value.

3.4 Conclusions

The hydraulic jump set-up is in Froude similitude with saturated surf-zone

breakers with an upstream Froude number of 1.2 and depth ratio ξ=1.3. The in-

terface properties and PIV velocities are analyzed. An accurate estimation of the

surface enabled the exclusion of spurious interfacial reflections in the images and

ensured volume flux conservation in the domain. The intermittency factor repre-

senting the turbulent fluctuations of the interface was seen to fit theoretical profiles

well, with accuracy increasing in the downstream direction. The geometric slope of

the ensemble-averaged surface near the foot of the breaker agreed with the value

used in numerical simulations of saturated spilling breakers, and a theoretical model

of flow separation at a free surface.

An intense and thin shear layer originates near the toe of the breaker. The

deceleration of the surface-parallel velocity has its largest (negative) value at the toe,

but large values are found at the peak vorticity location, which is slightly upstream

of the toe location. The surface-parallel pressure gradient is highly localized and has

its peak, positive value, upstream of the toe, approximately coincident with the peak

vorticity location. Breaking for gravity-dominated steady breakers is, thus, driven by

a surface-parallel adverse pressure gradient and a streamwise flow deceleration, both

occurring upstream of the toe location. Both effects force the shear layer to thicken

rapidly, inducing a sharp free surface curvature change at the toe. The mean shear is

finite at the mean surface. A weak reverse flow is found in the roller, above the mean

96



surface. The lower limit of the roller was estimated to be just below the mean surface.

In this region, the mean surface-normal velocity was positive, indicating entrainment

of water from below. This is in good agreement with the “entraining plume” model

of Longuet-Higgins and Turner (1974). Consequently, the lower boundary of the

roller cannot be a mean streamline. Therefore, the roller topology in the present

case is different from the concept of an isolated recirculating eddy bounded on the

top by the mean surface and on the bottom by a dividing streamline. As noted by

Banner and Phillips (1974), and implemented in the present study, it is essential to

replace the idea of a mean surface in the roller by an intermittency zone.

The convergence of turbulence statistics was examined, and the ensemble size

was found large enough to yield stable estimates. The turbulent kinetic energy is

maximum at the toe, coincident with the peak mean shear location. The Reynolds

shear stress is positive just below the mean surface, signifying the downward transfer

of momentum from the roller region, into the shear layer. In the shear layer, the

Reynolds shear stress is negative, indicative of an upward diffusion of momentum

from the nearly irrotational flow below. The structural similarity of the turbulence

structure in the shear layer was compared to those of well-known plane shear flows.

The breaker shear layer is seen to resemble a plane mixing layer; the width of the

layer and the length scale grow linearly with distance from the toe, until they become

constant around the location of the maximum negative curvature, where-after, the

flow resembles a wake. The mean value of the non-dimensional growth rate in the

mixing layer is found to be in good agreement with values found earlier by Brown

and Roshko (1974).
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Chapter 4

THE THEORETICAL MODEL

Mathematics is not a deductive science – that is a cliche. When you try to prove a

theorum, you do not just list the hypotheses, and then start to reason. What you

do is trial and error, experimentation, and guesswork.

Paul R. Halmos

4.1 Introduction

In a recent review of spilling breakers, Duncan (2001) states that “theoret-

ical models of spilling breakers are rare”. As he mentions, they are rarer still for

fully formed unsteady breakers, and as will be seen below, virtually non-existent

in providing a description for the turbulent flow in the breaker region itself. The

complicated physical processes involved in a two-dimensional form of a quasi-steady

spilling breaker have already been observed in Chapter 3. In addition to the fully

turbulent and two-phase nature of the breaker region, the surface intermittency

precludes the straight-forward application of Reynolds averaging techniques. The

significance of intermittency dynamics toward a meaningful interpretation of the

turbulent and mean flow structure will be discussed further within the theoretical

framework in this chapter. In this section, a chronological summary, by no means

complete, is given of the theoretical developments that have focussed not just on the

incipient stages of breaking but also on an analytic description of the breaker region
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TURBULENT

POTENTIAL FLOW

Figure 4.1: Schematic representation of the entraining plume model of Longuet-
Higgins and Turner (1974). Adapted from MS83.

in fully formed spilling breakers. The major features of each model are discussed

leading up to the motivation behind the development of the present model.

It was Longuet-Higgins (1973) who first proposed a simple model for the

local turbulent flow near the forward edge of a steady spilling breaker or a hydraulic

jump, which, within the context of his model, are comparative flows marked by flow

separation at the discontinuity in the slope of the free surface. The significant point

in the model was its approach in treating certain regions of the flow as laminar

and others as turbulent, the dynamics of the latter being represented by an eddy

viscosity. A balance was assumed between the Reynolds stresses and gravity in the

equations of motion for the mean flow. The effect of air entrainment was included in

the solution for the surface profile in the turbulent wedge originating from the point

of discontinuity. Non-hydrostatic pressure was suggested to be important near the

toe. Banner and Phillips (1974) examined the incipient spilling breaking conditions

in the presence of a wind drift, and based on laboratory observations, suggested

simple properties of the post-breaking flow. By integrating the vorticity equation

in a small surface-drift dominated viscous layer near the surface, they found that

the wind drift substantially reduced the incipient breaking wave-height compared

to Stokes’ limiting irrotational wave. From their experimental observations, they
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suggested that the breaking region had no stagnation point as proposed by Longuet-

Higgins (1973). Instead, there was an intermittent zone in the breaking eddy marked

by a low velocity tumbling region immediately in front of the crest. Remarkably,

perhaps unknown to Banner and Phillips (1974), in that same year, and in the same

journal, Longuet-Higgins and Turner (1974) proposed the ‘entraining plume’ model

which treated the spilling breaker as a turbulent gravity current riding down the

forward slope of a wave while entraining laminar flow from below. A schematic

representation of the flow is shown in Figure 4.1. The entrainment was modeled by

a finite tangential stress at the boundary between the turbulent and laminar flows.

This was also the first attempt at describing the unsteady motion of the toe front

based on the ‘starting plume’ model of Turner (1962). The surface slope and the

magnitude of the downslope velocity were found to be in agreement with laboratory

observations of spilling breakers.

In a deviation from the model of Longuet-Higgins and Turner (1974), and

motivated by the observations of Peregrine and Svendsen (1978), MS83 developed

a theoretical model for the mean velocity field and surface profiles for steady bores

and hydraulic jumps. The turbulence was not assumed to be concentrated on the

front face of the wave, but to spread downstream in a wedge originating at the

toe of the breaker front (Figure 4.2). The turbulence was modeled by a simplified

k − ε model allowing for non-equilibrium in the turbulent kinetic energy. This

was important in including the effects of surface-generated turbulence. A cubic

polynomial profile was assumed for the mean horizontal velocity in the turbulent

wedge with depth-uniform flow in the irrotational flow underneath. The coefficient

of the cubic term was obtained by fitting the velocity profiles to available data.

Static pressure was assumed and the equations of motion were satisfied “at large”

by integrating them over the turbulent region and the total depth. The accuracy

of the velocities and shear stresses near the surface could not be evaluated because
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POTENTIAL FLOW

TURBULENT

Figure 4.2: Schematic representation of the hydraulic jump/bore model of MS83.
Adapted from MS83.

of lack of data. Svendsen and Madsen (1984) extended this model to unsteady

bore motion over varying water depth even though the turbulence modeling and

the cubic velocity profile remained the same. The governing partial differential

equations were found to be of hyperbolic type. The characteristics at the toe were

found analytically. In a major difference with the model of Longuet-Higgins (1973),

where the toe was considered a stagnation point, the difference between the surface

velocity in the turbulent region and the irrotational velocity in the upstream flow

was found to be finite at the toe and much smaller than the phase speed.

Motivated by the experimental results of Duncan (1981), Cointe (1987), Tulin

and Cointe (1988) and Cointe and Tulin (1994) provided a theoretical framework

for steady breakers by implementing the concept of an essentially stagnant, aerated

eddy riding on the front face of the wave, sustained by the turbulent shear stresses

between the eddy and the underlying flow. A mixing layer model for the turbulent

wedge was explicitly included, with a turbulent wake extending behind the breaker

region. It was shown, again based on the measurements of Duncan (1981), that

the dynamic pressure as a proxy for the motions within the eddy was an order of

magnitude smaller than the hydrostatic pressure; hence the “stagnant” nature of

the eddy. A global balance of the forces on a breaker was derived to analyze the
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stability of the breaker with respect to the toe oscillations. Strong breakers were

shown to be stable. Explicit representations of the turbulence were not included.

To explain the striking preliminary results from the detailed experimental

work done by Duncan et al. (1994) in investigating incipient breaking of surface-

tension dominated breakers, Longuet-Higgins (1994), Longuet-Higgins and Cleaver

(1994), and Longuet-Higgins et al. (1994) showed that the capillary waves seen on

the front face of the wave were due to shear flow instabilities. The role of flow

separation due to the sharp curvature of the toe was significant in describing the

source of the capillary instabilities, which in turn, were a strong source of vorticity

capable of producing recirculating zones (“rollers”) in the crest. Alluding to the later

stages of evolution into a fully-formed breaker, Longuet-Higgins (1994) suggested the

development of turbulence in spilling breakers in the form of a layer of vortices which,

by merging, would finally form a mixing layer. This was conceptually addressed later

by Longuet-Higgins (1998b). A model for a horizontal shear flow with a free surface

was developed and the instabilities were analyzed using linear stability analysis. The

analytically predicted wavelengths were found to be comparable to the fluctuations

of surface elevation in the experimental data of Coakley and Duncan (1997).

The first set of Reynolds averaged equations for turbulent free-surface flows

with appreciable surface fluctuations was developed recently by Hong and Walker

(2000) as an extension of the low Froude number model developed by Walker (1997).

The model was specifically aimed at investigating the origin of the surface current,

which is the large outward velocity that exists in a thin layer adjacent to the surface.

A significant aspect of the model was its treatment of the free-surface turbulent flow

as a two-fluid flow separated by an interface. The departure from the conventional

Reynolds averaged equations appeared in the additional terms incorporating the

intermittency factor and representing the average effect of the forces acting instan-

taneously on the free surface. No turbulence model was included, and an order
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of magnitude analysis was performed to show the importance of Reynolds stress

anisotropy and interface fluctuations in determining the magnitude of surface cur-

rent. The model was not applied to free surface turbulence generated by breakers.

From the summary outlined above, several things become clear. There are

no existing theoretical models for modeling the dynamics of the highly unsteady

two-phase turbulent flow generated in spilling breakers. The recurring underlying

concepts in the simplified “bulk” models are those of a “roller” or “stagnant eddy”

near the crest, the turbulent wedge in the form of a breaker shear layer/mixing layer

originating from the toe due to flow separation, and a wake further downstream. As

discussed in Chapter 3, the roller model, in which the turbulent region is modeled

as a separate flow region passively riding the wave crest, is seen to be only a partial

solution as it is evident that the fluid content of the roller itself is continually mixing

with the rest of the turbulent flow. It is also clear that the intermittency due to the

surface fluctuations and the inherent unsteadiness of the breaking process have to

be taken into account. M. Brocchini and D. H. Peregrine have recently initiated a

very detailed theoretical investigation into the dynamics of free-surface turbulence,

with a final goal of providing a theoretical description of spilling breaking waves

(BP1,BP2). A three-layer system for the breaking wave is adopted, where the top

surface-layer represents the two-phase flow in the intermittent region near the fluc-

tuating broken interface. The middle layer is the single phase turbulent layer, which

is the focus of this chapter. The flow underneath the middle layer is assumed to

be irrotational. Part 2 focusses on the integral formulations of the governing equa-

tions of motion in the liquid phase. After suitable conditional averaging techniques

are applied accounting for the intermittency, the equations are integrated across the

surface layer to yield boundary conditions at the upper boundary of the single phase

layer. Simplified versions of the boundary conditions are derived in Brocchini (2002)

(hereafter MB02) for weakly-splashing flows assuming a thin surface layer. Results
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from both BP2 and MB02 will be discussed and implemented in this chapter. It

is stressed that the model is built for unsteady breaking waves, and the hydraulic

jump as a steady breaker provides the simplest case for testing the model. Wherever

possible, the theoretical developments will be tested with present data.

In the following sections, a detailed theoretical description is provided for

the dynamics of the turbulent thin layer which is generated at the crest of spilling

breaking waves. A large part of the material in the derivation of the governing

equations in section 4.2 and the scaling of the equations in section 4.4 is borrowed,

while appropriately modified in context, from Brocchini (1996) by permission of

the author, and is provided here for continuity purposes and increased clarity in

understanding the subsequent developments. The main new features of the present

model include a correct representation of two-phase flow near the surface, curvature,

unsteadiness, and local rotation which are all inherent to the dynamics of the layer

of turbulent flow. The motivation behind the emphasis on streamline curvature will

be discussed later. In the next section, the equations of mass and linear momentum

are introduced in covariant form. In the same section, the geometry used to analyze

the thin layer of turbulence is given together with suitable curvilinear coordinates.

The equations are derived in terms of physical variables for the specific coordinate

system. Further, turbulent averaging is introduced and Reynolds-type equations

are obtained for the flow. Based on Boussinesq’s eddy viscosity concept, a simple

k − ε closure for the Reynolds’ stresses is used. A first-order closure is adopted

which allows for local non-equilibrium of turbulent kinetic energy. In section 4.4,

scaling arguments are introduced in terms of geometric and kinematic parameters to

simplify the equations. Three different flow regimes are analyzed in dependence of

the kinematic parameter, which decrease from the leading edge (‘breaker regime’),

where the turbulence intensities are assumed comparable to the mean flow veloc-

ity, towards the trailing end (‘wake regime’). The final equations together with
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the boundary conditions discussed in BP2 and MB02 provide the basis for differ-

ent types of modeling of the spilling breaker dynamics. In principle, the equations

can be directly integrated provided that suitable closures are defined. However,

resolution of the flow in both streamwise and crossflow directions would require a

great computational effort. Therefore, in section 4.5, a profile for the mean velocity

is assumed based on experimental observations, and the model solution is provided

through matching conditions at the boundaries of the layer. In section 4.7, the equa-

tions are integrated in the cross-flow direction, which provide boundary conditions

for the irrotational flow underneath.

4.2 The equations of motion

The tools of curvilinear tensor analysis are used because they provide the

most direct method by which equations valid for curvilinear coordinate systems

may be derived (Aris, 1962; Richmond et al., 1986). The material derivative of a

general function A, be it either a scalar or a tensor function of both space and time,

is given by
DA

Dt
=

∂A

∂t
+ A,j

dξj

dt
, (4.1)

where ξj are general curvilinear coordinates, and the comma refers to partial covari-

ant differentiation. Defining uj = dξj/dt as the components of the velocity vector,

the expression for the material derivative becomes,

DA

Dt
=

∂A

∂t
+ A,ju

j. (4.2)

If the general tensor A represents a velocity, then equation (4.2) may be written in

terms of contravariant velocity components as:

ai =
Dui

Dt
=

∂ui

∂t
+ ujui

,j + uj

[
∂ui

∂ξj
+ Γi

jku
k

]
, (4.3)

where Γi
jk is the Christoffel symbol of the second kind, which essentially repre-

sents partial derivatives of basis vectors of the chosen curvilinear coordinate system
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with respect to coordinate variables. The above equation, which gives the fluid ac-

celeration in general tensor form, assumes a much simpler form when considering

orthogonal coordinates and physical variables denoted by u(i):

a(i) =
∂u(i)

∂t
+

3∑
j=1

u(j)

hj

[
∂u(i)

∂ξj
+

u(i)

hi

∂hi

∂ξj
− u(j)

hi

∂hj

∂ξi

]
, (4.4)

in which the scale factors hi are linked with the metric tensor gij by gii = h2
i .

Mass conservation for an incompressible fluid of constant density ρ takes the

following form when considering orthogonal coordinates and physical variables u(i):

∂

∂ξi
[hjhku(i)] +

∂

∂ξj
[hihku(j)] +

∂

∂ξk
[hihju(k)] = 0, (4.5)

where i, j, k are taken in cyclic order. Similarly, Euler’s equation (conservation of

linear momentum) reads:

∂u(i)

∂t
+

3∑
j=1

u(j)

hj

[
∂u(i)

∂ξj
+

u(i)

hi

∂hi

∂ξj
− u(j)

hi

∂hj

∂ξi

]
= F (i)− 1

ρhi

∂p

∂ξi
, (4.6)

in which F (i) and p are respectively the components of eventual body forces and the

pressure. These equations can be made specific for the model under investigation

once the particular set of orthogonal coordinates is chosen.

A model following the description of a spilling breaker given in the introduc-

tion is set up for representing the dynamics of the turbulent flow. Turbulence is

thus considered to be generated and to develop as for a free shear layer or a mix-

ing layer, except that on one side of the mixing layer, fluid has an initial adverse

velocity due to the reverse flow from breaking. The shear layer departs from the

wave irrotational flow at the foot of the breaker. In this model, three different time

scales are of relevance. They are the time scale for the water particles to cross the

layer, the time scale for the evolution of the layer shape and the time scale for the

evolution of the shape of the underlying wave (Peregrine, 1992). Even if the spilling

breaker is said to be quasi-steady because its evolution occurs at a larger time scale
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Figure 4.3: Global geometry adopted in the model for the system wave - turbulent
thin layer - surface layer. Photograph taken at the Fluid Dynamics
unit of the University of Edinburgh. (Courtesy of T.C.D. Barnes.)

than that for a particle to cross the layer, it can be considered unsteady when re-

ferring to the motion of the wave because the evolution of the wave shape occurs

at a larger time scale than the evolution of the thin layer. The geometry used in

the present model for the wave-turbulent thin layer system is shown in Figure 4.3.

The surface layer region represents that portion of the turbulent thin layer where

the instantaneous free surface fluctuates. Note that in the presence of intense free

surface turbulence leading to a break-up of the surface, air-entrainment and the

ejection of water particles often lead to a two-phase surface layer.

The proposed model is valid for a two dimensional unsteady spilling breaker,

and the assumption of quasi-two-dimensional flow, already introduced in BP2, means

that the flow is analyzed in a vertical plane by means of a set of two dimensional

orthogonal coordinates which is built based on Moore (1978). Consider a smooth,

time-dependent, two-dimensional curve Υ(t) (see Figure 4.4) given parametrically
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Irrotational flow
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s

ŝ

Figure 4.4: Geometry and coordinates used for the turbulent thin layer.

by the equation

r = R(α, t), (4.7)

where t is time and α is an arbitrary parameter. The curve Υ(t) represents either the

wave free surface when no breaking occurs, or an interface between the irrotational

flow region below and the region containing turbulent flow above. Due to the typical

entrainment of irrotational flow into the region of turbulence, the curve Υ(t) is not

a material surface when turbulence is present, i.e., water particles which at time

t = t0 are on the surface at a later time t = t1 will not be on the surface any more.

If a parameter s describing the arc length along Υ(t) is introduced, the curve

is parametrically given by:

r = R(α(s), t). (4.8)

The dynamics/kinematics for Υ(t) are given in terms of R(α(s), t), and depend

on the dynamics of the turbulent flow above and of the irrotational flow below.
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While the equations for the dynamics of the turbulent layer are given in the next

sections, modeling of the dynamics of the irrotational wave is not considered here.

However, it is anticipated that the turbulence/wave interaction occurring at the

lower boundary of the turbulent layer is to be represented by mass entrainment

across the boundary and by extra pressure at the boundary. These extra terms

are to be incorporated respectively in the kinematic and in the dynamic boundary

condition for the irrotational wave.

With each “convected point” OL(α(s), t) of the curve, a unit tangent vector

ŝ(α(s), t) to the curve can be defined by

ŝ ≡ ∂R

∂s
so

∂R

∂α
=

∂s

∂α

∂R

∂s
=

∂s

∂α
ŝ. (4.9)

A unit normal vector is given by n̂(α(s), t). For the sake of simplicity, much of the

following analysis is carried out by referring differential quantities to the arc length

s rather than to the convected coordinate α. The position of each convected point

OL(s, t) in the fixed frame of reference ŌX̄Ȳ is given by

r = R(s, t). (4.10)

Any general point, P , in the turbulent layer is assumed to be close enough to Υ

such that there is only one normal to the curve passing through OL towards P , and

the distance OLP = n is also defined. This is positive if P is on the left hand side

of Υ, i.e., above Υ. Moreover, the position of the point P within the thin layer is

determined by two coordinates, ξ1 = s, and ξ2 = n, which form a mobile curvilinear

coordinate system. This sort of coordinate system is widely used in the analysis of

boundary layers (see Goldstein, 1938).

The curve Υ, together with the two vectors ŝ and n̂, is analogous to a Cosserat

curve in three dimensions (Aris, 1962). With this convention, the position of P in

ŌX̄Ȳ is

rP (s, n, t) = R(s, t) + n̂(s, t)n. (4.11)
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Differentiation of (4.11) with respect to the local coordinates s and n gives

drP =
∂R

∂s
ds + n

∂n̂

∂s
ds + n̂dn. (4.12)

The Serret-Frenet formulae for a plane curve are

∂ŝ

∂s
= κn̂ ,

∂n̂

∂s
= −κŝ. (4.13)

Note that the unit normal vector is defined by the local curvature. Since ŝ · ŝ = 1,

ŝ· d̂s
ds

= 0, so that d̂s
ds

is orthogonal to ŝ, and is called the “curvature vector”. κ =
∣∣∣ d̂s

ds

∣∣∣
is the local curvature. Theerefore, the unit normal is defined as n̂ ≡ d̂s

ds
/
∣∣∣ d̂s

ds

∣∣∣. (4.12)

can be written as

drP = ŝ(1− κn)ds + n̂dn. (4.14)

From equation (4.14), the infinitesimal distance between two points P and Q can

be obtained as

ds2 = dr · dr = gijdξidξj. (4.15)

It is evident that the coordinate system is orthogonal since gij = 0 for i 6= j. Note

that orthogonality is implicitly assumed in equation (4.13) since torsion is zero for

plane curves (Aris, 1962).

The scale factor hi are the ratios of distance to coordinate difference if an

infinitesimal displacement is made in only the ξi coordinate. Since

drP

ds
= (1− κn)̂s, and (4.16)

drP

dn
= n̂, (4.17)

h1 = (1−κn) and h2 = 1. It has been assumed that the scale parameter (1−κn) 6= 0

within the fluid. The mobile curvilinear coordinate system defines unit contravariant

basis vectors ej such that

e1 =
ŝ

(1− κn)
and e2 = n̂. (4.18)
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The gradient vector is given by

∇ =

(
1

(1− κn)

∂

∂s
,

∂

∂n

)
, (4.19)

and the angular velocity Ω(s, t) of the local frame of reference (̂s, n̂) at a point with

fixed s coordinate is given through one of the following equivalent relations:

∂n̂

∂t
= −Ωŝ, ŝ·∂n̂

∂t
= −Ω = −n̂·∂ŝ

∂t
,

∂ŝ

∂t
= Ωn̂. (4.20)

The only non-vanishing Christoffel symbols for this coordinate system are

Γ1
21 = Γ1

12 =
1

h1

∂h1

∂ξ2 = − κ

(1− κn)
, and Γ2

11 = − h1

h2
2

∂h1

∂ξ2 = κ(1− κn). (4.21)

The velocity vector of any point P in the layer with given coordinates (s, n) is given

by

uP =
∂rP

∂t
=

∂R

∂t
+ n

∂n̂

∂t
=

∂R

∂t
− nΩŝ, (4.22)

and the flow velocity inside the layer and relative to the generic point P is given by

uL = (U(s, n, t),V(s, n, t)).

Therefore, the flow velocity at a point P with respect to the fixed frame of

reference ŌX̄Ȳ is

u(s, n, t)=
∂R

∂t
+n

∂n̂

∂t
+ŝU+n̂V= ŝ

(
ŝ·∂R

∂t
+U−nΩ

)
+n̂

(
n̂·∂R

∂t
+V

)
= ŝu(1)+n̂u(2),

(4.23)

and can be written in the form

u = uL +
∂R

∂t
− uΩ. (4.24)

uL = (U ,V) is the local flow velocity relative to P . The symbols (U ,V) are written in

calligraphic style to distinguish them from the physical variables and to signify that

the flow velocity is made out of two contributions (mean and turbulent fluctuations)

as shown in the next section. Finally, uΩ = (nΩ, 0) is the velocity associated with

the rotation of the local frame of reference. This shows that rotation is implicit
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in the definition of the velocity in this coordinate system, whereas the effects of

curvature are felt through the scale factor. The effects of this will be discussed

further.

The continuity equation in physical components can be specified for the two-

dimensional case from equation (4.5),

∂[h2u(1)]

∂ξ1
+

∂[h1u(2)]

∂ξ2
= 0. (4.25)

Substituting for the physical components u(i) of the velocity vector given by equa-

tion (4.23), and using the Serret-Frenet formulae (4.13) gives

∂U
∂s

+
∂ [(1− κn)V ]

∂n
= n

∂Ω

∂s
. (4.26)

In a similar fashion, the two equations for the conservation of linear momentum are

found with a little more effort. In equation (4.6), the left hand side for the component

i = 1 is simplified using equations (4.16) which define the scaling parameters h1 and

h2:

a(1) =
∂u(1)

∂t
+

u(1)

h1

∂u(1)

∂ξ1 +
u(2)

h2

[
∂u(1)

∂ξ2 +
u(1)

h1

∂h1

∂ξ2

]

=
∂u(1)

∂t
+ u(2)

∂u(1)

∂ξ2 +
u(1)

h1

[
∂u(1)

∂ξ1 + u(2)
∂h1

∂ξ2

]
. (4.27)

Equations (4.13), (4.16), (4.20), and (4.23), with the introduction of the ‘aug-

mented’ gravity factor, (which includes the acceleration of the coordinate system)

g
′
= g − ∂2R

∂t2
, (4.28)

gives the streamwise component of the momentum equation,

∂U
∂t

+

(
V + n̂·∂R

∂t

)
∂U
∂n

+
1

(1− κn)

(
U + ŝ·∂R

∂t
− nΩ

)(
∂U
∂s

− n
∂Ω

∂s
− κV

)
=

= VΩ +
∂(nΩ)

∂t
+ ŝ·g′ − 1

ρ(1− κn)

∂P
∂s

. (4.29)

P and ρ are the pressure and the constant density respectively. On the left hand

side of the above equation is the total derivative of U including the rate of change
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and convective terms, while on the right hand side, besides the ‘gravitational’ ac-

celeration and the pressure gradient force, there are two terms which are fictitious

body forces. They are the Coriolis acceleration and that due to the acceleration of

the local rotation of the frame of reference.

A similar procedure for the component i = 2 of equation (4.6) gives the

normal component of the momentum equation:

∂V
∂t

+ n̂·∂R

∂t

∂V
∂n

+ 1
2

∂V2

∂n
+

1

(1− κn)
ŝ·∂R

∂t

(
∂V
∂s

+ κU
)

+
(U − nΩ)

(1− κn)

(
∂V
∂s

+ κU
)

= nΩ2 − UΩ + n̂·g′ − 1

ρ

∂P
∂n

. (4.30)

Again, a simple classification of the terms is given in order to recognize their con-

tribution and meaning. On the left hand side is the total derivative of V (rate of

change and convective terms), while on the right hand side, the fictitious body forces

are the Coriolis acceleration and the centrifugal acceleration, nΩ2. Equation (4.30)

can be rearranged into a simpler form. From the continuity equation, the following

substitution,

U ∂V
∂s

=
∂(UV)

∂s
− nV ∂Ω

∂s
+ (1− κn)V ∂V

∂n
− κV2, (4.31)

transforms the crossflow momentum equation as

∂V
∂t

+ n̂·∂R

∂t

∂V
∂n

+
∂V2

∂n
+

1

(1− κn)
ŝ·∂R

∂t

(
∂V
∂s

+ κU
)

+
1

(1− κn)

[
∂(UV)

∂s
+ κ

(U2 − V2 − nΩU)− n
∂(VΩ)

∂s

]
=nΩ2 − UΩ + n̂·g′− 1

ρ

∂P
∂n

.

(4.32)

A simple check on equations (4.30) and (4.32) can be done by considering a non-

rotating local frame of reference (Ω = 0) and collapsing the curve Υ on to a circle

of fixed radius (∂R/∂t = 0). It is easy to show that the above equations reduce

to the equations of motion of a flow described by tangential and radial velocities

(U ,V) → (ur, vθ), i.e., where plane polar coordinates are used.
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4.3 The turbulence model

The next step is to introduce Reynolds averaging for turbulence. By following

BP2, and introducing a suitable averaging technique 〈.〉, the following decomposition

holds:

U = U + u , V = V + v , P = P + p,

〈u〉 = 0 , 〈v〉 = 0 , 〈p〉 = 0, (4.33)

for points lying entirely in the liquid. Averaging in the region of the surface layer

is discussed in more detail in BP2, and the resulting boundary conditions are valid

for ordinary Reynolds’ decomposition.

In the continuity equation, substituting for velocity components from equa-

tion (4.33) and turbulent averaging gives two different equations valid for the mean

velocities and the fluctuations:

∂U

∂s
+

∂

∂n
[(1− κn)V ] = n

∂Ω

∂s
,

∂u

∂s
+

∂

∂n
[(1− κn)v] = 0. (4.34)

It is evident that the term due to the angular velocity only influences the mean

motion while curvature effects influence both the mean flow and the turbulent ve-

locities. The streamwise momentum equation for the mean flow variables is obtained

by multiplying equation (4.29) times (1 − κn), substituting for U , V and P , and

finally taking the turbulent average:

(1− κn)
∂U

∂t
+ (1− κn)

[(
V + n̂·∂R

∂t

)
∂U

∂n
+

〈
v
∂u

∂n

〉]
+

1

2

〈
∂u2

∂s

〉
− κ〈uv〉

+

(
U+ŝ·∂R

∂t
−nΩ

)(
∂U

∂s
−n

∂Ω

∂s
−κV

)
=(1− κn)

(
V Ω+

∂(nΩ)

∂t
+ŝ·g′

)
− 1

ρ

∂P

∂s
.

(4.35)

It is more useful to express products of turbulent fluctuations in the conservative

correlation form 〈uiuj〉, and from the continuity equation for the turbulent fluctua-

tions, the substitution

(1− κn)

〈
v
∂u

∂n

〉
= (1− κn)

∂〈uv〉
∂n

− κ〈uv〉+
1

2

∂〈u2〉
∂s

(4.36)
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yields

(1− κn)
∂U

∂t
+ (1− κn)

[(
V + n̂·∂R

∂t

)
∂U

∂n
+

∂〈uv〉
∂n

]
+

∂〈u2〉
∂s

− 2κ〈uv〉

+

(
U+ŝ·∂R

∂t
−nΩ

)(
∂U

∂s
−n

∂Ω

∂s
−κV

)
=(1− κn)

(
V Ω+

∂(nΩ)

∂t
+ŝ·g′

)
− 1

ρ

∂P

∂s
.

(4.37)

Applying a similar procedure to equation (4.30),

∂V

∂t
+n̂·∂R

∂t

∂V

∂n
+

1

2

∂V 2

∂n
+

∂〈v2〉
∂n

+
1

(1− κn)
ŝ·∂R

∂t

(
∂V

∂s
+ κU

)
+

(U − nΩ)

(1− κn)

(
∂V

∂s
+ κU

)

+
1

(1− κn)

∂〈uv〉
∂s

+
κ(〈u2〉 − 〈v2〉)

(1− κn)
= nΩ2 − UΩ + n̂·g′ − 1

ρ

∂P

∂n
. (4.38)

These are the Reynolds’ equations for the two-dimensional mean flow in which

Reynolds’ stress terms 〈uiuj〉 are responsible for momentum exchanges between

turbulence and the mean flow. In the case under investigation, Reynolds’ equations

also contain terms coming from the wave motion, namely its curvature and local

rotation. These contributions give a complete account of the motion of the unsteady

spilling breaker. They also make these equations very complex and the solution of

the complete equations a very difficult task. Assumptions on the dynamics of the

turbulence, the wave-layer system, and scaling means are introduced in the next

section to obtain analytically feasible solutions.

A suitable turbulence model has to be chosen to close the problem. The level

of closure, i.e. the chosen number of transport equations, depends upon the level of

detail desired in the description of the turbulent flow. In principle, a more accurate

representation of a quantity is given by using its transport equation. However,

in practice, the level of closure should not be too high because the difficulties in

getting a physical understanding of the algebraic closure increase with the number

of equations. Thus, the turbulent closure mechanism is chosen here to be very simple

in order to easily identify the physical behavior involved in the phenomenon, and

transport equations are used when non-equilibrium conditions are to be reproduced.
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It is well known that for a quasi-steady spilling breaker there is an excess of

turbulence production relative to the dissipation at the leading edge of the turbulent

layer. This is also true for steady breakers, e.g. for a hydraulic jump (See Figure 3

in MS83). Proper modelling of this non-equilibrium for the turbulent kinetic energy

density per unit volume, k, requires the use of a transport equation for at least the

turbulent kinetic energy,

k = 1
2〈uiui〉 = 1

2gij〈uiuj〉, (4.39)

where ρ = 1.

Unfortunately, no data is available at the moment for the rate of production,

dissipation, and transport of the shear stress terms (e.g. 〈uv〉) in steady or quasi-

steady breakers. However, it is known that shear Reynolds’ stresses relax faster from

a given non-equilibrium condition towards local equilibrium than either the normal

stresses or turbulent kinetic energy. It is thus reasonable to assume local equilibrium

for the turbulent shear stresses. The assumption is supported by the measurements

of production, dissipation and transport of 〈uv〉 in straight and curved mixing layers

(Castro and Bradshaw, 1976). In the absence of data directly measured in steady

or quasi-steady breakers, the above results, valid for a mixing layer, are extended

to the turbulent thin layer. Hence, it is assumed that nearly equilibrium conditions

are reached for 〈uv〉, and consequently, Boussinesq’s eddy viscosity formulation is

used for the algebraic closure of the turbulent shear stresses.

The classical Boussinesq eddy viscosity model assumes that the Reynolds’

stresses are linearly related to the mean rate of strain. The relationship is similar

to that derived for the viscous stresses in a Newtonian stress tensor,

−〈uiuj〉 = 2νte
ij − 2

3g
ijk, (4.40)

where νt denotes the isotropic eddy viscosity, which depends upon the local flow

conditions and eij is the rate of deformation tensor. The turbulent kinetic energy
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term has been added to make the equation valid when contracted. So,

−gij〈uiuj〉 = 2νte
i
i − 2k = −2k, (4.41)

since ei
i = 0 for an incompressible fluid. By replacing the contravariant strain rate

with its expression

eij = gligkjekl = gligkj 1
2

(
〈uk〉,l + 〈ul〉,k

)
, (4.42)

further simplifications yields

−〈uiuj〉 = νt

(
gli〈uj〉,l + gkj〈ui〉,k

)
− 2

3g
ijk. (4.43)

Since an algebraically-specified eddy viscosity model is used, substitution of the

above equation into the momentum equations (4.37) and (4.38) completes the closure

problem. In the present one-equation k − ε model, the eddy viscosity is related to

the turbulent kinetic energy and its rate of dissipation ε by

νt = Cµ
k2

ε
, (4.44)

where Cµ is a constant of order Cµ ≈ 0.09 (Launder and Spalding, 1972). In sum-

mary, a one-equation closure approach is considered in which only one differential

equation for the transport of turbulent energy is required, and an algebraic equation

relates the turbulent kinetic energy and its rate of dissipation (ε) through a mixing

length which, in the specific case, is chosen to be the total thickness, b, of the tur-

bulent layer. There are various possible definitions of the mixing length for the flow

at hand. In wave breaking literature, this is taken as the thickness of the turbulent

layer (e.g. MS83, Govender et al., 2002b). Govender et al. (2002b) point out that

in a breaking wave, most of the dissipation occurs over a thickness comparable to

the crest height. For the present measurements, Figure 3.17 and Figure 3.18 suggest

that the integral length scale (l) is of the order of the width of the mixing layer.
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In light of this, and to facilitate a simpler analysis, b is chosen as a typical mixing

length, giving

ε ≈ k3/2

b
or ε = Cε

k3/2

b
, (4.45)

where, following Launder and Spalding (1972), Cε ≈ 0.08. Substitution into (4.44)

gives

νt =
Cµ

Cε

k1/2b ≈ k1/2b. (4.46)

A similar approach to the closure problem has been adopted by MS83 in

their analysis of a turbulent bore. Comparison of their model results with measure-

ments shows fairly good agreement. This is encouraging and shows that, for the

flow under investigation, it is not necessary to adopt a very complicated model to

represent the turbulence in order to reproduce experimental data and the main flow

characteristics.

The transport equation for the turbulent kinetic energy in covariant form is

(see equations (5-7) to (5-9) of Richmond et al., 1986)

∂k

∂t
+ 〈um〉k,m = (αgmnk,n),m − gij〈ujum〉〈ui〉,m − ε, (4.47)

where α ≈ νt for high Reynolds’ number motions. The physical interpretation of

the terms in the above equation is readily seen. The two terms at the left hand

side make up the material derivative of k following the mean flow, the first term at

the right hand side involving the eddy viscosity represents the diffusion of turbulent

kinetic energy by the action of turbulence itself, and the second and third terms at

the right hand side are respectively the production of turbulent kinetic energy by

the rate of strain of the mean flow and the rate of dissipation of turbulent kinetic

energy.
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Covariant differentiation of a scalar function is a simple partial derivative.

Also, only a few of the Christoffel symbols are non zero. Thus, equation (4.47) is

readily expanded under the assumption of quasi-two-dimensional flow

∂k

∂t
+〈u1〉 ∂k

∂ξ1 +〈u2〉 ∂k

∂ξ2 =
∂

∂ξ1

(
νt

h1
2

∂k

∂ξ1

)
+

∂

∂ξ2

(
νt

∂k

∂ξ2

)
−h1

2〈u1u1〉
(

∂〈u1〉
∂ξ1 +Γ1

12〈u2〉
)

−〈u1u2〉
[
h1

2

(
∂〈u1〉
∂ξ2 +Γ1

12〈u1〉
)
+

(
∂〈u2〉
∂ξ1 +Γ2

11〈u1〉
)]
−〈u2u2〉

(
∂〈u2〉
∂ξ2 +Γ2

2i〈ui〉
)
−ε. (4.48)

Recalling the expressions for the non-zero Christoffel symbols (equation 4.21) and

passing to physical variables gives

∂k

∂t
+
〈u(1)〉

h1

∂k

∂ξ1 + 〈u(2)〉 ∂k

∂ξ2 =

1

h1
2

∂

∂ξ1

(
νt

∂k

∂ξ1

)
+

∂

∂ξ2

(
νt

∂k

∂ξ2

)
− 〈u(1)u(1)〉

h1

(
∂〈u(1)〉

∂ξ1 +
∂h1

∂ξ2 〈u(2)〉
)

−〈u(1)u(2)〉
h1

(
h1

∂〈u(1)〉
∂ξ2 +

∂〈u(2)〉
∂ξ1 − ∂h1

∂ξ2 〈u(1)〉
)
−〈u(2)u(2)〉∂〈u(2)〉

∂ξ2 − ε. (4.49)

Finally, considering the specific expression of the physical components of the flow

velocity vector (4.23) gives

∂k

∂t
+

1

(1− κn)

(
U + ŝ·∂R

∂t
− nΩ

)
∂k

∂s
+

(
V + n̂·∂R

∂t

)
∂k

∂n
=

1

(1− κn)2

∂

∂s

(
νt

∂k

∂s

)

+
∂

∂n

(
νt

∂k

∂n

)
− 〈u2〉

(1− κn)

[
∂

∂s

(
U + ŝ·∂R

∂t
− nΩ

)
− κ

(
V + n̂·∂R

∂t

)]
(4.50)

− 〈uv〉
(1− κn)

[
(1− κn)

(
∂U

∂n
−Ω

)
+

∂

∂s

(
V +n̂·∂R

∂t

)
+κ

(
U+ŝ·∂R

∂t
−nΩ

)]

−〈v2〉∂V

∂n
− ε.

This is simplified by means of equations (4.13) and(4.20), and by using the continuity

equation for the mean flow (4.34)

∂k

∂t
+

1

(1− κn)

(
U + ŝ·∂R

∂t
− nΩ

)
∂k

∂s
+

(
V + n̂·∂R

∂t

)
∂k

∂n
=

1

(1− κn)2

∂

∂s

(
νt

∂k

∂s

)
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+
∂

∂n

(
νt

∂k

∂n

)
+(〈u2〉−〈v2〉)∂V

∂n
− 〈uv〉

(1− κn)

[
(1− κn)

∂U

∂n
+

∂V

∂s
+ κU

]
−ε. (4.51)

Equation (4.40) is now examined for the three possible combinations of the

indices i, j, and using orthogonal coordinates and physical variables. For i = 1 and

j = 2, the shear Reynolds’ stress term is

−(1− κn)〈uv〉 =

νt

[
∂

∂s

(
V +n̂·∂R

∂t

)
+κ

(
U+ŝ·∂R

∂t
−nΩ

)
+(1− κn)

∂

∂n

(
U+ŝ·∂R

∂t
−nΩ

)]
.

(4.52)

Using the Serret-Frenel formulae (4.13) and the relations for the angular velocity

(4.20), a much simpler expression is found:

−(1− κn)〈uv〉 = νt

[
∂V

∂s
+ κU + (1− κn)

∂U

∂n

]
. (4.53)

This expression for the Reynolds’ shear stress component 〈uv〉 is similar to that

obtained by Gibson and Rodi (1981). The three terms on the right hand side are

due to the streamline curvature, the explicit effect of geometric curvature, and the

simple shear strain rate. As will be shown later, each term affects the turbulent

shear stress at a different order in the geometric parameter (the ratio of the width

of the layer to the streamwise length scale).

A similar analysis for the component i = j = 1 leads to

−(1− κn)〈u2〉 = 2νt

(
∂U

∂s
− n

∂Ω

∂s
− κV

)
− 2(1− κn)k

3
, (4.54)

which can be rewritten in a much simpler form by means of the continuity equation

for the mean flow (4.34) as

〈u2〉 = 2νt
∂V

∂n
+

2k

3
, (4.55)

and, similarly, for the component i = j = 2,

〈v2〉 = −2νt
∂V

∂n
+

2k

3
. (4.56)
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The above expressions for 〈u2〉 and 〈v2〉 are correct for a homogeneous isotropic

turbulent flow. However, in general these terms have different strengths according

to the particular turbulent flow structure under investigation, as already seen in

BP2. Consequently, a different expression from (4.40) is used where the addition of

the turbulent kinetic energy is made via a tensor aij 6= gij:

−〈uiuj〉 = 2νte
ij − 2aijk. (4.57)

The tensor is defined as

aij = 0 for i 6= j, and (4.58)

a1
1 = C1 , a2

2 = C2 , a3
3 = C3, (4.59)

so that its trace is ai
i = C1 + C2 + C3 = 1, and equation (4.57) is valid when

contracted. This new expression only affects the diagonal terms of the Reynolds’

stress components which now read:

〈u2〉 = 2νt
∂V

∂n
+ 2C1k , 〈v2〉 = −2νt

∂V

∂n
+ 2C3k. (4.60)

Allowing for anisotropy is particularly important in the analysis of breaking wave

turbulence in the roller region and the wave crest, whereas below the wave crest and

in the wake region, the turbulence approaches isotropy (Govender et al., 2002b).

This is true for a steady breaker as well, as has been seen in Chapter 3 (see Figure

3.14)

4.4 The scaling of the equations.

The final equations (4.34), (4.37), (4.38), (4.51), (4.53), (4.55), and (4.60)

involve many terms but not all of them have the same weight on the final solution.

Scaling arguments are adopted to retain only the most important terms in the

basic equations and to help compare relative weights of terms appearing in different

121



equations. Some of the scaling arguments are derived from Bradshaw (1973) and

Tennekes and Lumley (1972).

As is well known, mixing layers (or shear layers) are characterized by a scale

velocity Ũ for the cross-stream (n) variation of the mean velocity component in the

streamwise direction (̂s). A first useful relationship which characterizes the flow in

the turbulent layer expresses the observation that the layer is thin, i.e., the thickness,

b, is much smaller than the streamwise length scale, L:

b ¿ L or
b

L
= ε ¿ 1. (4.61)

L represents the size of the region of the wave with the highest curvature. For

the present measurements, the radius of curvature at the toe (where the positive

curvature is maximum) of the breaker is approximately equal to the streamwise

distance between the peak positive and negative curvature (found at the downstream

end of the roller region), and either of these can therefore be chosen as L. Further,

considering the variation of the calculated length scale of the mixing layer, values of ε

averaged over the breaker shear layer are of the order of 0.03, which is slightly smaller

than typically observed values of order 0.06 for jets and mixing layers (Tennekes

and Lumley, 1972). These values are reasonable enough to satisfy the ‘thin layer’

approximation.

The streamwise rate of change of the mean velocity component scales as

∂U

∂s
= O

(
Ũ

L

)
, (4.62)

where O stands for ‘order of magnitude’. A velocity scale, ũ, for the turbulence is

introduced such that

k = O(ũ2), 〈uv〉 = O(ũ2), 〈u2〉 = O(ũ2), and 〈v2〉 = O(ũ2). (4.63)

As a consequence, an order of magnitude for the eddy viscosity, νt, and the turbulent

energy dissipation, ε, is also found. From equation (4.46), which relates νt to the
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turbulent kinetic energy (and its scale, ũ) and the layer thickness, b, and from

equation (4.45),

νt = O
[(

ũ2
)1/2

b
]

= O (ũb) , and ε = O (
ũ3/b

)
. (4.64)

By using the above velocity and length scales, the time scale is given by

t = O
(

L

Ũ

)
(4.65)

for the mean flow. This is such that the assumption of quasi-steady breaker is

satisfied: the evolution of the breaker is comparable with the time scales for fluid

particles to pass through the breaker itself. The scale for the cross-stream compo-

nent, V , of the mean velocity is determined from the continuity equation for the

mean flow (4.34), where limiting arguments are used. For a steady breaker, Ω = 0

and, therefore,

V = O
(

Ũb

L

)
= O

(
Ũε

)
. (4.66)

The scaling for the curvature κ must be carefully addressed because of the

presence of either gentle curvature (κ = O (1/L)) or strong curvature (1/L < κ <

1/b) for the layer. As discussed previously, the assumption of gentle curvature is

satisfied in the breaker region. In the following, gentle curvature is assumed and the

final result of the scaling procedure reduces to that of Tennekes and Lumley (1972)

for a straight, steady shear layer. The final equations for a curved shear layer in the

mixing layer regime contain the same terms as those by Gibson and Rodi (1981), as

well as the extra terms due to the motion of the underlying convected points and

terms proportional to the angular velocity, Ω, which represents the solid rotation of

the local frame of reference (̂s, n̂).

It is important to properly assess the relationship between the scale for fluc-

tuations (ũ) and that for the mean flow velocity (Ũ). This relationship strongly

depends on the sort of flow under investigation, or as in the present case where the
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flow type is not uniquely defined, on the local flow regime. The region of the spilling

breaker which is furthest from the leading edge is analyzed first. In this region, the

flow regime is such that its characteristics are similar to those of far wakes (Battjes

and Sakai, 1981). In far wakes, turbulence intensities are much smaller than the

mean velocities; more precisely the following relationship holds:

ũ

Ũ
= O

(
b

L

)
= O(ε). (4.67)

A completely different situation is found at the leading edge of the breaker.

In this region, turbulent flow is due to a local shearing which is similar to that

generating a mixing layer (Peregrine and Svendsen, 1978). Observation shows that

turbulent velocity fluctuations are so energetic at the leading edge of the breaker

that water droplets can be projected vertically upwards to distances comparable

to the local variations of surface height. Therefore, it is assumed that close to the

leading edge of the breaker, the following relationship holds:

ũ

Ũ
= O(1) or ũ = O(Ũ). (4.68)

Such an assumption is well supported by present experimental evidence. For exam-

ple, in the roller region, the velocity fluctuations are at least of the same order of

magnitude as the mean velocities. In the crests of spilling breakers, Govender et al.

(2002b) found peak horizontal turbulence intensities of more than 50% of the wave

phase speed.

It is convenient to introduce a dimensionless parameter µ which represents

the ratio of the scales for turbulent velocities and mean velocities, and use it to

implicitly estimate the size of the different contributions in the following analysis:

µ =
ũ

Ũ
, O(ε) < µ < O(1). (4.69)

From the present measurements, the streamwise variation of µ is calculated

by averaging over the width of the mixing layer. This is shown in figure 4.5. µ
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Figure 4.5: Variation of µ in the breaker shear layer. The foot of the breaker is
at x/h0 ∼ 0.47.

is O(1) near the leading edge of the breaker and decays downstream towards the

wake. The wake for the breaker region in the case of a wave is further downstream of

the rear of the crest, and it is expected that in that region the turbulence intensity

decays further and µ ∼ O(ε). Note that, as found by Rapp and Melville (1990) for

unsteady deep-water breaking, the region directly affected by the breaking wave is

of finite extent in the direction of propagation, whereas for steady breaking, there

is an infinite wake which extends downstream.

The ‘breaker shear layer’ regime can be described both in terms of the nomen-

clature typical of internal turbulent flows, i.e., a mixing layer of enhanced turbulent

strength, and in terms of the nomenclature used for the surface manifestations of

turbulence at a free surface (see BP1), i.e., a flow in the splashing regime. In be-

tween the two extreme flow regimes, i.e., ‘breaker shear flow’ and wake flow, the

typical mixing layer regime may be found. In this transition region, by applying

scaling arguments for mixing layers, the ratio of the turbulent fluctuations to the
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mean flow velocity is given according to

ũ

Ũ
= O

[(
b

L

)1/2
]

= O(ε1/2). (4.70)

Applying the scaling procedure to the terms due to the motion of the con-

vected point, the order of magnitude of those terms can be estimated from their

definitions (4.12) and (4.20) as follows:

Ω = O
(

Ũ

L

)
,

∂R

∂t
= O

(
Ũ

)
. (4.71)

This allows for further simplification of the basic equations.

Dimensionless variables are now introduced to assess the scaling of the equa-

tions for mass, momentum, and turbulent kinetic energy. As is common practice in

the analysis of boundary layers, the dimensionless variables are denoted by primes

which are dropped soon after the simplification to dimensionless equations is com-

plete:

s
′

=
s

L
, n

′
=

n

b
, z

′
=

z

L
, t

′
=

Ũ t

L
, κ

′
= κL , (4.72)

U
′

=
U

Ũ
, V

′
=

V

Ũε
, Ω

′
=

ΩL

Ũ
,

(
∂R

∂t

)′

=
1

Ũ

∂R

∂t
, (g′)′ =

g′L

Ũ2
, (4.73)

P
′

=
P

ρŨ
2 ,

〈
u
′
iu
′
j

〉
=
〈uiuj〉

ũ2 , k
′
=

k

ũ2 , νt
′
=

νt

ũb
, ε

′
=

εb

ũ3 , (4.74)

b

L
= ε ¿ 1 , O(ε) < µ = ũ/Ũ < O(1). (4.75)

The dimensionless continuity equation for the mean flow is obtained after

collecting the dimensional scale factor, Ũ/L:

∂U

∂s
+

∂V

∂n
= ε

[
κ
∂(nV )

∂n
+ n

∂Ω

∂s

]
. (4.76)

The two components of the equation of motion are obtained by collecting the

dimensional scale factor, Ũ
2
/L. The streamwise component reads

[
µ2∂〈uv〉

∂n
+ n̂·∂R

∂t

∂U

∂n

]
+ ε

[
∂U

∂t
+ V

∂U

∂n
+

(
U + ŝ·∂R

∂t

)
∂U

∂s
− κnn̂·∂R

∂t

∂U

∂n
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−µ2

(
κn

∂〈uv〉
∂n

− ∂〈u2〉
∂s

+ 2κ〈uv〉
)]

− ε2

[
κn

(
∂U

∂t
+ V

∂U

∂n

)
+

∂U

∂s
nΩ+

(
U + ŝ·∂R

∂t

) (
n

∂Ω

∂s
+ κV

)]
+ ε3

[
nΩ

(
n

∂Ω

∂s
+ κV

)]
= ε

[
ŝ·g′ − ∂P

∂s

]
+

ε2

[
V Ω +

∂(nΩ)

∂t
− κnŝ·g′

]
− ε3κn

[
V Ω +

∂(nΩ)

∂t

]
, (4.77)

while the crossflow component is

µ2∂〈v2〉
∂n

+ ε

[
n̂·∂R

∂t

∂V

∂n
− µ2κn

∂〈v2〉
∂n

+ κU ŝ·∂R

∂t
+ κU2+

µ2

(
∂〈uv〉

∂s
+ κ

(〈u2〉 − 〈v2〉)
)]

+ ε2

[
∂V

∂t
− κnn̂·∂R

∂t

∂V

∂n
+

1

2

∂V 2

∂n

+

(
ŝ·∂R

∂t
+ U

)
∂V

∂s
− nΩκU

]
− ε3n

[
κ
∂V

∂t
+ κ

1

2

∂V 2

∂n
+ Ω

∂V

∂s

]

= −∂P

∂n
− ε

[
UΩ− n̂·g′ − κn

∂P

∂n

]
+ ε2n

[
Ω2 + κUΩ− κn̂·g′]

−ε3κn2Ω2. (4.78)

Note that the effects of curvature appear explicitly at O(ε). In a similar

fashion, the dimensionless version of the evolution equation for the turbulent kinetic

energy is obtained. After collecting the dimensional scale factor, Ũ
3
/L and dividing

through by µ2, the final result is given by

n̂·∂R

∂t

∂k

∂n
+ ε

[
∂k

∂t
+

(
U + ŝ·∂R

∂t

)
∂k

∂s
+

(
V − 2κnn̂·∂R

∂t

)
∂k

∂n

]

−ε2n

[
2κ

∂k

∂t
+

(
κU + κŝ·∂R

∂t
+ Ω

)
∂k

∂s
+ κ

(
2V − κnn̂·∂R

∂t

)
∂k

∂n

]

+ε3κn2

[
κ
∂k

∂t
+ Ω

∂k

∂s
+ κV

∂k

∂n

]
= µ

∂

∂n

(
νt

∂k

∂n

)
− 〈uv〉∂U

∂n
− µε

−ε

[
2κnµ

∂

∂n

(
νt

∂k

∂n

)
− (〈u2〉 − 〈v2〉) ∂V

∂n
− 2〈uv〉κn

∂U

∂n
+ 〈uv〉κU − 2κnµε

]

+ε2

[
µ

∂

∂s

(
νt

∂k

∂s

)
+ κ2n2µ

∂

∂n

(
νt

∂k

∂n

)
− 2κn

(〈u2〉 − 〈v2〉) ∂V

∂n
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−〈uv〉
(

κ2n2∂U

∂n
+

∂V

∂s
− κ2nU

)
− κ2n2µε

]

+ε3κn

[
κn

(〈u2〉 − 〈v2〉) ∂V

∂n
+ 〈uv〉∂V

∂s

]
. (4.79)

Finally, the procedure is applied to the closure equations for the Reynolds’

stresses, which gives

−〈uv〉+ εκn〈uv〉 =
νt

µ

∂U

∂n
+ ε

νt

µ
κ

(
U − n

∂U

∂n

)
+ ε2νt

µ

∂V

∂s
, (4.80)

〈u2〉 = 2C1k + ε
2νt

µ

∂V

∂n
, 〈v2〉 = 2C3k − ε

2νt

µ

∂V

∂n
. (4.81)

It is important to keep in mind that the model is formulated in terms of the

kinematic parameter, µ, and the geometric parameter, ε, but ordered explicitly in

terms of ε, with the assumption that ε ¿ 1, i.e., the turbulent layer is ‘thin’. In the

following, when referring to the leading order or O(1) model, the contributions of

terms of O(ε) and higher are neglected. Also, the particular flow regime analyzed

is made explicit depending on the size of µ.

A first set of results can be obtained by retaining the leading O(1) terms in

the momentum equations. At this order they read,

n̂·∂R

∂t

∂U

∂n
+ µ2∂〈uv〉

∂n
= 0 , and

∂P

∂n
= −µ2∂〈v2〉

∂n
. (4.82)

These can be regarded as an evolution equation for R, describing its vertical mo-

tion, and an equation for the normal profile of the mean pressure. The hydrostatic

assumption in MS83 and SM84 resulted in their neglecting the effects of normal

turbulent stresses. It is evident that no coupling through the mean pressure occurs

at the leading order. For the coupling to occur and in order to model the time evolu-

tion of the mean flow, it is necessary to retain also the O(ε) terms in the streamwise

momentum equation. If both O(1) and O(ε) terms are retained, the streamwise

component reads
[
µ2∂〈uv〉

∂n
+ n̂·∂R

∂t

∂U

∂n

]
+ ε

[
∂U

∂t
+ V

∂U

∂n
+

(
U + ŝ·∂R

∂t

)
∂U

∂s
− κnn̂·∂R

∂t

∂U

∂n
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−µ2

(
κn

∂〈uv〉
∂n

− ∂〈u2〉
∂s

+ 2κ〈uv〉
)]

=ε

(
ŝ·g′− ∂P

∂s

)
, (4.83)

while the crossflow momentum equation is given by

µ2∂〈v2〉
∂n

+ ε

[
n̂·∂R

∂t

∂V

∂n
− µ2κn

∂〈v2〉
∂n

+ κU ŝ·∂R

∂t
+ κU2

+µ2

(
∂〈uv〉

∂s
+ κ

(〈u2〉 − 〈v2〉)
)]

= −∂P

∂n

−ε

[
UΩ + n̂·g′ − κn

∂P

∂n

]
. (4.84)

In order to substitute for the mean pressure into the streamwise component, it is

necessary to integrate the crossflow component. It is clear that after integration and

substitution, only the leading term in the normal turbulent stress is non-negligible.

This suggests that a consistent set of equations is achieved if terms in the streamwise

equation up to an order of magnitude O(ε) smaller than the cross-flow equation

are retained (Bradshaw, 1973). Contributions are considered up to O(ε) in the

streamwise momentum equation, which remains (4.83), and of O(1) in the crossflow

momentum equation which is

∂P

∂n
= −µ2∂〈v2〉

∂n
. (4.85)

It is easy to show that choosing to scale contributions as for a mixing layer

rather than for a ‘breaker shear layer’ or for a wake, the two momentum equations

would reduce to those for curved mixing layers obtained by Bradshaw (1973) and

Gibson and Rodi (1981) except for the extra terms representing the motion of the

wave underlying the thin layer of turbulence and the rigid rotation, Ω, of the local

frame of (s, n) coordinates.

The complete set of required equations is found by considering the equation

for k up to O(ε) in order to include the rate of change, ∂k/∂t, among the retained

contributions. To O(ε),

n̂·∂R

∂t

∂k

∂n
+ ε

[
∂k

∂t
+

(
U + ŝ·∂R

∂t

)
∂k

∂s
+

(
V − 2κnn̂·∂R

∂t

)
∂k

∂n

]

129



= µ
∂

∂n

(
νt

∂k

∂n

)
− 〈uv〉∂U

∂n
− µε

−ε

[
2κnµ

∂

∂n

(
νt

∂k

∂n

)
− (〈u2〉 − 〈v2〉) ∂V

∂n
− 2〈uv〉κn

∂U

∂n
+ 〈uv〉κU − 2κnµε

]
.

(4.86)

The first term on the left hand side represents the transport of k due to the un-

steadiness of the layer. Note that the leading order model is steady. The first term

at the right hand side of the above equation is a diffusion term representing the

redistribution of k due to eddy motion. This term usually vanishes when the equa-

tion is integrated over the layer thickness. In this model, the rate of dissipation of

turbulent kinetic energy is a function of the curvature parameter. This is not un-

reasonable, and other models for curved shear layer have used a similar formulation

(Launder et al., 1977). The same equation for the transport of k is also valid for

the other flow regimes (mixing layer and wake). The normal Reynolds’ stresses are

given by equation (4.81). From (4.80), the shear Reynold’s stress up to O(ε) is given

by

−〈uv〉+ εκn〈uv〉 =
νt

µ

∂U

∂n
+ ε

νt

µ
κ

(
U − n

∂U

∂n

)
. (4.87)

At leading order, the direct effects of curvature and rotation are absent in

the governing equations (4.76-4.81). Curvature effects are first felt only at O(ε).

However, as Bradshaw (1973) points out, in fairly thin turbulent shear layers with

streamline curvature or rotation, the magnitude of measured Reynolds’ shear stress

is an order of magnitude higher than that predicted by the exact transport equation.

In a thin curved shear layer, such as one considered here, the extra strain rate is

e = ∂V/∂x in Cartesian coordinates, or e = −U/(n+R) in (s, n) coordinates, where

R is the radius of curvature (See Section 3.1 of Bradshaw, 1973). The dimensional

form of (4.87) is
−〈uv〉
νt

∂U
∂n

= 1 + α1
e1

∂U
∂n

, (4.88)
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where e1 denotes the extra strain rate, and α1 = 1. Since the curvature, κ, here is

equivalent to −1/R,

e1 =
κU

(1− κn)
=

−U

(n + R)
. (4.89)

It has been seen in experimental data obtained from curved shear layers that α1 6= 1,

but α1 ∼ O(10). At O(ε2), the extra strain rate is represented by

e2 =
∂V

∂s

1

(1− κn)
. (4.90)

The influence of this particular term can be seen further by considering the produc-

tion terms in the O(ε) turbulent kinetic energy equation:

−〈uv〉κU − 〈uv〉(1− 2κn)
∂U

∂n
− 〈v2〉∂V

∂n
+ 〈u2〉∂V

∂n
, (4.91)

which, using (4.76) in the absence of rotation effects (Ω = 0), can be written as

−〈uv〉κU −〈uv〉(1− 2κn)
∂U

∂n
−〈v2〉∂V

∂n
+ 〈u2〉

(
−∂U

∂s
+ κV

)
+ 〈u2〉κn

∂V

∂n︸ ︷︷ ︸
. (4.92)

The production terms in equation (A 1.28) of Bradshaw (1973) are given by

−〈uv〉κU −〈uv〉(1−κn)
∂U

∂n
−〈v2〉∂V

∂n
+ 〈u2〉

(
−∂U

∂s
+ κV

)
+ 〈v2〉κn

∂V

∂n
−〈uv〉∂V

∂s
.

(4.93)

The under-braced term, which is the effect of longitudinal acceleration and geometric

curvature on the normal stress, is absent in equation (4.93). Streamline curvature

effects, such as the underlined term in (4.93) appear in the present case at O(ε2) (see

(4.79)). Note that there is also a difference of a factor, 2, in the simple shear strain

rate term between the two equations. The reason for this apparent discrepancy is

not immediately clear.
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4.5 The O(1) model

Previous analyses with both bores and hydraulic jumps suggest the use of a

similarity profile for the velocity in the form of a cubic polynomial (MS83, SM84).

〈u(1)〉(s, n, t)=〈u(1)〉(s, 0, t)+f(s, t)g(σ) with g(σ)=−Aσ3+Bσ2+Cσ+D and σ=n/b(s)

(4.94)

for the streamwise component of the mean, physical velocity, 〈u(1)〉, in the single

phase turbulent layer. A cubic profile is chosen to model the inflection point of

the velocity in the thin layer. Here, b(s) is the local thickness of the single-phase,

turbulent layer. In the assumption that the bulk of the wave can be modelled as

irrotational, 〈u(1)〉(s, 0, t) = ∂φ/∂s(s, 0, t), where φ is the velocity potential in the

irrotational flow.

Equation (4.94) automatically sets a cubic profile for the relative flow velocity

U . This is readily found by using (4.24) and (4.33), giving

〈u(1)〉(s, n, t) = ŝ·∂R

∂t
+ U(s, n, t)− nΩ, (4.95)

so that from the above two equations, the flow velocity can be expressed in terms

of f(s, t) and g(σ) as

U(s, σ, t) = 〈u(1)〉(s, 0, t) + f(s, t)g(σ)− ŝ·∂R

∂t
+ σb(s)Ω. (4.96)

Both f(s, t) and the coefficients of g(σ) are to be found by means of matching

conditions at n = 0 or σ = 0 [i.e. at the interface between the irrotational flow region

(n < 0) and the single-phase turbulent region (0 ≤ n ≤ b)], and at n = b or σ = 1

(i.e., at the base of the surface layer).

Following MS83, the continuity of U at both boundaries of the layer, and

vanishing turbulent shear stress at the interface with the irrotational flow region are

imposed. Note that, as a major difference with the model of MS83, continuity of

U at the upper boundary of the layer is achieved by forcing a boundary condition
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at n = b provided by the results of BP2, thus, taking the contribution of two-phase

surface flow into account. As shown in the following, this fixes the coefficient, A,

of the cubic profile, which was variable over the range 1/2 ≤ A ≤ 2 in MS83. A

represents the crossflow gradient of U at n = b.

The matching conditions are:

1. Continuity of 〈u(1)〉(s, n, t) at n = 0

lim
n→0−

〈u(1)〉(s, n, t) = lim
n→0+

〈u(1)〉(s, n, t) =⇒

lim
σ→0−

[
1

(1− κσb(s))

∂φ

∂s

]
= lim

σ→0+

[
∂φ

∂s
+ f(s, t)g(σ)

]
. (4.97)

This gives the usual first condition:

g(0) = 0 =⇒ D = 0; (4.98)

2. Continuity of 〈u(1)〉(s, n, t) at n = b

The velocity at the bottom of the “surface layer” described in BP2 is set to

U(s, b, t) = Ub, and continuity is enforced as

lim
n→b−

〈u(1)〉(s, n, t) = lim
n→b+

[
ŝ·∂R

∂t
+ U(s, n, t)− nΩ

]
, (4.99)

and from definition (4.95),

〈u(1)〉(s, 0, t) + f(s, t)g(1) = ŝ·∂R

∂t
+ Ub − bΩ,

which guides the suitable choice for f(s, t), i.e.,

f(s, t) = ŝ·∂R

∂t
+ Ub − bΩ− ∂φ

∂s
(s, 0, t)

= −Û + Ub − bΩ. (4.100)

So,

Û =
∂φ

∂s
(s, 0, t)− ŝ·∂R

∂t
, (4.101)
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and the second standard condition is obtained:

g(1) = 1 =⇒ C = A−B + 1. (4.102)

3. Vanishing turbulent shear stress at n = 0

The leading-order contribution from equation (4.87) shows that the condition

[〈uv〉]n=0 implies that [
∂U

∂n

]

n=0

= 0. (4.103)

Using (4.102), the final condition linking A and B is found.

B = 1 + A +
b(s)Ω

f(s, t)
. (4.104)

This shows the second main difference between the present model and that of

MS83: the coefficients of the cubic polynomial are not constants but functions

of s. In either case, a strictly self-similar solution cannot be found (Madsen,

1981).

The above analysis gives the profiles for the physical and relative mean

streamwise velocity. Plugging in for B, C and D = 0 in (4.94),

〈u(1)〉(s, σ, t)=
∂φ(s, 0, t)

∂s
−f(s, t)Aσ3+[f(s, t)(1 + A) + b(s)Ω] σ2−b(s)Ωσ, (4.105)

which is identically satisfied at σ = 0. At σ = 1,

〈u(1)〉(s, 1, t) = 〈u(1)〉(s, 0, t) + f(s), (4.106)

which is satisfied by definition (4.94) since g(1) = 1. Using (4.95) and (4.105),

U(s, σ, t) = −ŝ·∂R

∂t
+

∂φ(s, 0, t)

∂s
− f(s, t)Aσ3 + [f(s, t)(1 + A) + b(s)Ω] σ2. (4.107)

Using (4.100), this can be written as

U(s, σ, t) = Û + (Ub − Û)σ2 + A
[
Ub − Û − b(s)Ω

]
σ2(1− σ). (4.108)
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Figure 4.6: Cubic profile fit (blue solid line) for mean horizontal velocity data (cir-
cles). Red line is the estimated mean velocity from equation (4.109).
σ is the non-dimensional vertical coordinate.

For Ω = 0, this reduces to

U(s, σ, t) = Û + (Ub − Û)σ2[1 + A(1− σ)]. (4.109)

The analytical solution for the mean horizontal velocity can be checked using the

present measurements. A cubic polynomial was fit to the measured values for U .

This is shown as the blue solid line in Figure 4.6. The coefficient of the cubic term

(A) was calculated from the fit and is shown at each horizontal location. Once A

had been calculated, by approximating Û and Ub with the mean horizontal velocity

values at the bottom and top (at the 10 % contours of the Reynolds shear stress) of

the mixing layer, the mean horizontal value at each vertical location was calculated

from equation (4.109), and this is shown as the red line in the figure. Because of

the small thickness of the shear layer near the toe, few data points were available

for a robust fit to the profile. Therefore, the streamwise locations were chosen in
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the middle part of the shear layer. Equation (4.109) is seen to provide a good

approximation to the vertical variation of the velocity in the shear layer.

As a simple check for equation (4.108), U(s, σ = 1, t) correctly gives Ub. The

mean shear stress at σ = 1 is given by

[
∂U

∂n

]

σ=1

= −f(s, t)

[
A−

(
2 + 2b(s)Ω

f(s,t)

)]

b(s)
. (4.110)

This vanishes for A = 2 + [2b(s)Ω/f(s, t)], or in absence of rotation (Ω = 0) for

A = 2 as in MS83. To determine an analytic expression for A, the leading-order

continuity equation is used to compute V , so that

V (s, n, t) = −
∫

∂U

∂s
dn + Cv(s, t)

= −
∫

∂

∂s

[
∂φ(s, 0, t)

∂s
+ f(s, t)g

(
n

b(s)

)
− ŝ·∂R

∂t
+ nΩ

]
dn + Cv(s, t)

= −n
∂Û

∂s
− b(s)

∂f(s, t)

∂s
G(σ) + f(s, t)

∂b(s)

∂s
G̃(σ) (4.111)

− n2

2

∂Ω(s, t)

∂s
+ Cv(s, t),

where

G(σ) =

∫
g(σ)dσ = −A

4
σ4 +

B

3
σ3 +

(A−B + 1)

2
σ2, (4.112)

G̃(σ) =

∫
σġ(σ)dσ = −3A

4
σ4 +

2B

3
σ3 +

(A−B + 1)

2
σ2, (4.113)

and Cv(s, t) is an integration constant which, since G(0) = 0 and G̃(0) = 0, can be

written in terms of the vertical velocity at the bottom of the layer: V (s, 0, t) ≡ V0,

as Cv(s, t) = V0. As already mentioned, A is not a free parameter in the model. It

is fixed by the boundary condition at n = b. The general expression for A is derived

by means of the kinematic boundary condition found in BP2 to hold at the base of

the ‘surface layer’ (n = b):

∂b(s)

∂t
+ Ub

∂b(s)

∂s
− Vb = −W, (4.114)
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in which W is the normal-to-surface velocity needed to model the inflow or outflow

across the surface layer, W = ∂
∂s

∫ h

b
γUwdn + ∂d

∂t
, γ is the intermittency factor, and

Uw is the horizontal water velocity in the surface layer. Substituting for the mean

velocities from (4.108) and (4.111),

A =
1

f(s, t) ∂
∂s

[b(Ub − Û)− b2Ω]

[
12(bΩ + Û − Ub)

∂b

∂t
(4.115)

+ 2(−2UbÛ + UbbΩ + 5bΩÛ − 2U2
b + 4Û2)

∂b

∂s
+ 2b(3bΩ + 2Û − 2Ub)

∂Ub

∂s

+ 2b(3bΩ + 4Û − 4Ub)
∂Û

∂s
+ 2b2(Û − Ub)

∂Ω

∂s
+ 12(bΩ + Û − Ub)(W − V0)

]
.

Having determined the profiles for the mean flow, the profiles for turbulent

velocity are readily found following the approach of MS83, i.e., by assuming that

dissipation and production terms in the equation for k, the leading terms of equation

(4.86), are expressed by the same crossflow profile. By expressing the turbulence

dissipation ε through (4.45), the suitable choices are found to be

k1/2 = Λ(s)f(s, t)ġ(σ), (4.116)

νt ∝ k1/2b = CtΛ(s)f(s, t)b(s)ġ(σ), and (4.117)

ε ∝ k3/2

b
= Cε

Λ(s)3f(s, t)3

b(s)
[ġ(σ)]3 , (4.118)

in which Ct and Cε are empirical turbulent constants (Launder and Spalding, 1972),

and Λ(s) is a function measuring the local imbalance between turbulence production

and dissipation (see MS83).

4.6 The O(ε) model

As can be seen by considering equations (4.76)-(4.81), the O(ε) model (re-

taining both O(1) and O(ε) terms in the governing equations) is characterized by

the direct effects of curvature. Therefore, it is necessary to begin by incorporating
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these effects into the solution for the mean velocity. From equation (4.87), the third

boundary condition (4.103) leads to

B = 1 + A +
b

f
(Ω + κÛ). (4.119)

Plugging in for B and C (which remains the same) in (4.96), the O(ε) solution for

the mean horizontal velocity is found to be

U(s, σ, t) = Û − fAσ3 + [f(1 + A) + b(Ω + κÛ)]σ2 − bκÛσ. (4.120)

The mean flow shear at the top of the layer is given by

[
∂U

∂n

]

n=b

=
1

b
[2(Ub − Û)− A(Ub − Û − bΩ) + bκÛ ], (4.121)

which vanishes for

A =
2(Ub − Û) + bκÛ

(Ub − Û − bΩ)
, (4.122)

or for Ω = 0 and κ = 0, for A = 2. Note that the O(1) expression for both A and

B can be recovered by simply setting κ = 0. V (s, n, t) is determined by using the

O(ε) continuity equation,

V (s, n, t) =
1

(1− κn)

∫ (
−∂U

∂s
+ n

∂Ω

∂s

)
dn + Cv(s, t), (4.123)

where Cv(s, t) is an integration constant, and equals Cv(s, t) = V0, the vertical

velocity at the boundary with irrotational flow. After some algebra, the expression

for V (s, n, t) is found to be

V (s, n, t) =
1

(1− κn)

[
−n

∂Û

∂s
− b

∂f

∂s
G(σ) + f

∂b

∂s
G̃(σ) + V0

]
. (4.124)
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Note that the direct effect of the rotation term cancels out in the final expression

for V (s, n, t). As before, using the kinematic boundary condition from BP2, the

expression for A is found to be

A =
1

f(s, t) ∂
∂s

[b(Ub − Û)− b2Ω]

[
12(1− κb)(bΩ + Û − Ub)

∂b

∂t
(4.125)

+ 2(−2UbÛ + UbbΩ + 5bΩÛ − 2U2
b + 4Û2 − bκÛ2 − 2b2ΩκÛ + 6U2

b κb− 5UbbκÛ

− 6Ubb
2Ωκ)

∂b

∂s
+ 2b(3bΩ + 2Û − 2Ub + bκÛ)

∂Ub

∂s
+ 2b(3bΩ + 4Û − 4Ub

− bκÛ)
∂Û

∂s
+ 2b2(2Ub − 2Û − 3bΩ− bκÛ)

∂Ω

∂s
− 12(bΩ + Û − Ub){V0

− W (1− κb)}
]
.

Setting κ = 0 in the above expression does not recover the O(1) expression

in (4.115). The difference lies in the coefficient for ∂Ω
∂s

and arises indirectly because

of the presence of rotation effects in the continuity equation at this order.

4.7 The O(1) integral equations

The model equations at the chosen order can be integrated in the cross-flow

direction. The integration can be performed in two complementary ways. The

first approach explicitly uses the profiles defined in the previous section. With

this procedure, which follows the ideas of MS83, a quantitative description of the

flow is found by forcing a solution which obeys one simple physical constraint,

i.e., an inflection point for the velocity within the layer. Physical insights into

the dynamics near the toe are obtained not only from the equations, but also from

the solution. In addition, the boundary conditions at the interface between the

single-phase turbulent layer and the irrotational flow are found. In the second

approach, followed in section 4.8, the normally-integrated equations are recast in

terms of layer-integrated variables to develop evolution equations for the thin-layer
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dynamics. By definition, these equations are valid at the base of the layer, and are,

therefore, boundary conditions for the irrotational flow.

The dynamics of the leading edge of the breaker region are analyzed first,

where µ ∼ O(1). Since the continuity equation for the mean flow (the leading

order terms of equation (4.76)) has already been used to determine V (s, n, t), the

integration of the equation is identically satisfied. The leading-order contributions

from the normal component of the momentum equation (see equation (4.82)) are

essentially a balance between the normal turbulent stress and the normal mean

pressure gradient. Using the profiles for the normal stress and the turbulent kinetic

energy, this can be integrated across the layer from n = 0 to n = b to give

P0 = Pb + 2ρC3Λ
2f 2

[
(−A + 2)

(
−A + 2 +

2bΩ

f

)]
. (4.126)

P0 and Pb are respectively the pressure at the bottom and top of the layer, and

Pb can be obtained from the dynamic boundary condition derived in BP2 (see their

equation (5.19)) which includes the surface layer contributions. Note the presence of

extra pressure with respect to Pb due to rotation and non-zero mean shear stress at

the top of the layer. The effect of gravity is felt at a higher order (O(ε)). The normal

turbulent stresses make a dominant contribution to the non-hydrostatic component

of the pressure. In the absence of rotation and mean shear at the top of the layer

(Ω = 0 and A = 2), P0 = Pb. In other words, there is uniform pressure across

the layer. On integrating the O(1) contributions from the streamwise momentum

equation and using the boundary condition (4.103),

n̂·∂R

∂t
=

CtΛf 2 (2− A)
[
A−

(
2 + 2bΩ

f

)]2

(
Ub − Û

) , (4.127)

which describes the unsteady vertical motion of the layer. Note that the steady

state is recovered for A = 2.
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Before integrating the turbulent kinetic energy balance, it is convenient to

change from (s, n) coordinates to (s, σ) coordinates. The normal integration of the

O(1) turbulent kinetic energy equation is thus given by

n̂·∂R

∂t

∂k

∂σ︸ ︷︷ ︸
I

=
∂

∂σ

(
νt

1

b

∂k

∂σ

)

︸ ︷︷ ︸
II

+ νt
1

b

(
∂U

∂σ

)2

︸ ︷︷ ︸
III

− ε︸︷︷︸
IV

. (4.128)

Using the expression derived in equation (4.127) for n̂ · ∂R
∂t

, −〈uv〉 = νt
∂U
∂n

, and using

the profiles for νt, U , and k, each term is integrated across the layer.

I = n̂·∂R

∂t
Λ2f 2

[(
A− 2− bΩ

f

)2

−
(

bΩ

f

)2
]

, (4.129)

II = 2CtΛ
3f 3

[(
A− 2− bΩ

f

)2 (
−4A + 2 +

2bΩ

f

)
(4.130)

−
b2Ω2

(
2 + 2A + 2bΩ

f

)

f 2

]
,

III = − 1
105CtΛ(−490f 2bΩ + 126f 3A− 70b3Ω3 − 350fb2Ω2 (4.131)

− 49bΩf 2A2 + 217f 2AbΩ + 91fAb2Ω2 + 6A3f 3 − 63A2f 3 − 210f 3),

IV = CεΛ
3f 3

[(
−A + 2 +

bΩ

f

)3

+

(
bΩ

f

)3
]

. (4.132)

Substituting for n̂·∂R/∂t from equation (4.127), an expression for Λ(s) describing

the local imbalance between production and dissipation is found. In the absence of

rotation,

Λ2(s) =
−6A3 + 63A2 − 126A + 210

105(2− A)3
[
(2− A)2 − 4 (1−2A)

(2−A)
+ Cε

Ct

] . (4.133)

The first thing to note in the above expression is the singularity at A = 2. The

variation of A with Λ2 is shown in Figure 4.7. Since Λ2 is the dissipation divided by

the production, near the leading edge of the breaker, Λ2 < 1. The singularity appears

when the production vanishes, and this is expected to occur in the downstream

direction. The increase in Λ2 with decreasing A (A > 2) is consistent with the
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Figure 4.7: Variation of Λ2 with A.

decreasing shear (quantified by A) in the downstream direction. In contrast to

MS83, where A is a constant (chosen as a best-fit to data), A(s) varies in the

streamwise direction, and its variation can be modeled in terms of the dynamics

of the turbulence near the foot of the breaker. As already noted, the streamwise

dependence follows from the more complex flow situation analyzed here (e.g. non-

hydrostatic pressure, vertical accelerations, etc.) with respect to those of MS83.

In the far wake regime (µ = O(ε) ¿ 1), the continuity equation, and hence

the expression for V (s, n, t), remains unchanged. From the leading-order term in the

normal momentum equations, the pressure is uniform across the layer. The Reynolds

shear stress equation shows that the mean horizontal velocity is also uniform across

the layer, which when used in the turbulent kinetic energy balance, gives

n̂·∂R

∂t

∂k

∂n
= −〈uv〉∂U

∂n
=⇒ ∂k

∂n
= 0, (4.134)

i.e., the vertical distribution of the turbulent kinetic energy is uniform across the

wake.
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4.8 The O(ε) integral equations

In this section, the governing equations are integrated across the width of the

thin layer (from n = 0 to n = b), and using the boundary conditions in BP2 and

MB02 which are enforced at the top of the layer, the dynamics of the turbulent thin

layer are described in terms of the layer-averaged variables. The aim is to develop

a model which, apart from its governing variables, is determined entirely by the

information provided from the underlying flow so that the integrated equations also

serve as boundary conditions for the irrotational flow below. The variables for the

model are the layer thickness, b, the layer-averaged mean horizontal velocity, U ≡
R b
0 Udn

b
, and the layer-averaged turbulent kinetic energy, k ≡

R b
0 kdn

b
. The following

analysis assumes Ω = 0. As opposed to plunging breakers, where the wave face

overturns and falls onto the trough, in spilling breakers, the angular velocity in the

turbulent layer can be assumed to be small. For steady breakers, the angular velocity

is zero by definition. MS83 found that the streamwise variation of the calculated

mean surface, when fit to available hydraulic jump data, was rather insensitive to

the prescribed velocity profile, or in other words, the choice of A. In the present case,

due to the additional effects of curvature, unsteadiness and non-hydrostatic pressure,

this simplification cannot be made, as is obvious from the analytic expressions for

A(s) and the physical arguments discussed in the previous section which suggest a

decrease in A(s) in the downstream direction. For now, the streamwise variation of

A(s) is kept arbitrary. A physical model for A(s) is described toward the end of the

section.

4.8.1 The continuity equation

The normal integration of the O(ε) continuity equation is given by

∫ b

0

[
∂U

∂s
+

∂[(1− κn)V ]

∂n
= n

∂Ω

∂s

]
dn. (4.135)
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Applying Leibnitz rule,

b
∂U

∂s
+ U

∂b

∂s
− Ub

∂b

∂s
+ (1− κb)Vb = V0. (4.136)

Ub can be expressed in terms of U by integrating equation (4.109), giving

Ub = A0(U − Û) + Û , (4.137)

where

A0 =
12

(4 + A)
. (4.138)

The streamwise dependence of the coefficient A0, and other functions of A(s) which

follow, is shown indirectly through their dependence on A(s). This is done to eval-

uate the order of magnitude contribution of the coefficients to the various terms.

Vb is eliminated from equation (4.136) by using the kinematic free surface

boundary condition from BP2:

Vb =
∂b

∂t
+ Ub

∂b

∂s
+ W, (4.139)
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where W = ∂d
∂t

+ ∂
∂s

[∫ h

b
Uwγdn

]
is a vertical velocity representing mass conservation

within the surface layer. Uw is the zone-averaged velocity for the water phase in the

surface layer, and d is the amount of water in the surface layer,

d ≡
∫ h

b

γdn. (4.140)

h(s, t) is the upper limit of the surface layer. From MB02 (see also Borue et al.,

1995), the zone averaged velocity for the water phase can be expressed in terms of

the conventional averaged velocity for the single-phase flow as Uw = U
γ
. Further, as

in MB02, assuming an almost-uniform profile for the velocity in the surface layer,

∂
[∫ h

b
Udn

]

∂s
≈ ∂[Ub(h− b)]

∂s
. (4.141)

In the case of weakly splashing regimes, both d and (h − b) can be related to the

turbulence intensity at the base of the layer as,

d ≈ C1kkb

g
, (h− b) ≈ C2k

kb

g
, C2k ≈ 2C1k = O(1). (4.142)

This essentially states that the “weight” of the surface layer is given in terms of

the turbulent kinetic energy at the base of the layer. Next, the O(1) profile for the
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turbulent kinetic energy is used to express kb in terms of the layer-averaged kinetic

energy (k) as

kb = Akk, (4.143)

where Ak represents the coupling between the surface layer and the single phase

turbulent layer.

Ak ≡ 15(A− 2)2

(2A2 − 5A + 20)
. (4.144)

After making the substitutions, Vb is given as

Vb =
∂b

∂t
+ [A0(U − Û) + Û ]

∂b

∂s
(4.145)

+
C2kAk

g
[A0(U − Û) + Û ]

∂k

∂s
+

C2kAkA0k

g

∂U

∂s

+
C1kAk

g

∂k

∂t
+

C2kAkk

g

[
(1− A0)

∂Û

∂s
+ (U − Û)

∂A0

∂s

]
.

Using the integrated turbulent kinetic energy equation (derived later; see equation

4.218) to substitute for ∂k
∂t

, the continuity equation can be written as

∂b

∂t
+ CB

∂b

∂s
+ CU

∂U

∂s
+ CK

∂k

∂s
= CR, (4.146)

where

CB =
U

(1− κb)
− κb

(1− κb)
[A0(U − Û) + Û ]− Ak

g
C1kKB, (4.147)

CU =
b

(1− κb)
+

Ak

g
[C2kA0k − C1kKU ], (4.148)

CK =
Ak

g
[C2k{A0(U − Û) + Û} − C1kKK ], and (4.149)

CR =
V0

(1− κb)
− Ak

g

[
C2k(1− A0)k

∂Û

∂s
+ C2kk(U − Û)A0s + C1kKR

]
.

Note that in the absence of curvature, and neglecting the surface-layer coupling,

this reduces to
∂b

∂t
+ U

∂b

∂s
= V0, (4.150)

146



which represents mass conservation in the thin layer. V0 is a source term signifying

the entrainment from the flow below. In a similar fashion, the normally integrated

O(1) continuity equation, which will be used later, can be written as

∂b

∂s
+ C ′

B

∂b

∂s
+ C ′

U

∂U

∂s
+ C ′

K = C ′
R, (4.151)

where

C ′
B = U − Ak

g
C1kKB, (4.152)

C ′
U = b +

Ak

g
[C2kA0k − C1kKU ], (4.153)

C ′
K =

Ak

g
[C2k{A0(U − Û) + Û} − C1kKK ], and (4.154)

C ′
R = V0 − Ak

g

[
C2k(1− A0)k

∂Û

∂s
+ C2kk(U − Û)

∂A0

∂s
+ C1kKR

]
.

This is derived for later use. Note that equation (4.146) can be reduced to the

integrated O(1) continuity equation by setting the geometric curvature to zero.

4.8.2 The streamwise momentum equation

The streamwise momentum equation can be written in conservative form as

∫ b

0

[
∂U

∂t︸︷︷︸
I

+
∂U2

∂s︸︷︷︸
II

+
∂(UV )

∂n︸ ︷︷ ︸
III

+ (1− κn)

(
n̂ · ∂R

∂t

)
∂U

∂n︸ ︷︷ ︸
IV

(4.155)

+

(
ŝ · ∂R

∂t

∂U

∂s

)

︸ ︷︷ ︸
V

= − ∂(P/ρ)

∂s︸ ︷︷ ︸
V I

+ ŝ · g′︸︷︷︸
V II

− ∂[(1− κn)〈uv〉]
∂n︸ ︷︷ ︸

V III

− ∂〈u2〉
∂s︸ ︷︷ ︸
IX

+ 2κ〈uv〉︸ ︷︷ ︸
X

]
dn.

Each under-braced term is integrated separately for clarity. Since some of the alge-

bra becomes tedious when computed by hand, the symbolic mathematical software
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Figure 4.10: Variation of A1 with A.

MAPLE is used. This also ensures greater accuracy. Applying Leibnitz rule on the

first term,

I = U
∂b

∂t︸︷︷︸
Ia

+b
∂U

∂t
−Ub

∂b

∂t︸ ︷︷ ︸
Ic

, (4.156)

where Ia is replaced from the integrated O(1) continuity equation, and Ic is to be

combined later with other boundary terms. On substitution,

I = b
∂U

∂t
− UC ′

B

∂b

∂s
− UC ′

U

∂U

∂s
− UC ′

K

∂k

∂s
+ UC ′

R−Ub
∂b

∂t︸ ︷︷ ︸
Ic

. (4.157)

Again, by applying the Leibnitz rule, the second term in equation (4.155) is

given by

II =
∂τD

ss

∂s︸︷︷︸
IIa

+U
2 ∂b

∂s
+ bU

∂U

∂s
−U2

b

∂b

∂s︸ ︷︷ ︸
IIb

, (4.158)

where IIb is to be combined later with other boundary terms. τD
ss is a kind of

dispersive stress arising due to the vertical variation of the mean horizontal velocity,

and is defined as

τD
ss ≡

∫ b

0

(U − U)2dn. (4.159)

∂τD
ss

∂s
=

A1

2
(U−Û)2 ∂b

∂s
+A1b(U−Û)

∂U

∂s
−A1b(U−Û)

∂Û

∂s
+A2b(U−Û)2∂A

∂s
, (4.160)
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and

A1 =
2(13A2 + 56A + 448)

35(4 + A)2
(4.161)

A2 =
48(A− 14)

35(4 + A)3
.

Therefore, term II becomes

II = [U
2
+

A1

2
(U − Û)2]

∂b

∂s
+ [bU + A1b(U − Û)]

∂U

∂s
(4.162)

− A1b(U − Û)
∂Û

∂s
+ A2b(U − Û)2∂A

∂s
−U2

b

∂b

∂s︸ ︷︷ ︸
IIb

.

The third term is given by

III = UbVb︸︷︷︸
IIIa

−ÛV0. (4.163)

Ic, IIb and IIIa are now combined. The kinematic boundary condition from BP2

is used again to get

Ic + IIb + IIIa = UbW. (4.164)
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On replacing Ub and W as before,

III = [A0(U − Û) + Û ]W − ÛV0 (4.165)

=
Ak

g
[A0(U − Û) + Û ]

[
(−C1kKB)

∂b

∂s

+ (−C1kKU + C2kA0k)
∂U

∂s

+ (−C1kKK + C2k[A0(U − Û) + Û ])
∂k

∂s

+

(
C2kk(U − Û)A0s + C1kKR + C2k(1− A0)k

∂Û

∂s

)]
− ÛV0.

Term IV is now integrated to yield

IV = n̂ · ∂R

∂t
[(1− κb)Ub − Û + κbU ]. (4.166)

Replacing Ub, and after some algebra,

IV = n̂ · ∂R

∂t
(U − Û)[A0 + κb(1− A0)], (4.167)

which represents the vertical motion of the layer and vanishes in the absence of

shear. Similarly, term V is integrated to give

V = ŝ · ∂R

∂t

[
U

∂b

∂s
+ b

∂U

∂s
− Ub

∂b

∂s

]
(4.168)

= ŝ · ∂R

∂t

[
(1− A0)(U − Û)

∂b

∂s
+ b

∂U

∂s

]
.

Applying Leibnitz rule on the pressure term, the integration gives

V I = −1

ρ

[
P

∂b

∂s
+ b

∂P

∂s
− Pb

∂b

∂s

]
. (4.169)

Since the O(1) contribution from the normal momentum equation is given by P =

−2ρC3k (equation (4.81) and (4.82)), equation (7.9) can be written in terms of the

layer-averaged kinetic energy as

V I = 2C3k
∂b

∂s
+ 2C3b

∂k

∂s
+

Pb

ρ

∂b

∂s︸ ︷︷ ︸
V Ic

. (4.170)
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The dynamic free surface condition is now used to evaluate the pressure at the top

of the layer (Pb). From MB02,

Pb

ρ
≈ −〈v2〉b − 1

ρ

∫ h

b

[
(1− γ)

γ
P

]
∂γ

∂n
dn + g · n̂d, (4.171)

which shows the contributions from the normal turbulent stress, gravity, and the

intermittency associated with the two-phase flow. The curvature effect in the surface

layer pressure term has been neglected since it is an O(ε) term. Further, from

equation (4.80), the O(1) contribution to the normal stress is given by 〈v2〉b =

2C3kb = 2C3Akk. By a similar justification, the second term in (7.9), which is

the contribution of the pressure due to the intermittency, can be related to the

turbulent kinetic energy at the bottom of the surface layer, which can be given by

the approximation

−1

ρ

∫ h

b

[
(1− γ)

γ
P

]
∂γ

∂n
dn ≈ Ckpk, (4.172)

so that
Pb

ρ
≈ Cpk. (4.173)

Cp ≡ −2C3Ak + Ckp + g · n̂C1kAk

g
. (4.174)

Note again that neglecting the surface-layer turbulence leads to zero pressure at

the top of the layer, which would be the case for an unbroken surface. Finally, the

layer-averaged pressure term can be written as

V I = (2C3k + Cpk)
∂b

∂s
+ 2C3b

∂k

∂s
. (4.175)

The gravity term is simply given by

V II = (ŝ · g′)b. (4.176)

Since the Reynolds shear stress vanishes at the lower boundary ([〈uv〉]n=0 = 0),

applying Leibnitz on term V II gives

V III = −(1− κb)〈uv〉b. (4.177)
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From MB02, the Reynolds shear stress at the bottom of the surface layer is approx-

imated in terms of the turbulent kinetic energy at that boundary, and expressing

that in terms of the layer-averaged kinetic energy,

〈uv〉b ≈ g · ŝC1kAkk

g
, (4.178)

so that

V III ≈ −(1− κb)g · ŝC1kAkk

g
. (4.179)

Term IX is given by

IX = −
∫ b

0

∂〈u2〉
∂s

dn, (4.180)

which, using the O(1) equation for 〈u2〉 (equation (4.81)), can be written as

IX = −2C1

∫ b

0

∂k

∂s
dn. (4.181)

Applying Leibnitz rule,

IX = −2C1

[
b
∂k

∂s
+ k

∂b

∂s
− b

∂kb

∂s

]
(4.182)

≈ −2C1b
∂k

∂s
− 2C1k

∂b

∂s
+ 2C1bAk

∂k

∂s
+ 2C1bk

∂Ak

∂s
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The integration of the last term is

X = −κbΛCt(U − Û)2A3, (4.183)

where

A3 =
96(2A2 − 5A + 20)

5(4 + A)2
. (4.184)

The layer-averaged streamwise momentum equation can be written as

∂U

∂t
+ MB

∂b

∂s
+ MU

∂U

∂s
+ MK

∂k

∂s
= MR. (4.185)

The coefficients are given as

MB =
1

b

[
(1− A0)(U − Û)

(
C1kAkKB

g
+ ŝ · ∂R

∂t

)
+ 2(C1 − C3)k (4.186)

− Cpk +
A0

2
(U − Û)2

]
,

MU =
1

b

[
U(b− C ′

U) + A1b(U − Û) +
Ak

g
(1− A0)(U − Û)(−C1kKU + A0C2kk)

+ ŝ · ∂R

∂t
b

]
,

MK =
1

b

[
−UC ′

K +
Ak

g
[A0(U − Û) + Û ]

{
−C1kKK + C2k[A0(U − Û) + Û ]

}

+ 2b[C1(1− Ak)− C3]

]
, and

MR =
1

b

[
−UC ′

R + A1b(U − Û)
∂Û

∂s
+ ÛV0 − A2b(U − Û)2∂A

∂s

− Ak

g
[A0(U − Û) + Û ]

{
C1kKR + C2k(1− A0)k

∂Û

∂s
+ C2kk(U − Û)

∂A0

∂s

}

− n̂ · ∂R

∂t
(U − Û)[A0 + κb(1− A0)] + ŝ · g′b− Ak

g
(1− κb)g · ŝC1kk

− κbΛCt(U − Û)2A3 + 2C1bk
∂Ak

∂s

]
.
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Even though the coefficients are mathematically complicated, the significance of

each term can by interpreted through the coefficients, which provide a description

of various physical mechanisms. For e.g., MK provides the coupling between the

momentum equation and the evolution of the turbulent kinetic energy and arises due

to the surface-layer contribution represented by Ak. The equations get decoupled

when Ak = 0 (since C ′
K = 0), which, as can be seen from Figure 4.9, happens at

A = 2, or for zero mean shear at the top of the layer. In such a case, C ′
U = b,

and MU is given simply by MU = A1(U − Û) + ŝ · ∂R
∂t

. Also, in such a scenario,

MK = 0, since C ′
K = 0. The anistropy of the turbulence is reflected in C1 6= C3.

This completes the layer integration of the streamwise momentum equation. Note

that all the information required to model the evolution of U is provided by the

dynamics of the layer itself, and the flow below. The information for the unsteady

motion of the base of the layer (quantified by the terms ŝ · ∂R
∂t

and n̂ · ∂R
∂t

) is specified

by the boundary of the irrotational flow. In the next section, the turbulent kinetic

energy equation is integrated across the layer.

4.8.3 The turbulent kinetic energy equation

Casting the convective terms in conservative form, equation (4.86) can be

written in dimensional form as

∫ b

0

[
∂k

∂t︸︷︷︸
I

+
∂(Uk)

∂s︸ ︷︷ ︸
II

+
∂(V k)

∂n︸ ︷︷ ︸
III

+ ŝ · ∂R

∂t

∂k

∂s︸ ︷︷ ︸
IV

(4.187)

+ (1− 2κn)n̂ · ∂R

∂t

∂k

∂n︸ ︷︷ ︸
V

= (1− 2κn)
∂

(
νt

∂k
∂n

)

∂n︸ ︷︷ ︸
V I

− 〈uv〉
{

κU + (1− 2κn)
∂U

∂n

}

︸ ︷︷ ︸
V II

+ (〈u2〉 − 〈v2〉)∂V

∂n︸ ︷︷ ︸
V III

− (1− 2κn)ε︸ ︷︷ ︸
IX

]
dn.
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In the following, each underbraced term is integrated separately. Applying Leibnitz

rule on the first term,

I = b
∂k

∂t
+ k

∂b

∂t
− kb

∂b

∂t
. (4.188)

Using the integrated O(1) continuity equation, this term can be written as

I = b
∂k

∂t
− k U

∂b

∂s
− kb

∂U

∂s
+ k(V0 −W )− kb

∂b

∂t︸︷︷︸
Ia

(4.189)

=

[
b− C1kAkk

g

]
∂k

∂t
− k U

∂b

∂s
− k

[
b +

C2kAkA0k

g

]
∂U

∂s

− k[A0(U − Û) + Û ]
AkC2k

g

∂k

∂s
+ k

[
V0 − AkC2k

g
k

{
(1− A0)

∂Û

∂s

+ (U − Û)
∂A0

∂s

}]
− kb

∂b

∂t︸︷︷︸
Ia

.

Ia is to be combined later with other terms.

II = bk
∂U

∂s
+ bU

∂k

∂s
+ k U

∂b

∂s
−Ubkb

∂b

∂s︸ ︷︷ ︸
IIa

+
∂

[∫ b

0
k(U − U)dn

]

∂s︸ ︷︷ ︸
IIb

, (4.190)
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Figure 4.14: Variation of A5 with A.

where IIa is to be combined with Ia and another term later.

IIb = A4Λ(U − Û)2

[
Λ(U − Û)

∂b

∂s
+ 3bΛ

∂U

∂s
(4.191)

+ b

{
2(U − Û)

∂Λ

∂s
− 3Λ

∂Û

∂s
+ 6A5Λ

∂A

∂s

}]
,

where

A4 =
−24(A− 2)(A− 8)2

5(4 + A)3
, and (4.192)

A5 =
5A− 16

(A− 8)(A− 2)
. (4.193)

(4.194)

Term IIb obviously vanishes for uniform flow. The term also vanishes when mean

shear at the surface is neglected, which is evident from Figure 4.13, where A4 = 0

for A = 2. Note the singularity of A5 (which represents the streamwise variation of

the dissipation) at A = 2.
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So,

II = bU
∂k

∂s
+ [k U + A4Λ

2(U − Û)3]
∂b

∂s
(4.195)

+ [bk + 3A4bΛ
2(U − Û)2]

∂U

∂s

+ A4bΛ(U − Û)2

[
2(U − Û)

∂Λ

∂s
− 3Λ

∂Û

∂s
+ 6A5Λ

∂A

∂s

]
+ IIa.

The third term can be integrated easily and gives

III = kbVb︸︷︷︸
IIIa

−k0V0. (4.196)

Ia, IIa and IIIa are combined as

Ia + IIa + IIIa = −Ubkb
∂b

∂s
− kb

∂b

∂t
+ kbVb (4.197)

= kbW

=

[
A2

kC1k

g
k

]
∂k

∂t
+

[
A2

kC2k

g
k[A0(U − Û) + Û ]

]
∂k

∂s

+

[
A2

kC2k

g
A0k

2
]

∂U

∂s
+

[
A2

kC2k

g
k

2
(1− A0)

]
∂Û

∂s

+
A2

kC2k

g
k

2
(U − Û)

∂A0

∂s
.

Term IV can be easily integrated to give,

IV = ŝ · ∂R

∂t

[
b
∂k

∂s
+ k

∂b

∂s
− kb

∂b

∂s

]
(4.198)

≈ ŝ · ∂R

∂t

[
k(1− Ak)

∂b

∂s
+ b

∂k

∂s

]
.

Similarly, term V , describing the streamwise motion of the layer, can be integrated

to give,

V = n̂ · ∂R

∂t

[
(1− 2κb)kb − k0 + 2κkb

]
(4.199)

≈ n̂ · ∂R

∂t

[{(1− 2κb)Ak + 2κb} k − k0

]
.
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Term V I is the diffusion term in the turbulent kinetic energy equation and

is given by

V I = (1− 2κb)

[
νt

∂k

∂n

]

n=b︸ ︷︷ ︸
V Ia

−
[
νt

∂k

∂n

]

n=0︸ ︷︷ ︸
V Ib

+ 2κ

∫ b

0

νt
∂k

∂n
dn

︸ ︷︷ ︸
V Ic

. (4.200)

V Ib is the O(1) contribution at the lower boundary. From the profiles developed

earlier for k and νt, V Ib = 0. Therefore, there is no diffusive penetration of vorticity

into the underlying irrotational flow. In other words, the thin layer of viscous laminar
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flow between the turbulent and irrotational flow is disregarded.

V Ia = A6(U − Û)3CtΛ
3(1− 2κb), (4.201)

where

A6 =
6912(2− A)2(1− 2A)

(4 + A)3
. (4.202)

V Ic = A7bCtΛ
3κ(U − Û)3, (4.203)

where

A7 =
−2304(A− 2)3

(A + 4)3
. (4.204)

Therefore, term V I is finally given by

V I = CtΛ
3(U − Û)3[A6 + (A7 − 2A6)κb]. (4.205)

Term V II signifies the production of turbulent energy from the work done

by the Reynolds shear stresses on the mean shear. Note the explicit dependence on

the geometric curvature.

V II =

∫ b

0

−〈uv〉
[
κU + (1− 2κn)

∂U

∂n

]
dn (4.206)

= V IIa + V IIb.

V IIa = −κ

∫ b

0

〈uv〉Udn (4.207)

= κ

∫ b

0

νtU
∂U

∂n
dn

= bκΛCt(U − Û)2K1,

where

K1 =
24

5(4 + A)3
[A3Û − 128Û + 96AÛ − 18ÛA2 + 288U + 3A3U (4.208)

− 96AU + 24UA2].
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Figure 4.17: Variation of A8 with A.

V IIb = −
∫ b

0

〈uv〉(1− 2κn)
∂U

∂n
dn (4.209)

=

∫ b

0

(1− 2κn)νt

[
∂(

∂n
U)

]2

= CtΛ(U − Û)3K2,

where

K2 = A8 + κbA9, (4.210)

A8 =
432

35(4 + A)3
[−8A3 + 84A2 − 168A + 280], and (4.211)

A9 =
432

35(4 + A)3
[17A3 − 144A2 + 336A− 448]. (4.212)

Term V III, which is the work done by the normal stresses, is given by

V III = 2(C1 − C3)

∫ b

0

k
∂V

∂n
dn (4.213)

= 2(C1 − C3)Λ
2(U − Û)2

[
−A9(U − Û)

∂b

∂s
+ A10b

∂U

∂s

+ A11b
∂Û

∂s
− A12

(4 + A)
b
∂A

∂s

]
,
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Figure 4.18: Variation of A9 with A.
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Figure 4.19: Variation of A10 with A.

where

A10 = − 1008

35(4 + A)3
[96− 32A + A3 + 8A2], (4.214)

A11 = − 336

35(A + 4)3
(A− 2)(A− 8)2, and (4.215)

A12 =
A10

(4 + A)
. (4.216)

Note that term V III vanishes for isotropic turbulence.
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Figure 4.20: Variation of A11 with A.
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Figure 4.21: Variation of A12 with A.

The dissipation term can be integrated as

IX = −Λ3Cε(U − Û)3K2. (4.217)

Finally, the integrated turbulent kinetic energy equation can be written as

∂k

∂t
+ KB

∂b

∂s
+ KU

∂U

∂s
+ KK

∂k

∂s
= KR, (4.218)
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where

KB =
1

Dk

[
A4Λ

2(U − Û)3 + ŝ · ∂R

∂t
k(1− Ak) (4.219)

− 2A7(C1 − C3)Λ
2(U − Û)3

]
,

KU =
1

Dk

[
3A4bΛ

2(U − Û)2 +
A0A

2
kC2k

g
k

2
(4.220)

− 2(C1 − C3)Λ
2(U − Û)2A10b

]
,

KK =
1

Dk

[
Ak

C2k

gk[A0(U − Û) + Û ](Ak − 1) + b

(
U + ŝ · ∂R

∂t

)]
, (4.221)

KR =
1

Dk

[
V0(k0 − k)− AkC2k

g
(Ak − 1)k

2
(1− A0)

∂Û

∂s
(4.222)

− A4bΛ(U − Û)2

{
2(U − Û)

∂Λ

∂s
− 3Λ

∂Û

∂s
+ 6A5Λ

∂A

∂s

}

− n̂ · ∂R

∂t
{[(1− 2κb)Ak + 2κb]k − k0} − AkC2kk

2

g
(U − Û)(1− Ak)

∂A0

∂s

+ CtΛ
3(U − Û)3[A6 + (A7 − 2A6)κb] + ΛCt(U − Û)2[κbK1 + (U − Û)K2]

+ 2(C1 − C3)Λ
2(U − Û)2b

{
A11

∂Û

∂s
− A12

(4 + A)

∂A

∂s

}
− Λ3Ct(U − Û)3K2

]
,

and

Dk = b +
AkC1k

g
k(Ak − 1). (4.223)

The layer-averaged equations for conservation of mass, momentum and tur-

bulent kinetic energy are given as

∂b

∂t
+ CB

∂b

∂s
+ CU

∂U

∂s
+ CK

∂k

∂s
= CR, (4.224)

∂U

∂t
+ MB

∂b

∂s
+ MU

∂U

∂s
+ MK

∂k

∂s
= MR, and (4.225)

∂k

∂t
+ KB

∂b

∂s
+ KU

∂U

∂s
+ KK

∂k

∂s
= KR, (4.226)
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or in matrix form as




b

U

k





t

+




CB CU CK

MB MU MK

KB KU KK








b

U

k





s

=




CR

MR

KR


 ,

where the subscripts denote partial differentiation with respect to the variables, and

the coefficient are given in equations (4.147), (4.186), and (4.219). The above system

of equations can either be regarded as a description for the turbulent dynamics in the

thin layer, or as turbulent free surface boundary conditions for the irrotational flow

below. The two flows are coupled through the mass exchange and pressure at the

boundary. The mass exchange is represented by the mean velocities, V0 and Û . The

layer-averaged pressure (P ) and the pressure at the top of the layer (Pb) have been

expressed in terms of k. Since a consistent set of equations for the O(ε) model has

contributions from the O(1) normal momentum equation (equation (4.85)), using

the O(1) relationship between the normal turbulent stress and the turbulent kinetic

energy (equation (4.81)), the pressure at the base of the layer is given by

P0 = Pb + 2ρC3(kb − k0). (4.227)

Since the diffusion of turbulent kinetic energy at the bottom has been neglected,

in the absence of rotation, the profile for the turbulent kinetic energy (equation

(4.116)) shows that k0 = 0. Also, since kb is related to k through kb = Akk, and

Pb = ρCpk, the pressure at the base of the layer, and as a boundary condition for

the irrotational flow is found to be

P0 = kρ(Cp + 2C3Ak). (4.228)

In the next section, a model for the streamwise variation of A(s) is formulated. Once

A(s) is known, the coefficients related to A(s), such as A0, A1, etc. are easily found.

164



4.9 A model for A(s)

In principle, the analytical expression for A(s) (equation (4.125)) can be

explicitly used in the above equations. However, the equations become rather in-

tractable because of the dependence of A(s) on U and b. To keep the mathematics

simple, the streamwise dependence of A(s) is determined based on physical reason-

ing and experimental measurements. As already seen in Figure 4.6, the cubic profile

fits the measured data well. Further, the theoretical profile for the mean horizontal

velocity (equation (4.109)), using the fitted values of A, agrees with the measured

vertical variation of U . This is reassuring, since only an O(1) solution for the mean

velocity has been used. Some of the discrepancy between the theoretical profile and

the measured data can, therefore, be due to the higher order effects which are ne-

glected in the O(1) model. From Figure 4.22, it can be seen that the values for A(s)

decrease in the downstream direction with increasing streamwise distances from the

foot of the breaker. This is physically reasonable since A(s) is a quantification of

the mean shear at the top of the layer, and the shear decreases from the foot of the

breaker toward the wake region.

From cubic profiles fit to the measured data, A(s) can be calculated at various

streamwise locations. These are shown as circles in Figure 4.22. The solid line is a

linear fit to the estimated values, and is given by

A(x̃) = −3.28x̃ + 5.38. (4.229)

A more general expression can be easily obtained by using the foot of the breaker

as the origin of the streamwise coordinate. However, since the theoretical model

coordinate system is also arbitrary, and to allow an easier interpretation with the

experimental results presented in Chapter 3, no such transformation is made. Fur-

ther, the streamwise geometry of the lower boundary of the thin layer can be quali-

tatively assessed from Figure 3.8 and Figure 3.16. The base of the layer is seen to be

nearly horizontal. This has also been observed for spilling breaking waves (Lin and
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Figure 4.22: Measured (circles) and linear fit (solid line) to streamwise variation
of A(x̃).

Rockwell, 1995; Stansby and Feng, 2005). Since the coordinate system is attached

to the bottom boundary of the layer, the streamwise variation in x̃ can be assumed

to be nearly the same as the streamwise dependence on the curvilinear coordinate,

s, with the result that

A(s) ≈ −3.28s + 5.38. (4.230)

The linear variation is seen to be a reasonable fit to the estimated values. As men-

tioned before, because of the small thickness of the shear layer near the foot of the

breaker, few measurement points were available to enable a robust fit. Therefore, the

linear fit for A is extrapolated toward the foot of the breaker. As found in Chapter

3, the foot of the breaker is at x̃ ∼ 0.47, and the wake region further downstream of

x̃ ∼ 1.2. The extrapolated values near the foot are admittedly uncertain since the

dynamics near the toe of the breaker are highly complicated because of significant

curvature and unsteady effects arising from the toe oscillation. In the following, the

validity of the estimated streamwise variation of A(s) is discussed with respect to

the theoretical results and measurements.
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Figure 4.23: Schematic showing flow reversal in the roller region and the corre-
sponding sign reversal in the mean surface shear at the reattachment
point.

The O(1) solution for the mean shear at the top of the layer is given by

equation (4.110) with Ω = 0. Since f = (Ub − Û) is negative in the thin layer,

for A > 2, ∂U
∂n

> 0, and for A < 2, ∂U
∂n

< 0. Therefore, the streamwise location

where the mean shear at the top of the layer is zero and undergoes a change of

sign is given by the location where A = 2. From Figure 4.22, this is found to be

at x̃ ∼ 1.03. This is approximately the location of the end of roller as shown in

Figure 3.11, at x̃ ∼ 1.05. A possible reason for this is related to the reverse flow

in the roller region which creates a positive shear near the mean surface. This

is shown schematically in Figure 4.23. The singularity at A = 2 appears at the

reattachment point where the mean surface shear vanishes. It is interesting to note

that singularities for hydraulic jumps are known to occur at separation points (Bohr
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Figure 4.24: Mean surface shear for different values for A.

et al., 1997; Chang et al., 2001). The author is unaware similar studies focussing

on reattachment points. The present measurements do not afford a resolution high

enough to accurately estimate the sign and magnitude of the mean shear at the

surface, but the vertical profiles of IS00 certainly indicate such a scenario (see their

Figure 15). The streamwise variation of A in the theoretical model predicts the

correct sign of the mean shear at the top of the thin layer, and this is shown in

Figure 4.24 for three different values of A.

Since dissipation increases and production decreases in the downstream di-

rection, Λ2 should increase in the downstream direction. Since A(s) decreases in the

downstream direction, Λ2 should increase with decreasing values of A(s). This is

clearly seen in Figure 4.7 for A(s) > 2. Note that the theory predicts a singularity at

A = 2. In reality, this essentially translates to very small values of production along

with large values of dissipation. Whether this occurs at the location where A(s) ∼ 2

cannot be confirmed from the present measurements because dissipation could not

be estimated. A spatial resolution approximately equal to the Kolmogorov length

scale is required to accurately estimate dissipation rates, and the present resolution
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Figure 4.25: Measured (circles) and linear fit (solid line) to streamwise variation
of Ak.

is much coarser.

Another qualitative check on the linear decay of A(s) can be done by looking

at the streamwise variation of Ak. Ak is defined as the ratio between the turbulent

kinetic energy at the top of the layer and the layer-averaged value, i.e., Ak = kb

k
.

From the present measurements, the streamwise dependence of this coefficient can

be calculated and is shown in Figure 4.25. Even though there is quite a bit of scatter,

a linear fit to the measurements is shown to be reasonable in reproducing the basic

trend of a linear increase with downstream distance. In Figure 4.9, the theoretically

estimated values of Ak are seen to decrease linearly with A(s) (for A(s) > 2). This is

entirely consistent with the linear increase of Ak downstream, since A(s) decreases

downstream. Note that a comparison of the magnitudes for Ak from the theory and

measurements also shows reasonable agreement.

Finally, the estimated values for A from the linear fit are found to be 3.84

near the foot of the breaker, decreasing to approximately 0.5 in the wake region

(x̃ ∼ 1.5). The values in the downstream region are comparable to the values in
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MS83, who used values of 0.5, 1.4, and 2 in fitting vertical profiles to measurements

of mean horizontal velocity, turbulence intensity and Reynolds shear stress. They

had suggested that a non-zero mean shear stress at the mean surface necessitated a

value of A < 2, which, as is seen from the present analysis, is valid only in the region

downstream of the roller. They had noted that measurements in the roller region

were not available to substantiate the values chosen for A, and hence measurements

downstream of the roller were used. Further, their conclusion that A < 2 was not

based on any measurements, since values greater than two were not used to fit the

profiles to the data. As the integrated equations were satisfied “at large”, they

found that the mean surface profile was insensitive to the chosen values of A. The

linear decay model suggested here for A(s) represents a more accurate description

of the local details of the mean and turbulent flow dependence in various regimes of

the flow.

4.10 Conclusions

A theoretical model for the description of the turbulent dynamics in quasi-

steady spilling breaking waves has been developed. The model is part of a compre-

hensive three-layer system in which the top layer represents the two-phase flow near

the surface, and the flow below is assumed to be irrotational. Therefore, the com-

bined model is representative of the fully turbulent two-phase flow in the breaker

region. The surface-layer model of MB2 is used to provide the boundary conditions

at the top of the thin layer, whereas the irrotational flow is assumed to be known.

The governing equations for conservation of mass, momentum, and turbu-

lent kinetic energy, derived by Brocchini (1996) are used as the framework for the

present model. The main features of these equations, developed in orthogonal curvi-

linear coordinates, are a correct representation of unsteadiness, curvature, rotation,

and non-hydrostatic effects. Reynolds-averaged equations for both the mean and

turbulent flow are derived by splitting the velocities and pressure into mean and
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turbulent parts. In addition, a one-equation k − ε turbulence model based on local

equilibrium of Reynolds shear stress is used. An evolution equation is used to model

the non-equilibrium in k. A Boussinesq eddy-viscosity closure was adopted through

a length scale chosen as the width of the shear layer. In light of experimental ob-

servations of turbulence intensities in the roller region and crest of breaking waves,

the turbulence is allowed to be anisotropic. This is particularly important for an

accurate modeling of the turbulence near the foot of the breaker.

A scaling of the equations is performed through the introduction of two pa-

rameters. The geometric parameter (ε = b
L
) represents the shallowness of the flow

in the layer, and is a ratio of the width of the layer to the streamwise length scale.

Based on the measurements, and typical values found in jets and mixing layer, it is

found that ε << 1, or that the layer is thin. The governing equations are ordered in

terms of ε, which gives clear insights into the relative contributions of various phys-

ical mechanisms represented in the governing equations. The kinematic parameter(
µ = ũ

Ũ

)
is a ratio of the turbulent fluctuations to the mean horizontal velocity, and

is a direct indication of the intensity of turbulence. The flow is classified into three

regimes dependent on the size of the kinematic parameter with O(ε) < µ < O(1).

Near the leading edge of the breaker, µ ∼ O(1), and it decreases toward the wake

region where µ << 1. This classification is supported by the estimates of µ from the

data. Estimates of curvature from the data substantiate the assumption of gentle

curvature in the breaker region.

The leading order model describes the evolution of the lower boundary of

the layer and shows that the normal profile of the mean pressure is determined by

the turbulent normal stresses. Due to the “shallowness” assumption, the effects

of gravity and mean vertical accelerations are felt by the pressure at O(ε) and

O(ε2) respectively in the normal momentum equation. Direct effects of rotation

and curvature are absent in the O(1) model. Explicit effects of curvature are found
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to affect the O(ε) and higher order terms. In particular, the role of curvature in

determining the Reynolds shear stress structure and production of turbulent kinetic

energy is analyzed. It is found that extra strain rates due to streamline curvature

appears only at O(ε2). The simple shear strain rate is the leading order contributor

to the generation of turbulent kinetic energy. However, as has previously been

observed in experiments with curved shear layers, the measurements show that the

anisotropy in the Reynolds shear stress is related to the streamline curvature strain

rate, and not determined just by the dominant contribution of the simple shear.

A similarity profile in the form of a cubic polynomial is chosen to represent

the vertical variation of the mean velocity and is found to be in good agreement

with data in the shear layer. The coefficients for the polynomial, which vary in the

streamwise direction, are obtained by matching conditions imposed at the top and

bottom of the layer. Continuity of mean horizontal velocity at both boundaries and

vanishing shear stress at the base of the layer are enforced. The general expression

for the coefficient of the cubic term (A(s)) is found by enforcing the two-phase

surface layer boundary condition at the top of the layer. A(s) is evaluated from

the measurements, and the theoretical profile for the mean horizontal velocity is

seen to agree well with measured data. The profiles for the turbulent quantities are

determined from the turbulence model.

The O(1) model is integrated normally using the profiles to obtain physical

insights into the streamwise variation of the turbulent kinetic energy budget and

the vertical motion of the base of the layer. As expected, it is found that near the

leading edge of the breaker, dissipation is smaller than production, whereas further

downstream, the ratio of dissipation to production increases, and in fact attains

a singularity, when, theoretically, the production vanishes. The pressure at the

bottom of the layer is found to be in excess of the pressure at the top of the layer

and is due to rotation and non-zero mean shear stress at the top of the layer. In the
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far wake region, the pressure and the mean velocity are found to be uniform across

the layer. The vertical variation of the turbulent kinetic energy is also uniform. As

yet, this has not been verified with respect to data.

The governing equations at O(ε) are then integrated across the layer and for-

mulated in terms of layer-averaged variables. These are chosen as the width of the

layer (b), the layer-averaged mean horizontal velocity (U), and the layer-averaged

turbulent kinetic energy (k). The turbulent surface-layer contributions are taken

into account through boundary conditions applied at the top of the layer. This

results in a coupled system of equations for the evolution of b, U , and k. The sig-

nificance of the vertical shear in the layer and the non-zero mean shear stress at the

top of the layer are pointed out at several stages of the derivation of the equations.

The turbulent kinetic energy equation shows that there is no diffusive penetration

of vorticity into the underlying flow, i.e., the thin layer of viscous laminar flow be-

tween the turbulent layer and the irrotational flow is disregarded in the present

model. The final set of equations can either be considered as evolution equations for

the variables or boundary conditions for the flow below. The coupling between the

turbulent flow in the thin layer and the irrotational flow below is provided through

mass entrainment and excess pressure at the boundary. The additional pressure at

the base of the layer is found to be linked to the layer-averaged turbulent kinetic

energy.

A model for the streamwise variation of A(s) is developed based on physical

reasoning and the present experimental measurements. A linear decay in the down-

stream direction is found to satisfy the requirements imposed by the theoretical

model as well as the trends in the mean and turbulent quantities estimated from

the measurements. Further comparison between the theoretical model and the mea-

surements is in progress. It is noted that a higher resolution data-set would afford

a more meaningful comparison, since turbulence production and dissipation rates
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need to be available to confirm the theoretical trend observed in Λ(s). A crucial

issue in the model is the sign of the mean shear stress at the top of the layer, since a

direct comparison of its streamwise variation can be made with the suggested model

for A(s). In addition, the analytical expression for A(s) has to be compared to the

values estimated from the data.
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Chapter 5

COHERENT TURBULENT STRUCTURES

The true worth of an experimenter consists in his pursuing not only what he seeks

in his experiment, but also what he did not seek

Claude Bernard

5.1 Introduction

In the “bulk” models described in Chapter 4 to represent spilling breakers,

the turbulent structure of the flow, especially the details in the breaker shear layer

and in the highly intermittent region near the surface, is either grossly simplified or

completely disregarded. However, there are dominant and persisting energy contain-

ing scales in turbulent flows that exhibit evident and coherent structure. Although

there are several definitions of coherent structures in literature, a generalized de-

scription provided by Robinson (1991) will suffice for the purpose of this chapter.

A coherent structure or motion is defined as “a three-dimensional region of the

flow over which at least one fundamental flow variable (velocity component, density,

temperature, etc.) exhibits significant correlation with itself or with another vari-

able over a range of space and/or time that is significantly larger than the smallest

scales of the local flow”. Laboratory experiments have clearly confirmed the ex-

istence of classes of eddies in breaking waves. Nadaoka (1986), using qualitative

flow visualization techniques, was the first to examine the large scale eddy structure
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Horizontal eddies

ODEs

Figure 5.1: Horizontal and obliquely descending eddies in a breaking wave.
Adapted from Nadaoka (1986).

under breaking waves. Around the wave crest, the “horizontal eddies” had a two-

dimensional structure, with their axes parallel to the wave crest. Behind the crest,

the ODEs stretched downward into the water column (see Figure 5.1). These were

oriented along the mean strain rate and were mainly responsible for the generation

of Reynolds stress in the upper layer of the water.

Yeh and Mok (1990) performed LIF experiments with hydraulic jumps and

bores, and found sporadic three-dimensional turbulent patches created by mixing

at the foot of the breaker. As the large-scale “eddies” were advected downstream

(away from the crest), their shapes tended to become less elliptic and more circular

in the vertical plane of measurement. Simultaneously, the major axis of the eddy

rotated in the counter-clockwise direction because of stronger advection as the depth

increased. This topological transformation was suggested as a mechanism for the

spreading of turbulence in the mixing layer originating from the foot of the breaker.

A schematic representation is shown in Figure 5.2. The mixing layer analogy with

hydraulic jumps from flow visualization experiments (Hoyt and Sellin, 1989) has

already been discussed. It is worth noting in the context of this chapter, that they

found “a pattern of growing, whirling, and intersecting vortex structures” in the
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Elongated eddy

Figure 5.2: Mutation of eddy axis and change in topology of eddies in an unsteady
bore. Adapted from Yeh and Mok (1990).

mixing layer.

Cox and Kobayashi (2000), using quadrant analysis and conditional sampling

techniques, found intense, intermittent coherent motions under spilling breaking

waves that accounted for 20 - 50 % of the turbulent motion. The large turbulent

motions were found to be infrequent in time and were wave-phase dependent near

trough level. This is in tune with Townsend’s hypothesis that the dynamics of a

turbulent shear flow are governed by a balance between the rate of energy extrac-

tion from the mean flow through the large-scale coherent structures and the rate

of energy dissipation governed by the structures losing energy to the small-scale

turbulence (Townsend, 1976). Therefore, the turbulence production at a fixed point

is not a continuous process and is phase-related to the dynamics of the coherent

structures. Since the LDV velocities were gathered at a fixed spatial location, the

spatial structure of the coherent motions could not be studied. For spilling breakers,

coherent toe oscillations have also been frequently observed in the laboratory (Dun-

can, 1981; Banner, 1988). Based on qualitative visualization studies, Mossa (1998)

has suggested that vortex pairing mechanisms govern the oscillating characteristics

of hydraulic jumps.
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Non-intrusive, instantaneous whole-field measurement techniques such as PIV

have aided the visualization and characterization of such organized motion in tur-

bulent flows. Further, Melville et al. (2002) have shown that coherent structures

in a deep water breaking wave can be studied using a mosaic of PIV images. In

Lin and Rockwell (1995), the incipient and intermediate stages of evolution of a

quasi-steady breaker were studied using high-image-density PIV. They found that

with the onset of separation, which involves flow deceleration along a region of the

free-surface having a large radius of curvature, a long mixing layer was formed with

substantial levels of vorticity. In a frame moving with half the free stream velocity,

they detected coherent vortical motions suggested by patterns of swirling veloc-

ity vectors along the mixing-layer originating from the toe of the breaker. In the

same vein, during the incipient stages of breaking for a surface tension-dominated

spilling breaker, Qiao and Duncan (2001) found coherent patches of vorticity along

the wave crest. The measurements unfortunately ended before the formation of a

fully-formed breaker. In studying the vertical vorticity generated by the jet of a

plunging breaker, Chang and Liu (1998) observed that the number and locations of

the vortices in the horizontal plane were random. Similarly, with a light sheet in

the streamwise-spanwise plane, PIV laboratory experiments conducted by Cox and

Anderson (2001) on the breaking of regular plunging breakers revealed the nominal

diameter (l) of (instantaneous) eddies associated with wave breaking to be around

0.05 m. The breaking wave height (Hb) was 0.12 m, which gives l
Hb

= 0.42. l
Hb

gives a dimensionless eddy size with respect to the integral length scale taken as

the breaker height. The latter is a more suitable choice of length scale than the

wavelength because it can be applied to steady breakers (such as a hydraulic jump)

as well. They noted that they could not detect larger eddies because of the re-

striction imposed by their target area which was 10 cm × 10 cm. The detection

of the smallest coherent motions was limited by the spatial resolution of 3.65 mm.
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For many of their tests, they also found complex three-dimensional patterns with

no well-defined eddies. Longo (2003), using orthogonal wavelets as a decomposi-

tion technique, found that more than 70 % of the total turbulent kinetic energy for

spilling breakers was carried by micro (with a length scale in the range 2 mm < l <

10 cm) and mid-size (10 cm < l < 4.0 m) vortices, predominantly below the wave

crest, and that most of the energy was transferred from the macro- and mid-size

vortices to the micro-vortices after the passage of the breaker. The breaking wave

height was 10 cm, giving a maximum and minimum l
Hb

= 1 for the micro- and

mid-size vortices respectively. For the mid-size vortices, the maximum l
Hb

is 40.

This rather large value results due to the choice of the breaker wave height instead

of the wavelength as a non-dimensionalizing length scale. Stansby and Feng (2005)

used laser Doppler anemometry measurements of laboratory-generated bores and

found multiple vortical structures at the initiation of breaking, which became elon-

gated along the surface during bore propagation. With the increase in computing

power, detailed numerical simulations of wave breaking have also been performed.

These models are in the beginning stages of development, but the results indicate

the presence of coherent eddies similar to ODEs (Rogers and Dalrymple, 2005) as

well as a series of eddies in the shear layer below the surface roller (Christensen and

Deigaard, 2001; Dimas and Fialkowski, 2000).

In none of the studies mentioned above has there been a detailed quantitative

investigation of these coherent structures, especially for a quasi-steady fully-formed

breaker. In particular, there has been no attempt to look into the role played by

the strain rates in the generation and persistence of the structures, even though

the tools for aiding such analyses (described further) have been demonstrated to

be effective in turbulent shear layers. In this chapter, we focus our attention on

characterizing the resolvable coherent turbulent motions in the breaker shear layer,

which as we have already seen in Chapter 2, can be characterized as a mixing

179



layer. Even though Reynolds-averaging techniques do not explicitly reveal coherent

motions in the turbulence, some sort of instantaneous organization is apparent even

in the averaged terms, such as the Reynolds shear stress − < ũ′ṽ′ >. Note that ũ′

and ṽ′ denote the instantaneous turbulent fluctuations and not the root mean square

turbulent fluctuations analyzed in Chapter 3. This notation is followed throughout

this chapter. The Reynolds stress would be zero if the motions in the shear layer

were purely random without preferred correlations (in space and/or time) between

the horizontal and vertical velocity fluctuations. As already seen in Chapter 2

(see Figure 3.16), the breaker mixing layer is characterized by regions of significant

Reynolds shear stress, with visually detectable coherent patterns.

As an alternative to the classical theory of viewing turbulence as an es-

sentially random process which can be described statistically, quasi-deterministic

coherent structures provide a description of the main building blocks of turbulent

mixing layers (Ho and Huerre, 1984). It is noted that there are two separate is-

sues which need to be examined here: the presence and persistence of large-scale

structures on the one hand, and their two-dimensional signature on the other. This

is not to imply that the structures are two-dimensional in nature. One of the first

indications of large-scale structures in a turbulent shear layer came from the dis-

covery of a relatively sharp interface between turbulent and non-turbulent fluid

by Corrsin (1943). It was the work of Kline et al. (1967) and Kim et al. (1971)

through combined quantitative velocity measurements and visual observations that

first demonstrated the temporal development of spatially coherent patterns. The

presence of coherent structures in mixing layers is quite well documented, start-

ing from the visualization studies of Brown and Roshko (1974) to two-dimensional

(Bell and Keyser, 1993) and three-dimensional experimental investigations (Delville

et al., 1999). Several methods have been developed to identify these structures in a
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wide variety of turbulent shear flows, including statistical means used for calculat-

ing double spatial correlations (Stanislas et al., 1999; Liu et al., 2001; Carlier and

Stanislas, 2005) and linear stochastic estimates (Adrian, 1994), proper orthogonal

decomposition (Berkooz et al., 1993), wavelets (Farge, 1991), instantaneous flow pat-

ters decomposed by Galiliean transformations (Adrian et al., 2000), flow-kinematics

based critical point theory (Perry and Chong, 1994), topological methods using vor-

tex identification algorithms (Soria and Cantwell, 1994; Agarwal and Prasad, 2002),

and conditional sampling techniques such as quadrant analysis (Rajagopalan and

Antonia, 1982). An extensive collection of papers dealing with these techniques can

be found in Bonnet and Glauser (1993). Since each of these methods provides in-

formation about one or more particular aspect of the coherent structure (its shape,

length scale, temporal evolution etc.), several of these methods need to be applied

simultaneously for a robust detection and quantification (Kevlahan et al., 1994).

In the following two sections, we implement methods based on the kinematics

and ensemble statistics of the flow to provide insights into the coherent structures. In

this chapter, for all analyses, we use dataset II because of its higher resolution (∆x̃ =

∆ỹ = 0.011) compared to dataset I (∆x̃ = ∆ỹ = 0.021). The velocity field in dataset

II is seen to capture more details of the flow as shown by a plot of the instantaneous

horizontal velocity in Figure 5.3. The reverse flow due to breaking downstream

of the toe, indicated by the negative horizontal velocities below the instantaneous

surface can be clearly seen. Note also the detailed resolution of the instantaneous

surface. As compared to the GLCM-based interface algorithm used for dataset I, a

more accurate algorithm based on factored sampling and active contours is used for

dataset II (Thomas et al., 2005b). The origin of the coordinate system is defined

at the bottom left corner of the target area. Note that the coordinate system is

independent of the one used for dataset I. It is not very meaningful to transform one

to the other, since even though the flow is assumed to be steady, the instantaneous
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Figure 5.3: Typical realization of instantaneous horizontal velocity (m/s) showing
reverse flow due to breaking at the surface (dotted magenta line).

realizations of the flow are different. In addition, the surface estimation algorithms

used in the two data sets are different, and the geometric properties of the surface

(such as the location of the toe and foot of the breaker) cannot be compared. This

does not hamper the physical interpretation of the analysis in this chapter, since

the main aim here is to take a detailed look at the flow structure in the mixing layer

near the toe of the breaker.

5.2 Strain rate tensors

The evolution of a turbulent flow is essentially governed by vorticity dynam-

ics. The growth of vorticity by stretching of vortex lines is the primary mechanism of

energy dissipation. There is still considerable ambiguity in the definition of a vortex

as evidenced by the numerous proposed characterizations one can find in literature

(Chong et al., 1990; Jeong and Hussain, 1995). A generally accepted definition is the

one by Kline and Robinson (1989): “A vortex exists when instantaneous streamlines
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mapped onto a plane normal to the core exhibit a roughly circular or spiral pattern

when viewed in a reference frame moving with the center of the vortex core”. As

demonstrated by Jiménez et al. (1993), vortices are identified by isolating regions of

concentrated vorticity. However, in complex flows (such as the breaker shear layer

considered here) which are characterized by significant levels of shear in the velocity

field, Adrian et al. (2000) point out that it is ambiguous to use vorticity maps to

identify vortices since they are “masked” by the background shear. There are many

ways of educting vortical structures from the flow, and these will be discussed fur-

ther in this chapter. However, it is instructive to look at the strain rate tensors first,

since the turbulence structure essentially evolves from interactions between vorticity

and strain rate. The alignments (and topology of the vortex structures) are altered

by interactions with mean strain and rotation rate depending on the structure of

the mean gradients, the relative strengths of mean to fluctuating velocity gradients,

and the Reynolds number.

The rate-of-displacement or velocity gradient tensor is given as

Dij =
∂ui

∂xj

, (5.1)

where i and j (=1,2) are free indices and denote the Cartesian coordinate directions.

Dij can be decomposed into the symmetric rate-of-strain (deformation) tensor

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, (5.2)

and the skew-symmetric rate-of-rotation (spin) tensor (Tennekes and Lumley, 1972)

Rij =
1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
. (5.3)

The diagonal terms of the rotation tensor are zero by definition. In the present case,

where information is only available in the x−y plane, the tensor components reduce
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Figure 5.4: (a) 〈Sxy〉 (1/s), and (b) 〈Rxy〉 (1/s). The dotted magenta line is the
ensemble-averaged free surface.

to

Sxx =
∂u

∂x
, Syy =

∂v

∂y
, Sxy = Syx =

1

2

(
∂v

∂x
+

∂u

∂y

)
, (5.4)

Rxy = −Ryx =
1

2
ωz =

1

2

(
∂u

∂y
− ∂v

∂x

)
. (5.5)

Sxx and Syy are the normal/linear strain rates. ωz is the vorticity in the span-wise

direction. The ensemble-averaged values for the shear strain rate (〈Sxy〉) and the

rotation strain rate (〈Rxy〉) are shown in Figure 5.4. The surface intermittency

due to the interface fluctuations has been taken into account when estimating the

ensemble-averaged strain rates, which results in non-zero values above the mean sur-

face. 〈Sxy〉 and 〈Rxy〉 are remarkably similar, both in alignment, sign (they are both

negative), and magnitude. This indicates that the ensemble-averaged contribution

from the curvature term (〈Sxy〉− 〈Rxy〉 =
〈

∂v
∂x

〉
) is small. From Figure 5.5, it is seen

that the effect of positive curvature (
〈

∂v
∂x

〉
> 0) is felt only near downstream of the
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foot of the breaker, and even here, the values are an order of magnitude smaller

than the shear strain rate.

It is important to remember that relative vorticity, defined below, is a com-

bination of shear vorticity (ωs
z) and curvature vorticity (ωc

z) (defined in equation

(5.6)), and that they, and their rate of change, are not Galiliean invariant. For e.g.,

if a vortex with perfectly circular and symmetric streamlines is super-imposed on

different irrotational streams, the relative vorticity of the combined flow does not

change. However, the curvature vorticity in a fixed frame of reference decreases

with increasing strength of the background irrotational flow. The shear vorticity
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arises from a change in the horizontal velocity in the vertical direction, whereas ωc
z

arises due to the change in direction over some horizontal distance, which can be

quantified by the local curvature of the streamlines. Both negative shear (∂u
∂y

< 0)

and positive curvature ( ∂v
∂x

> 0) contribute to negative vorticity. This is the case

near the toe of the breaker, where the effect of small positive curvature reinforces

the contribution from the large negative shear, leading to large values of negative

vorticity. Therefore, it is possible to have equal and opposite contributions from ωc
z

and ωs
z so that the relative vorticity, ωz = 0. This can be seen more clearly in a

natural coordinate system (s, n) where the velocity is always forward, following the

streamlines of the flow. The relative vorticity can be written as (Holton, 2004)

ωz = ωs
z + ωc

z =
∂us

∂n
− us

κ
, (5.6)

where us is the speed (the normal component of the velocity is obviously zero on

the streamline), and κ is the local curvature of the streamline. The first and second

terms are the shear and curvature term respectively. It is obvious that a large

contribution to ωc
z arises in regions of large curvature, which happens in the present

case only in a small region downstream of the foot. It can be seen in Figure 5.5 and

Figure 5.6, that even in this region, the shear contribution is significantly larger.

From Figure 5.4, it can be concluded that about half of the ensemble averaged

clockwise vorticity comes from the shear deformation of the flow. The other half,

with the same clockwise sense of rotation, comes from the rotation strain of the

flow. Also, the similar orientations of 〈Rxy〉 and 〈Sxy〉 indicate that the rotational

component is oriented along the shear strain rate. In the following, the kinematic

sources of ωc
z are investigated. In particular, the contribution from coherent vortical

structures in the flow is assessed. As an aside, the maximum non-dimensionalized

magnitude of the ensemble-averaged vorticity (see IS00) near the toe is

(
h1ξ

U0

)
ωz ∼ 75. (5.7)
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Figure 5.7: Instantaneous contours of ωz (1/s) and λci (1/s) at the 500th realiza-
tion (it = 500). The dotted magenta line is the instantaneous free
surface.

This is almost 4 times higher than the value reported by Veeramony and Svendsen

(2000) of 17 at the bottom boundary of the roller, which was obtained by an ex-

trapolation (because of lack of data near the toe) of the estimates in IS00. However,

there was no physical justification for the formula used, and the extrapolation was

performed to “ease numerical instabilities”. The vorticity at the bottom boundary of

the roller, especially near the toe, is an important boundary condition used in roller

formulations for Boussinesq modeling of breaking waves. Values as high as 100 for

the non-dimensional vorticity have been used successfully to model the dissipation

of breaking waves in the surf-zone (Briganti et al., 2004). Some of the discrepancy

between the present result and the reported values of IS00 is also due to the dif-

ferent spatial resolutions (the present vertical resolution being 5 times higher than

theirs). Further, they had neglected contributions from the streamwise gradient of

the vertical velocity which attains its highest value near the toe.

The instantaneous total vorticity is shown in Figure 5.7. Note that, in the

plot, vorticity values from -100 to 50 s−1 have been suppressed to clearly separate
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the significant vorticity patches. A coherent stretch of negative (clockwise) vorticity

can be seen near the toe of the breaker (x̃ ∼ 0.3, marked by the sudden rise in surface

slope), whereas, further downstream, there are isolated and randomly distributed

packets of weaker negative and positive (anti-clockwise) vorticity. The approximate

magnitude of the vorticity near the toe is -500 s−1 and -230 s−1 to 200 s−1 in the

far downstream region. For surface tension-dominated spilling breakers generated in

the laboratory, Lin and Rockwell (1995) and Qiao and Duncan (2001) have reported

maximum vorticity magnitudes of 456 s−1 and 320 s−1 respectively near the toe. The

values here are higher in magnitude, and a direct comparison is difficult because the

generation method of the breaker, the stage of breaker evolution, and the underlying

background flow are different in each case. The sensitivity of the vorticity to the

resolution of the free surface and the flow parameters was noted by Lin and Rockwell

(1995). A slight change in Froude number (0.49 to 0.56) in their case led to an

increase in the normalized maximum vorticity by a factor of 2.

To educt the instantaneous vortices in the flow, a critical point analysis of

the local velocity gradient tensor and its corresponding eigenvalues based on Perry

and Chong (1994) and Chong et al. (1990) is used. In two-dimensions, the local

velocity gradient tensor is given by

D =




∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y


 .

D has either two real eigenvalues or a pair of complex conjugate eigenvalues (λcr ±
iλci) (Adrian et al., 2000). If the flow is pure shear flow, corresponding to λci=0,

the particle motion is essentially in the form of parallel streamlines, which can be

thought of as infinitely-long ellipses. Since the period of “swirling” motion is given

by λ−1
ci , in pure shear flow, the orbit period is infinite. λci > 0 corresponds to

non-parallel flow conditions, or shorter, more circular motion, i.e., eddies. λci is

also defined as the “swirling strength” of the eddy (Zhou et al., 1996, 1999). The
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Figure 5.8: Measurement locations overlaid with instantaneous contours of ωz and
λci at it = 500. The dotted magenta line is the instantaneous free
surface.

enstrophy (for 2-D flow, it is given by ω2
z

2
) is, therefore, measured by λ2

ci. Note that

λci only gives a measure of the strength of swirling and not the sense of rotation.

Instantaneous iso-contours of λci are shown overlaid with the vorticity in Fig-

ure 5.7. Near the toe, where the instantaneous vorticity has a clockwise orientation,

the structures are arranged in an elongated (in the streamwise direction) packet just

below the instantaneous surface. The streamwise length (Ls) of this “vortex packet”,

non-dimensionalized by the breaker height (Hb = h1 − h0=2.22 cm), is Ls

Hb
∼ 0.62.

The highest value of λci ∼ 248 s−1 is found in the core of the structure near the toe at

x̃ ∼ 0.37 and ỹ ∼ 0.61, with smaller swirling strengths further downstream around

the randomly distributed pockets of positive and negative vorticity. If a quantitative

equivalence is assumed between the swirling strength and the vorticity magnitude,

the “vortex packet” is seen to contribute approximately half of the instantaneous

vorticity near the toe, the other half coming from the shear strain. Even though the
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Figure 5.9: Ensemble-averaged λci (1/s). The dotted magenta line is the ensemble-
averaged free surface.

vorticity does identify some of the eddies, it also tends to identify local shear layers

present in the flow, particularly upstream of the toe, and is generally much noisier

than the swirling strength (Adrian et al., 2000). A close-up view of the “vortex

packet” is shown in Figure 5.8 with the measurement locations. It is seen that the

size of the individual structures is reasonably resolved by the measurement grid. An

average size of the eddies, non-dimensionalized by Hb, is calculated to be 0.16. It

is noted that, with contours of swirling strength, a definition of size or diameter is

subjective (Adrian et al., 2000). A contour level of 25 s−1(∼ 10% of the maximum

value) has been chosen here to calculate the average size.

The ensemble-averaged contribution given by the coherent structures can be

assessed (and indeed their “persistence” tested and quantified) by constructing the

ensemble-averaged field of λci. This is shown in Figure 5.9. The streamwise local-

ization of the coherent structures coincides with that of the maximum of the shear

strain rate. The cross-flow spread increases in the downstream direction because

of the random distribution, in space and time, of the individual structures. The

“swirling strength” is higher near the toe region and decreases further downstream,
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Figure 5.10: Locations of points chosen overlaid on ensemble-averaged ωz (1/s).
The dotted magenta line is the ensemble-averaged free surface.

indicative of the eddies’ decreasing efficiency in extracting energy from the mean

flow which results from increased misalignment with the mean shear strain rate.

Approximately 20% of 〈ωc
z〉 (or ∼ 10% of 〈ωz〉) is seen to come from the coherent

structures. The rest, being the major part of the contribution, comes from the mean

shear
(〈

∂u
∂y

〉)
, which in this case is much larger than

〈
∂v
∂x

〉
. This can be seen more

clearly by realizing that a simple shearing motion can always be decomposed into a

pure straining motion with zero rate of expansion and a rigid rotation (Batchelor,

1967),
∂u

∂y
=

1

2

(
∂u

∂y
+

∂v

∂x

)
+

1

2

(
∂u

∂y
− ∂v

∂x

)
. (5.8)

In order to obtain a clearer insight into the contribution made by the coher-

ent turbulent structures to the vorticity, it is necessary to look at the fluctuating

component of the vorticity. This essentially removes the dominant contribution

made by the shear of the background mean flow to the instantaneous vorticity. The

fluctuating vorticity field can also provide information about the generation and ad-

vection mechanisms of the vortices (Higgins et al., 2003; Fulgosi et al., 2003). The
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fluctuating vorticity is calculated as

ω̃′z = ωz− < ωz > . (5.9)

It is essential to know the location of the free surface, since in the intermittent

region, subtracting the ensemble-averaged values from the instantaneous values can

lead to finite, yet artificial fluctuations. Therefore, all values of the fluctuating

vorticity above the instantaneous surface are put to zero. To characterize the spatial

dependence of the organized motions, the fluctuating vorticity at each realization

of the ensemble was analyzed at eight different spatial locations. The locations are

shown in Figure 5.10, and are given by P1(0.15, 0.58), P2(0.30, 0.60), P3(0.30, 0.52),

P4(0.41, 0.61), P5(0.55, 0.64), P6(0.67, 0.67), P7(0.88, 0.72), and P8(1.00, 0.74).

Except P3, which is below the lower boundary of the shear layer (defined at a

contour level of approximately 10% of the maximum vorticity), the other seven

locations are chosen along the visually-interpreted center line of the shear layer.

Instead of computing the probability density function as in Lamballais et al. (1997),

frequencies of occurrence of the vorticity fluctuations across the whole ensemble are

calculated. These are shown in Figure 5.11 and Figure 5.12 as histograms. The red

line is the normal distribution constructed with the mean and standard deviation

at each location. This is shown for comparison, since a normal distribution of

the fluctuations indicates a statistically random field without any coherence. Note

that, because of the fluctuations of the interface, a point could either be in air or

water in any given realization. If the point is above the interface, the vorticity

fluctuation shows a value of zero. This can lead to ambiguities in interpretation of

the histograms since a zero value is also physically possible. Therefore, the interface

is tracked in time, and the fluctuation is included only when the point is in water.

This leads to varying record lengths at each location. Therefore, instead of choosing

a constant bin size, a constant number of bins is chosen equal to 20.
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Figure 5.11: Frequencies of occurrence (Nf) of fluctuating vorticity at P1, P2,
P4, and P5. Ensemble size = 1020.

The agreement with the normal distribution increases as we progress down-

stream, indicating a loss of coherence. The loss of coherence is implied only with

respect to the present resolution, since coherent motions with sizes smaller than the

grid resolution cannot be detected. The record length increases in the downstream

direction, leading to more robust estimates of Nf . For example, at P1, the record

length is 122, whereas at P8, it is 1017, almost equal to the ensemble size. In light of

this, definite quantitative conclusions cannot be drawn with confidence. However,

qualitatively, the distributions are skewed towards positive (anti-clockwise) vortic-

ity values near the foot of the breaker. The positive values result from a positive

shear (∂u
∂y

> 0, which occurs near the surface from flow reversal due to breaking) in
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Figure 5.12: Frequencies of occurrence (Nf) of fluctuating vorticity at P6, P7,
P8, and P3. Ensemble size = 1020.

conjunction with either a negative curvature ( ∂v
∂x

< 0) or small positive curvature

( ∂v
∂x

> 0 and
∣∣ ∂v
∂x

∣∣ <<
∣∣∣∂u

∂y

∣∣∣). Note that the standard deviation, indicative of the

strength of the fluctuations, also decays in the downstream direction. These values

are still approximately twice that found at P3. A higher spatial resolution and a

bigger ensemble (with a higher sampling rate) would be required to quantitatively

evaluate the spatial structure and temporal evolution of these coherent motions.

Since the coherent structures generally have a time history of development as

they are generated and convected downstream by the mean flow while undergoing

coalescence or “tearing” processes (both of which are known to occur in mixing layers

at high Reynolds numbers), observations at one or more spatially fixed locations
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should include realizations of a large number of these structures at various stages of

their life history. As pointed out by Laufer (1975), simple time- and space-averaging

techniques tend to “smear out” the essential features of the structures. Ensemble-

averaged statistical methods such as two-point spatial correlations or double spatial

correlations, which evaluate the simultaneous observations at two spatially separated

locations, are particularly suited to the task of quantifying the persistence of the

coherence over the ensemble, and are discussed in the next section.

5.3 Double spatial correlations

Some of the following material has appeared in a conference paper (Misra

et al., 2005). The correlation operator is frequently used in the statistical analysis

of turbulent flows to investigate temporal or spatial coherence. A high degree of

correlation indicates a deterministic link between otherwise random variables (such

as the turbulent velocity fluctuations). The two-point spatial correlation was first

used for planar PIV data of wall turbulence by Stanislas et al. (1999) and has

since been used to look at large-scale coherence in turbulent boundary layers for

stereoscopic PIV data as well (Ganapathisubramani et al., 2005). For two variables

A and B, the spatial double correlation operator is defined as

RAB(x, y, δx, δy) ≡ < A(x, y) B(x + δx, y + δy) >√
< A(x, y)2 >

√
< B(x + δx, y + δy)2 >

. (5.10)

δx and δy denote the horizontal and vertical distances between the “moving” point

(B) and the “fixed” point (A). In the present case, A and B denote the instan-

taneous velocity fluctuations. Note that, since the correlation is done at the same

instant in the whole space, the hypothesis of frozen turbulence is removed, and conse-

quently, there is no restriction on the evolution of the coherent structures (Stanislas

et al., 1999). For quasi-steady flow fields, RAB is a function only of locations A, B,

and the direction. So, for given locations and a given direction, RAB has a fixed
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value. Therefore, the form of the two-point correlation is largely determined by the

inhomogeneity of the flow field evident in the Reynolds stress structure.

Evidence suggests that the eddies that are the most effective in maintaining

a correlation between ũ′ and ṽ′ and in extracting energy from the mean flow through

the Reynolds stresses are vortices whose main axis is roughly aligned with that of

the mean strain rate. The correlation coefficient (Cuv) defined by Tennekes and

Lumley (1972) as

Cuv ≡ < ũ′ṽ′ >√
< ũ′2 >< ṽ′2 >

, (5.11)

is believed to be O(1) in shear-driven turbulent flows, with |Cuv| ∼ 0.4. The values

of Cuv obtained in the present case are indeed close to 0.4, with the correlation being

consistently higher toward the foot of the breaker (discussed below).

Before analyzing the results of the double spatial correlation, it is noted that

the auto-correlation coefficient at zero lag is identically unity, as can be easily verified

from equation (5.10). Also, note that Ruv(x, y, 0, 0) = Cuv, and therefore, at zero

lag, the double cross-correlation coefficient should have values around 0.4. Due to

computational restrictions, only a truncated section of the whole domain has been

analyzed here. The same eight distinct locations (shown in Figure 5.10) are treated

as the fixed points, and all four correlations (Ruu, Rvv, Ruv, and Rvu) are calculated

for each possible two-dimensional lag within the truncated domain. In Figures

5.13-5.20, the horizontal and vertical axes denote the horizontal and vertical lags

with respect to the fixed point, with positive and negative horizontal lags signifying

downstream and upstream distances respectively. For the vertical lags, positive and

negative values signify distances toward the mean surface and bottom respectively.

The lags are given in physical units (mm) for easier physical interpretation of the

length scales. Positive contour levels are shown at 0.08 increments for Ruu and

Rvv (minimum and maximum contour levels are 0.25 and 1.0 respectively) and 0.06

increments for Ruv and Rvu (minimum and maximum contour levels are 0.2 and 0.6
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Figure 5.13: Ruu at P1, P2, P4, and P5.

respectively).

The structure of the turbulence can be determined by analyzing the shape

of the correlation coefficients. At P3, below the shear layer, the turbulence is (pre-

dictably) nearly isotropic, with no preferred orientation for either of the correlation

coefficients. Note that, in the downstream locations, the values for Ruv(0, 0)(= Cuv)

are closer to the typical value (0.4) for shear layers, but higher (∼ 0.6) values are

found close to the foot of the breaker. This is due to the enhanced turbulence

generated near the foot from the breaking as well as the presence of an adverse

pressure gradient, which distinguish the breaker shear from typical zero-pressure

gradient shear layers for which the values of Cuv ∼ 0.4. A noticeable feature of

the correlation maps is the absence of significantly large negative values indicating
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Figure 5.14: Ruu at P6, P7, P8, and P3.

the absence of stationary (across the ensemble) two-dimensional eddies or vortices

in the streamwise-cross-stream plane. This is in agreement with the more detailed

measurements obtained by Lin and Rockwell (1995) for the incipient and interme-

diate stages of a breaker, who found no indication of a “recirculation vortex with

closed streamlines” even in an instantaneous sense. This is also justified in light

of the results of the previous section, where the vorticity patches were seen to be

generated near the toe and advected downstream. P2 and P4-P6 show significant

packets of coherence throughout the shear layer, with the structures elongated and

parallel to the surface near the foot in accordance with the “vortex packet” observed

in the previous section, and increasingly compact (especially for Rvv) and oriented

normal to the surface further downstream, around x̃ ∼ 0.7. This scenario is similar
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Figure 5.15: Rvv at P1, P2, P4, and P5.

to the qualitative observations of Yeh and Mok (1990) and Stansby and Feng (2005).

It is fairly well established that vortex stretching is associated with the energy

transfer from the mean flow to the turbulent stresses. It is important to note that the

interaction between the mean flow and the turbulent eddies is three-dimensional.

Further, this interaction is modified appreciably in the presence of a free surface

which induces topological changes of the coherent eddies resulting in strong tur-

bulence anisotropy near the surface (Hunt, 1987). The shape of the structures

near the foot of the breaker is elliptical, with the major axis aligned along the

mean strain rate. Therefore, these structures are most efficient in extracting energy

from the mean flow. Further downstream, they become more compact and circular

in form, losing this efficiency. This is reflected in the decreasing intensity of the
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Figure 5.16: Rvv at P6, P7, P8, and P3.

Reynolds shear stress in the downstream region. In P4-P6, the coherence is skewed

in the streamwise direction parallel to the mean surface, extending further in the

upstream direction than in the downstream direction. To quantitatively comment

on the length scales, a cut-off value for each correlation coefficient has to be chosen.

The contour at this value is used to demarcate the extent of the coherence of the

structure. Even though this is subjective and depends on the specific flow under

investigation, reasonable values can be chosen based on the “background” values

found close to zero lag at P3, since it is seen that the turbulence there is nearly

isotropic. For Ruu and Rvv, a value of 0.4, and for the cross-correlation coefficients,

a value of 0.25 is chosen. The average length scale (ls in the surface parallel direc-

tion) for Ruu and both cross-correlations, from P4-P6, is found to be approximately
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Figure 5.17: Ruv at P1, P2, P4, and P5.

2.5 cm, with the surface-normal length scale (ln) being about a quarter of this value.

For the vertical correlation, near the foot of the breaker, ls ∼ 2.0, Therefore, near

the foot of the breaker, ls
Hb

∼ 1, whereas further downstream, the ratio for both

streamwise and normal length scales gets smaller, with l
Hb
∼ 0.1 − 0.3. The non-

dimensional length scales are in the range of values reported by Longo (2003) and

Cox and Anderson (2001). Instead of the breaker height, if the upstream water

depth is chosen as a relevant scale for non-dimensionalizing the integral turbulent

scales, near the foot of the breaker, ls
h0
∼ 0.26. This is in agreement with Stansby

and Feng (2005), who found that the length scales of structures near the surface

varied from greater than, to a fraction of the water depth. For laboratory generated

spilling breaking waves, throughout the transition region from the breaking point
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Figure 5.18: Ruv at P6, P7, P8, and P3.

to the inner surf-zone, Govender et al. (2002b) had also found integral length scales

on the order of l
h0
∼ 0.1− 0.3.

5.4 Conclusions

The instantaneous and fluctuating velocity and vorticity fields have been in-

vestigated using kinematics based and statistical techniques to analyze coherent

motions in the breaker shear layer. In an ensemble-averaged sense, there is an equi-

partition between the shear deformation and the rotation strain contributions to

the vorticity in the breaker shear layer. The effect of streamline curvature is found

to be small and reinforces the negative vorticity due to the shear strain. A critical
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Figure 5.19: Rvu at P1, P2, P4, and P5.

point analysis of the velocity gradient tensor is used to localize the coherent vorti-

cal motions. Near the foot of the breaker, the eddies are arranged in a streamwise

elongated “vortex packet” just below the instantaneous surface, contributing nearly

half of the instantaneous vorticity in this region. Further downstream, the eddies

are randomly distributed in space and time. The ensemble-averaged localization of

the structures are coincident with the maximum shear strain rate. The fluctuating

vorticity is positive near the toe of the breaker for most of the ensemble, indicating

the generation of coherent anti-clockwise vortices. The mean fluctuating vorticity

reaches its peak near the foot of the breaker, with the coherence decreasing in the

downstream direction. The two-point spatial correlations also confirm the presence

of elliptical streamwise elongated structures near the foot of the breaker, with their
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Figure 5.20: Rvu at P6, P7, P8, and P3.

major axes oriented along the mean strain rate. The reduction in efficiency of the

more compact and normally oriented structures further downstream is reflected in

the decreasing Reynolds shear stress. The calculated average length scales are found

to be in reasonable agreement with previously reported values for laboratory gen-

erated breakers. Near the foot of the breaker, ls
Hb

∼ 1 whereas, with increasing

downstream distance, the normal and streamwise length scales reduce to 10 to 30

% of Hb. There are indications of coherence in the intermittent region resulting

from the breaking process. Intuitively, the inflection point in the velocity profile

near the surface would probably generate counter-rotating vortices, with positive

vorticity near the surface which would be modified by the local curvature of the

instantaneous surface. A higher spatial and temporal resolution of both the free
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surface and the velocity field would be necessary in investigating the detailed struc-

ture of the coherent motions near the instantaneous surface as well as in the shear

layer downstream of the toe. A more robust characterization of the integral scales

and the relative contribution of the underlying modes can be achieved by applying

other techniques such as POD to the dataset. In light of recent presumed analogies

between near-wall and interfacial turbulence (Fulgosi et al., 2003), it is essential to

implement stochastic sampling techniques (such as quadrant analysis) to investigate

possible “sweep” and “ejection” processes in the shear layer below the surface.

205



Chapter 6

CONCLUSIONS

If you follow reason far enough, it always leads to conclusions that are contrary to

reason

Samuel Butler

The goal of the research presented in this dissertation was to provide a de-

tailed description of the turbulence structure and its effects on the mean flow of fully-

formed, quasi-steady spilling breakers. This was achieved through a combination of

two complementary approaches: an experimental investigation of a laboratory gen-

erated quasi-steady breaker, and a theoretical model for the evolution of turbulent

dynamics in a spilling breaking wave. PIV measurements were used to provide a

detailed picture of the mean and turbulent structure of an air-entraining hydraulic

jump set up in Froude similitude with surf-zone breakers. The theoretical model

focussed on a meticulous and accurate mathematical incorporation of the effects of

the two-phase surface layer, unsteadiness, curvature, rotation, and non-hydrostatic

pressure into evolution equations for the mean flow and turbulent kinetic energy

in the turbulent layer. Since each chapter of the dissertation has provided its own

comprehensive summary and conclusions, only the key points of each are presented

here.

Two unique algorithms were developed to estimate the instantaneous air-

water interface and velocities from the raw PIV images. Their generality, accuracy,
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and robustness makes them ideal candidates for applications in other PIV exper-

imental studies of interfacial flows. Conditional averaging techniques were imple-

mented to calculate the mean and turbulent quantities. The turbulent interface

fluctuations were seen to fit theoretical profiles of the intermittency function well.

The traditional concept of a roller in the form of a recirculating region is seen to

be only a partial description of the mean flow near the interface, since along with

a weak downslope flow above the mean surface, there is mass exchange with the

underlying flow across the lower boundary of the roller. Consequently, the lower

boundary cannot be a dividing mean streamline. All evidence suggests that con-

tinued breaking in a fully-formed spilling breaker is driven by the combined effects

of an adverse surface-parallel pressure gradient and streamwise flow deceleration

occuring upstream of the foot of the breaker. Both effects force the shear layer to

thicken rapidly, inducing a sharp free surface curvature at the foot.

The turbulence structure of the breaker shear layer is seen to resemble that

of a mixing layer originating at the foot of the breaker followed by a wake further

downstream. The average growth rate is in good agreement with observed values in

typical mixing layers. The marked anisotropy in the Reynolds shear stress structure

in the mixing layer is influenced by the effects of streamline curvature and not just

by the simple shear strain rate. Several analytical and statistical techniques were

implemented to investigate the coherent structures in the shear layer. Near the foot

of the breaker, the eddies are arranged in elongated streamwise structures skewed

toward the mean surface. As they are oriented along the mean strain rate, they

are the most efficient in extracting energy from the mean flow through the action

of the Reynolds shear stresses. Further downstream, the structures become more

compact and are oriented normal to the surface. The streamwise integral length

scales estimated near the foot of the breaker are approximately equal to the height

of the breaker, and both the normal and streamwise scales decrease downstream.
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Governing equations for the mean flow and turbulence structure in the shear

layer are developed through suitable Reynolds averaging techniques. By introducing

kinematic and geometric scaling assumptions suggested by the measurements, the

relative importance of distinct physical mechanisms is analyzed in different regimes

of the turbulent layer, namely the leading edge of the breaker, the mixing layer, and

the wake. By fitting a similarity profile to the measured mean horizontal velocities

in the form of a cubic polynomial, the vertical variations of the mean and turbu-

lent quantities are obtained. The normal integration of the leading order governing

equations across the layer is used to obtain analytic expressions for the motion of the

layer and the streamwise dependence of the relative strengths of turbulence produc-

tion and dissipation. Near the leading edge of the breaker, production dominates

over dissipation, whereas further downstream, the reverse is true. The turbulent

kinetic energy is seen to be vertically uniform in the wake, and at the base of the

layer there is no diffusive penetration of turbulence.

A layer-averaged system of equations is developed by integrating the higher-

order model in the cross-stream direction. The mean and turbulent surface-layer

contributions are taken into account through boundary conditions at the top of the

layer and are found to play an integral role in determining the dynamics of the single-

phase shear layer. The mean shear at the top of the layer significantly affects the

mean and turbulent flow in the layer. The layer-averaged equations are coupled to

the underlying flow through mass entrainment and excess pressure at the interface,

and they serve as boundary conditions for the flow below. Based on the experimental

data, a physical model for the streamwise variation of the mean velocity is developed,

which is not only consistent with the theoretical results, but also provides for an

accurate modeling of the measurements of the mean and turbulent flow structure in

the quasi-steady breaker.
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In conclusion, this dissertation has provided several new and interesting in-

sights into the turbulent dynamics of quasi-steady spilling breakers through a com-

bined theoretical and experimental study which will lead to a more complete under-

standing of the complicated phenomena in breaking waves.
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Chapter 7

ONGOING AND FUTURE WORK

Prediction is very difficult, especially about the future

Niels Bohr

In this chapter, ongoing and future research on several aspects of both the

experimental and theoretical results obtained in this dissertation are discussed. The

theoretical model is being used to analyze the dynamics at the leading edge of the

breaker analytically. The role played by extra strain rates and coherent structures

in a more complete description of the turbulence structure is emphasized, and the

limitations imposed by the resolution of the current measurements is underlined.

An outline for the implementation of the theoretical model results into practical

numerical models of breaking waves is provided. Conceptual, and at times, notional

proposals are described to simulate further experimental work in the study of both

steady breakers and unsteady breaking waves.

7.1 The layer-averaged model - a hyperbolic system?

The layer-averaged system of equations (equation (4.224)) describing the evo-

lution of b, U and k in Chapter 4 were developed by assuming the turbulent shear

layer to be thin, or shallow, with the width of the layer being much smaller than the

streamwise length scale, i.e., b << L. Therefore, in the normal momentum equa-

tions, the effects of gravity and mean vertical accelerations were seen to be felt by
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the pressure at O(ε) and O(ε2) respectively. The layer-averaged equations are in a

sense equivalent to the shallow water equations along with the effects of turbulence.

The equations are quasi-linear first order partial differential equations, since they

are linear in the first derivatives of the dependent variables, but their coefficients

are functions of the dependent variables. These partial differential equations can

be reduced to ordinary differential equations along the characteristics of the sys-

tem. Three independent equations in characteristic form are needed for the system

to be hyperbolic. The Riemann invariants can be determined by calculating the

eigenvalues of the matrix 


CB CU CK

MB MU MK

KB KU KK


 ,

or analytically, by casting the system into characteristic form (Whitham, 1974).

Due to the complicated nature of the coefficients, it is rather difficult to use the first

method directly in the present case. Therefore, the second approach is followed after

simplifying the equations based on the measurements. If a “thin-layer phase-speed”

is defined as C2 ≡ bg, and a turbulent velocity ,q2 ≡ k, so that bs = 2CCs

g
, bt = 2CCt

g
,

ks = 2qqs, and kt = 2qqt, the system of equations can be written as

2Ct + 2CBCs +
CUg

C
U s +

2Ckg

C
qqs =

CRg

C
, (7.1)

U t +
MB2CCs

g
+ MUU s + MK2qqs = MR, and (7.2)

2qt +
KB2CCs

qg
+

KUU s

q
+ KK2qs =

KR

q
. (7.3)

The coefficients need to be simplified to facilitate an easier interpretation of the

nature of the system of equations. For example, based on the measurements, terms

of O(κb) and higher can be neglected in a leading order analysis. The streamwise

variation of (κb) is shown in Figure 7.1. The highest values result from the high

negative curvature at the end of the breaker region, combined with large values for b.
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Figure 7.1: Streamwise variation of (κb).

However, the far downstream region is not of immediate interest. The characteristics

are desired near the leading edge of the breaker, and in this part of the flow, (κb) <<

1. Therefore, CB can be written as

CB = U − Ak

g
C1kKB + O(κb) and higher. (7.4)

Note that, if there was no coupling with the turbulent kinetic energy equation,

CB = U , which is the coefficient found in a typical shallow water system. In the

turbulent kinetic energy equation,

Dk = b +
AkC1kk

g
(Ak − 1) (7.5)

≈ b

[
1 +

(h− b)

2b
(Ak − 1)

2C1k

C2k

]

≈ b,

since the surface-layer thickness (h−b) is much smaller than b (except near the toe),

2C1k

C2k
∼ 1, and (Ak − 1) ∼ 1. Similarly, the magnitude of other coefficients are being

evaluated from the present data. The form of the characteristics are suggested from

the time derivatives in the equations, and the three equations can be collapsed in

the form
∂R+

∂t
+ (U + C + q)

∂R+

∂s
= Forcing terms, (7.6)

212



Single phase turbulent thin layer

Two−phase surface layer

n = b

n = 0

n = h

Irrotational flow

sh

Toes of breaker

slsb

Intermittent boundary region

Foot of breaker

Figure 7.2: Schematic view of the geometry used near the foot of the breaker.

where the Riemann invariant is given by R+ = U + 2C + 2q. Such an analysis is in

progress.

7.2 The dynamics at the leading edge of the breaker

Utilizing the analogy with the swash zone, in which the turbulence and the

mean flow in the breaker can be thought of as the short-wave and long-wave contri-

butions to the motion of the shoreline (Brocchini and Peregrine, 1996; Brocchini and

Bellotti, 2002), the layer-integrated equations are to be integrated in the stream-

wise direction to provide a description of the dynamics of the foot of the breaker. A

theoretical framework within the two-phase surface layer boundary conditions has

already been provided by Brocchini and Peregrine (1999). A similar procedure is

being followed for the layer-integrated equations derived in Chapter 4.

A schematic figure of the adopted geometry is shown in Figure 7.2. The

whole region at the breaker front which the turbulence only meets intermittently is

taken as a ‘boundary region’, such that there is non-zero depth at the front edge of

the thin layer. The lower and upper limits of the toe excursion are represented as

mathematical boundaries denoted by sl and sh respectively. As per the terminology

proposed in Part 1, the mean position of the base of the breaker, called the ‘foot’
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of the breaker, is therefore located at sb, in between sl and sh. Note that averaging

over the turbulence is inadequate in this region where the turbulent water reaches

rarely, and there is little dynamical significance in such a thin intermittent layer

of turbulent water. Therefore, the toe positions are assumed to be obtained after

an averaging over the turbulent time scale, and their motion is described at the

intermediate time scale (see Chapter 4).

7.3 Turbulent free-surface boundary conditions

The layer-integrated equations derived in Chapter 4 describe the evolution

of the dynamics of the free surface turbulence due to breaking. They can be used

as surface boundary conditions for numerical modeling of spilling breakers, since

they are valid at the boundary between the turbulent thin layer and the flow below.

They can be implemented into RANS models, which are discussed further, as well

as irrotational flow solvers for the flow below (Grilli and Subramanya, 1996). There

are three essential requirements to model free surfaces: the shape and location of the

surface, the evolution of the surface in time, and free-surface boundary conditions.

For a given initial spatial location of the surface, it is the boundary conditions that

determine the first two requirements. Various methods are available for predicting

the surface, and they can be broadly classified into interface tracking and volume

tracking methods. An extensive review is provided in Scardovelli and Zaleski (1999).

One of the several volume tracking methods, the volume of fluid (VOF) method, is

discussed below. The method was introduced by Hirt and Nichols (1981) for Eulerian

grids, and can handle complex physical situations such as breaking surfaces, splash-

ups, and fluid detachment. The main idea of the VOF method is to introduce a

function F whose value is one at any point occupied by fluid and zero otherwise.

The average value of F in a cell represents the fractional volume of the cell occupied

by the fluid. Therefore, 0 < F < 1 represents a cell containing the free surface. The
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evolution of the F−function is governed by an advection equation,

∂F

∂t
+∇ · (VF ) = 0. (7.7)

Integral formulations of this equation,

∂
∫

D
FdD

∂t
+

∫

S

FV · ndS = 0, (7.8)

have also been used (Muzaferija and Perić, 1999). The problem associated with the

F−function is that a free surface is represented by a discontinuity in the volume

fraction leading to unphysical oscillations and numerical diffusion in the case of high

and low resolution schemes respectively (Chen et al., 1997). In addition, in the sec-

ond step of the VOF algorithm, the evolution is governed by a simple advection by

the mean flow. When the free surface is turbulent, and the turbulent fluctuation

velocities are on the order of the mean velocity, it becomes important to account

for the effect of the turbulence into the advection velocity. The second step is in-

herently linked to the imposition of boundary conditions on the free surface. For

numerical simulations of breaking waves, RANS models using VOF agorithms have

typically imposed the vanishing normal gradient of the turbulent kinetic energy and

dissipation on the surface, i.e., ∂k
∂n

= 0, and ∂ε
∂n

= 0 (Lin and Liu, 1998; Zhao et al.,

2004a). As already seen in Chapter 4, the former is only an O(1) boundary condition

true in the wake region. This is possibly one of the reasons that, near the breaking

point, the numerical model of Lin and Liu (1998) “significantly overestimates the

turbulence intensity, which results in excessive energy dissipation”. The experimen-

tal and theoretical profiles for the intermittency factor, along with the turbulent

thin layer equations that include the effect of the two-phase surface layer, can be

used to improve both the spatial specification of the F−function and its temporal

evolution. Quite simply, the layer-averaged horizontal velocity (U), which includes

the surface-layer and turbulent dynamics, can be used as an advection velocity for

the F−function.
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To facilitate a more accurate modeling of the two-phase surface turbulence,

heterogenous domain decomposition techniques have been used to separately model

the viscous breaker region and the irrotational flow underneath (Rhee and Stern,

2002; Iafrati and Campana, 2005). A critical component of the coupling is the mean

pressure at the interface, which is used in the dynamic boundary condition (the

Bernoulli equation) to solve for the potential flow (Iafrati et al., 2001; Iafrati and

Campana, 2003). In the theoretical model developed in Chapter 4, the coupling be-

tween the dynamics of the turbulent shear layer and the irrotational flow is provided

through mass entrainment and excess pressure at the interface. The additional pres-

sure is found to be linked with the layer-averaged turbulent kinetic energy as shown

in equation (7.9).

P0 = kρ(Cp + 2C3Ak), (7.9)

where P0 is the pressure at the irrotational flow interface, Cp and C3 are coefficients

in the model, and Ak represents the contribution of the surface layer turbulence.

Several aspects of the theoretical model, including the dynamic interfacial boundary

condition, are being incorporated into a two-dimensional Reynolds-averaged Navier-

Stokes model (Shi et al., 2004) in order to accurately model the turbulent dynamics

of spilling breaking waves (Misra et al., 2006).

7.4 Extra strain rates

Nearly all complex turbulent flows have simple shear layers perturbed by

other shear layers, body forces, or extra rates of strain (e) in the plane of the mean

shear. The extra rates of strain can be typically classified as those arising from

longitudinal acceleration (−∂U
∂ξ

, ∂V
∂ζ

), bulk compression or dilation (∇ · v), rotation

of the flow system (Ω), and streamline curvature (∂V
∂ξ

) (Bradshaw, 1973). v is

the mean velocity in the (ξ, ζ) coordinate system and ∇ is the two-dimensional

gradient operator. Bradshaw (1973) shows that in fairly thin shear layers, where the
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simple mean shear is an order of magnitude larger than the extra strain rate (∂U
∂ζ

>

10e), streamline curvature caused by surface curvature or helical streamlines is the

most common and probably the most important in determining the magnitude and

distribution of the turbulence structure. Even though, from a theoretical point of

view, extra strain rates seem negligible compared to the effect of the simple shear (see

equations (4.92) and (4.88)), experiments (Castro and Bradshaw, 1976; Holloway

and Tavoularis, 1992; Chebbi et al., 1998) and modeling investigations (Holloway

and Tavoularis, 1998) on sheared turbulence have underlined the importance of

streamline curvature on the integral scales, anisotropy, and spectra of turbulence.

From the simplest local equilibrium formula using an eddy viscosity (such as the one

used here; see equation (4.87)) to the most advanced transport models, it becomes

imperative to consider and account for extra strain rates in the modeling of the

turbulence structure (Gibson and Rodi, 1981; Rumsey et al., 1999).

The existence of curved shear layers originating from the toe of a breaking

wave is well established. The ensemble-averaged Reynolds shear stress, the sim-

ple shear (∂U
∂y

), and the streamline curvature strain rate (∂V
∂x

) are shown for the

present measurements in Figure 7.3. Since the Reynolds stresses are generated by

an interaction of existing turbulence with mean strain rates (the simple shear being

dominant in the present case), it is puzzling that the streamwise localization of the

peak in the shear stress is displaced further downstream compared to the peak value

in the simple shear. The anisotropy seen in the Reynolds shear stress seems to be

influenced not just by the simple shear, but also by the strain due to streamline

curvature. The reason for the reversal in sign of the Reynolds shear stress in the far

upstream region is not clear. A comparison of the average magnitudes of the two

strain rates shows that
∣∣∣∂U

∂y

∣∣∣ ∼ 200
∣∣∂V

∂x

∣∣. Therefore, in the classification suggested

by Bradshaw (1973), the extra strain rate is “small” and the shear layer can be

termed as “fairly thin”. It is also in fairly thin shear layers that the Reynolds stress
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Figure 7.3: (a) Ensemble-averaged Reynolds shear stress strain rate (m2/s2), and
(b) ∂U

∂y
(1/s), (c) ∂V

∂x
(1/s).

gradients significantly affect the mean motion as suggested by Bradshaw (1973)

based on limiting arguments and subsequently observed in experiments (Plesniak

and Johnston, 1991). This is because extra strain rates have a direct effect (they

cause changes in the higher-order structural parameters, which in turn cause the

Reynolds stresses to change) on terms of the Reynolds stress transport equation

which do not explicitly contain the mean rate of strain.

The dimensionless factor, S = κU

( ∂U
∂n )

, is considered to be a measure of the

orientation and strength of curvature relative to the mean shear (Bradshaw, 1973;
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Holloway and Tavoularis, 1998). The sign and magnitude of this parameter have

been well correlated with dramatic, and at times unexpected, effects of the strain

rate on the turbulence structure, particularly on the Reynolds shear stress anisotropy

(Hunt and Joubert, 1979). In general, for curved mixing layers, it has been observed

that a convex (concave) curvature has a de-stabilizing (stabilizing) effect on the

turbulence (Wyngaard et al., 1968). Here, the notion of instability (stability) only

indicates an increased (decreased) turbulence production compared to what would

have been present in the absence of curvature. Note that these conclusions are

drawn from uniform shear flows. In the present case, as would be true for any

other breaker, the shear is strongly inhomogenous in the streamwise direction and is

related to the curvature of the flow. In addition, the sign of the curvature changes

in the streamwise direction. Isolating the effect of streamline curvature in this

particular flow is not trivial because of the presence of an adverse pressure gradient,

entrainment effects, and streamwise vortices in the shear layer, all of which are

known to influence the response of the turbulent stresses to the mean strain rates

(Holloway et al., 2005). However, the interaction between the pressure gradient and

streamline curvature effects are known to be weak even when they are comparable

in magnitude to the mean strain due to shear. This is due to the fact that the effects

of pressure gradient are typically limited to the production of normal stresses, while

curvature has a stronger effect on the shear stresses (Baskaran et al., 1991). A

detailed look at the effects of extra strain rates on breaking wave turbulence seems

to be warranted. This is relevant from a modeling perspective as well and is discussed

below.

The discrepancy between results from Reynolds averaged Navier-Stokes (RANS)

models, with the standard k − ε turbulence model, and data, for steady breakers

such as hydraulic jumps, has often been ascribed to neglecting streamline curva-

ture effects (Long et al., 1991; Ma et al., 2001). In general, two equation models of
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the eddy viscosity type cannot properly account for extra strain rates and neglect

non-local and historical effects of the Reynolds stress anisotropies (Speziale, 1991).

In Lin and Liu (1998), even a higher order, more complicated, non-linear algebraic

closure model developed by Shih et al. (1996) was not able to accurately predict

wave breaking turbulence near the breaking region in the surf-zone. They point out

the failure of the model in the “rapidly distorted shear flow region” at the initial

stage of breaking, specifically, where the effects of curvature are dominant. However,

for small rates of strain (e < 0.05), as in the present case, linear corrections can be

made to the eddy viscosity or length-scale formulations of the turbulence model to

parametrically account for curvature effects. The following analysis closely follows

Bradshaw (1973). From the turbulent kinetic energy equation (equation 4.79), the

production terms due to the Reynolds shear stress are given by

Prod = −〈uv〉∂U

∂n




1 + 2κn +
κU(
∂U
∂n

)
︸ ︷︷ ︸

O(ε)

+
∂V
∂s(
∂U
∂n

) + κ2n2 − κ2nU(
∂U
∂n

)
︸ ︷︷ ︸

O(ε2)

+ κn
∂V
∂s(
∂U
∂n

)
︸ ︷︷ ︸

O(ε3)




, (7.10)

which, with the assumptions of gentle curvature and the thin-layer approximation,

can be written as

Prod ≈ −〈uv〉∂U

∂n

[
1 + a1

e1(
∂U
∂n

) + a2
e2(
∂U
∂n

)
]

. (7.11)

a1 and a2 are coefficients signifying the O(ε) and O(ε2) contributions of the ex-

tra strain rates due to geometric curvature (e1 = κU) and streamline curvature

(e2 = ∂V
∂s

) respectively. The dissipation rate can be represented as the cube of a

turbulent velocity scale such as −〈uv〉3/2 divided by a turbulence length scale L,

ε ≈ −〈uv〉3/2

L
. For the moment, assuming local equilibrium for the turbulent kinetic

energy (Production ≈ Dissipation),

−〈uv〉∂U

∂n
f ≈ −〈uv〉3/2

L0

, (7.12)
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where f =

[
1 + a e

( ∂U
∂n )

]
, ae = (a1e1 + a2e2), and L0 would be the length scale given

by a theoretical formulation, which at most contains the factor f . As pointed out

before, experimental observations suggest that

−〈uv〉∂U

∂n
F ≈ −〈uv〉3/2

L
. (7.13)

Therefore,
L

L0

≈ F = 1 + α
e(

∂U
∂n

) . (7.14)

The coefficient α, which is of O(10), has to be adjusted through empirical agreements

between predictions and experimental results. The assumption of local equilibrium

can be removed once the length scale has been calculated. See Bradshaw (1973) for

a detailed explanation. The length scale in a local equilibrium approximation for

the Reynolds stresses (b in the present case) can be treated similarly. For rapidly

changing extra strain rates, which would be the likely scenario in unsteady breaking

waves, α can no longer be assumed to be a constant, and an ordinary differential

equation in space has to be solved to account for the memory of the stress-containing

eddies (Bradshaw, 1973). The solution is straightforward for a given distribution of

the strain rates, which can be deduced from the measurements. It remains to be

seen whether the present theoretical results and the measurements of extra strain

rates and length scale variations can successfully guide such a parametrization of

the eddy viscosity or the length scale towards more accurate modeling of breakers.

An implementation into a Reynolds averaged Navier-Stokes model with a standard

k − ε closure is currently in progress (Zhao et al., 2004b).

7.5 Proper orthogonal decomposition

The proper orthogonal decomposition (POD), also known as the Karhunen-

Loeve expansion (Kosambi, 1943; Karhunen, 1946; Loeve, 1955), and closely related

to principal component analysis, singular value decomposition, and empirical eigen-

function decomposition, is a well-known technique for determining an optimal basis
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set for the reconstruction of a signal. It is optimal in the sense of maximizing the

energy content of the signal in the basis. It was introduced to fluid mechanics in the

context of turbulence by Lumley (1967). Berkooz et al. (1993) provide a compre-

hensive literature survey of its theoretical background and applications in turbulent

flows. A brief summary is given below. From a given instantaneous velocity field

(v), a candidate structure, φ, can be selected so that it is the structure with the

largest mean-square projection on the velocity field. This projection maximizes the

energy content of the candidate structure:

maxφ

〈|v, φ|2〉

(φ, φ)
, (7.15)

where (f, g) defines the standard inner product of f and g. Note that, since the de-

gree of projection is of primary interest, the amplitude is removed by normalization.

Using the calculus of variations, the maximization leads to the following integral

eigenvalue problem:
∫

D

Rij(x,x′, t, t)ψj(x
′, t′)dx′dt′ = λψi(x, t), (7.16)

where the kernel is the velocity cross-correlation tensor,

Rij(x,x′, t, t′) = 〈vi(x, t)vj(x
′, t′)〉 .

D is the space-time domain, and vi are the instantaneous realizations of the velocity

field. The eigenvalue, λ, is representative of the turbulent kinetic energy, and ψi

are the eigenfunctions or the modes of the velocity field. Since Rij is symmetric

and positive definite, the solutions of equation (7.16) can be used to expand each

realization as an infinite sum of the eigenfunctions:

vi(x, t) =
∞∑

n=1

a(n)ψ
(n)
i (x, t), (7.17)

and because of the orthogonality of the basis,

a(n) =

∫

D

vi(x, t)ψ
(n)
i (x, t)dxdt, (7.18)
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are the coefficients governing the time evolution of each mode. This is called the

direct method for evaluating the POD basis functions and eigenvalues and is com-

putationally demanding for typical vector fields output from PIV datasets. The

solution to equation (7.16) involves the inversion of a matrix of size equal to the

total number of instantaneous vectors. Therefore, as an alternative, the snapshot

method by Sirovich (1987) is typically used. In this case, the dimension of the

matrix is equal to the size of the ensemble. A first step is the extraction of the

ensemble-average from each realization. This is performed so that the individual re-

alizations are linearly uncorrelated. With N snapshots, the fluctuating components

are given as

v′i = vi − 1

N

N∑
j=1

vj, i = 1, ..., N. (7.19)

From these vectors, the kernel Rij, which is the autocovariance matrix, is formed

with elements Rij = v′i · v′j, where the inner dot product is implied between the

components. The algebraic eigenvalue solution for this matrix yields an orthonormal

basis given by

ψk =

∑N
i=1 %k

i v
′
i∣∣∣

∣∣∣∑N
i=1 %k

i v
′
i

∣∣∣
∣∣∣
, (7.20)

where %k
i is the i-th component of the normalized eigenvector corresponding to the

k-th eigenvalue (λk), and the double vertical bars denote the L2 norm. Since the

eigenvalues represent the energy contained in the corresponding modes, ordering the

eigenvalues in decreasing order as λ1 > λ2 > ........ > λN − 1 > 0 yields the modes

in the decreasing order of energy content. Once the orthonormal basis is found, the

flow field is given by

V′ = %A, (7.21)

where V, %, and A are matrices containing the v′k, %k, and ak matrices respectively.

ak are the coefficients associated with each vector v′k, and represent the amplitudes
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of each mode. Since the POD modes form an orthonormal basis,

A = %V′. (7.22)

The evolution of the amplitudes in time give important information about the time

history of each corresponding eigenfunction and, therefore, the associated time scales

in different regions of the flow. Finally, once the coefficients are known, each snap-

shot can be reconstructed as

vk ≈
M∑
i=1

ψiak
i +

1

N

N∑
j=1

vj. (7.23)

M is the total number of basis functions included in the reconstruction and, to give

a satisfactory representation of the flow, increases with the complexity of the flow.

7.5.1 A simple test case

To test the algorithms for both the direct and the snapshot methods, a simple

test example was designed. The realizations consisted of surface elevation maps for

a two-dimensional (x, y) Gaussian hump decaying linearly with time and superim-

posed on a two-dimensional standing wave. The standing wave is given by

ηs(x, y, t) = Ascos

(
Nxπx

Lx

)
cos

(
Nyπy

Ly

)
cos

(
2πt

T

)
. (7.24)

As is the amplitude, Lx and Ly are the wavelengths in the x and y directions

respectively. Nx and Ny are the corresponding mode numbers of the standing wave.

T is the time period and t is time. The gaussian is given by

ηg =

(
Ag√
2πσ

exp

[
−(x− xc)

2 + (y − yc)
2

2σ2

])
t, (7.25)

where Ag is the amplitude of the Gaussian, σ is the standard deviation and xc and

yc denote the location of the peak of the Gaussian. A random noise field chosen

from a normal distribution with a mean of zero and standard deviation of one was
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Figure 7.4: (a) Two-dimensional standing wave at t = 0, Nx = Ny = 2, (b)
Gaussian at t = 0, (c) random noise field at t = 0, and (d) superim-
posed surface field at t = T

4
.

added to each instantaneous superposition of the two elevation maps. The final

displacement field is given by

η = ηs + ηg + Random noise. (7.26)

The parameters for the test case shown here are : As = 1, Lx = Ly = 10,

Nx = Ny = 2, T = 1, Ag = 2, and xc = yc = 5. x and y varied from 0 to 1

at 0.1 increments, i.e., there were a total of 121 spatial sampling points for each

instantaneous surface field. The total time was one period, and the ensemble size
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Figure 7.5: Non-dimensionalized squared eigenvalues from direct (*) and snapshot
(◦) methods.

was 100. The individual surface maps and the superimposed field are shown in

Figure 7.4. The squared eigenvalues are non-dimensionalized by the total energy,

which is the sum of squares of the eigenvalues. The percentage energy for each

mode for both direct and snapshot methods is shown in Figure 7.5. Note that both

methods give the same answer. Approximately 96.5 % of the total energy is in the

first mode, 3.35 % in the second mode, and the rest is contributed by noise. The

normalized mode shapes are shown in Figure 7.6 and Figure 7.7, and are nearly

identical for both methods. The standing wave and Gaussian are recovered as the

first and second modes. The time evolution of the normalized coefficients is shown

in Figure 7.8. The first coefficient recovers the oscillation of the first mode at a

period equal to T . The coefficient of the second mode shows the linear decay of

the Gaussian till realization number 75. Beyond that, the surface field due to the

decaying Gaussian cannot be distinguished from the background noise.

226



−0.1 0 0.1 0.2

2

4

6

8

10

y

(a)

−0.1 0 0.1

2 4 6 8 10

2

4

6

8

10

(c)

y

x
−0.2 0 0.2

2 4 6 8 10

(d)

x

0 0.1 0.2 0.3 0.4 0.5

(b)

Figure 7.6: POD modes (ψi) from direct method. (a) Mode 121, (b) Mode 120,
(c) Mode 119, and (d) Mode 118.

7.5.2 Coherent structures

The specific application of the POD technique, such as for construction of

low-order dynamical systems for the flow, investigation of turbulent quantities, or

identification of coherent structures, determines the choice of variable. As has al-

ready been discussed, a Galilean invariant quantity such as the vorticity is a better

descriptor than the velocity for the identification of coherent structures in turbulent

flow. Recently, Kostas et al. (2005) have demonstrated through planar PIV data
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Figure 7.7: POD modes (ψi) from snapshot method. (a) Mode 100, (b) Mode 99,
(c) Mode 98, and (d) Mode 97.

of a backward-facing step flow that the unambiguous indentification and descrip-

tion of the dominant vortical structures was more effective using a POD analysis

of the out-of-plane vorticity field than the two-dimensional velocity field. This was

suggested to be particularly true for high Reynolds number flows. Since one of the

primary objectives of this study was to investigate the presence of coherent struc-

tures, the snapshot method POD is performed on the fluctuating vorticity fields as

calculated in Chapter 5. The presence of two inhomogeneous directions (streamwise

and crosswise) in the flow means that shot-noise decomposition was not required
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(Lumley, 1981).

The non-dimensionalized square of eigenvalues (
λ2

k

Σ1020
k=1 λ2

k
), or percentage en-

ergy for each mode, is shown in Figure 7.9. The first four modes are seen to capture

approximately 28 %, 7 %, 4.7 %, and 1.7% of the total energy respectively, i.e.,

the first four modes cummulatively account for approximately 41 % of the total

energy. The energy in this case is equivalent to the quasi-enstrophy, since only one

component of the enstrophy is estimated. Approximately 110 modes are required

to capture 50 % of the energy. The convergence rate depends on several reasons.
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Figure 7.9: Non-dimensionalized squares of eigenvalues showing convergence as a
function of number of modes.

First, in a fully turbulent high Reynolds number complex flow such as the present,

the turbulence structure is composed of an infinite number of spatial and temporal

scales, only a limited number of which can be resolved by the measurement resolu-

tion. Note that some of the contribution to the resolvable scales can also arise due

to the aliasing from smaller scales. In addition, the number of accurately resolved

POD modes and their associated eigenvalues are dependent on the ensemble size.

Even though convergence for the turbulence statistics was satisfactory in the single

phase region of the flow, the robustness of the estimated fluctuating quantities in the

intermittent region is still in doubt. The numerical calculation of vorticity from the

velocity components also introduces some noise into the field. There are also bias

and random errors introduced into the velocity from the PIV algorithm. However,

the results of Breuer and Sirovich (1991) indicate that for random noise levels of the

order of 10−2 on a sample size of 400, the computed eigenvalues remain accurate for

mode numbers at least up to 50, while the eigenfunctions begin to deviate from the

true solution for mode numbers less than this.
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Figure 7.10: The first four eigenfuctions computed from the snapshot method. (a)
Mode 1020, (b) Mode 1019, (c) Mode 1018, and (d) Mode 1017.

The four most energetic modes are shown in Figure 7.10, and the associated

coefficients are shown in Figure 7.11. The eigenmodes have been normalized with

respect to their L2 norm. In view of the uncertainty in the resolvable scales, only a

qualitative discussion is provided. The most energetic mode is dominated by positive

vorticity fluctuations, which, as suggested before, arise due to the combined effects of

reverse flow due to breaking and curvature. In all of the four modes, the elongated

bands of coherent fluctuations are skewed parallel to the surface. Note that the

sign has no bearing on the flow feature represented by the mode, since the sign of
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Figure 7.11: Time evolution of the first four coefficients computed from the snap-
shot method. (a) Mode 1020, (b) Mode 1019, (c) Mode 1018, and
(d) Mode 1017.

the reconstruction coefficient determines the positive/negative vorticity bands. The

elongated structures are in close proximity to the lower boundary of the recirculating

region which is located below the mean interface (see Chapter 3). Particularly, the

3rd mode is in striking similarity with the fluctuating vorticity bands observed in

the case of a backward facing step flow by Kostas et al. (2005)(see their Figure 10

a-d). There are obvious qualitative similarities between the two flow configurations:

the formation of a curved shear layer from the toe (step), the reattachment near the

surface (wall) and the recirculation zone (separation bubble) formed between the two
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locations. The similarity between the global mean flow solutions has been discussed

theoretically by Soldini et al. (2004). An investigation into this analogy, especially

with regard to the smaller scales of the flow, would be an interesting experiment in

itself. More confident conclusions can only be drawn with larger ensembles of data

in the intermittent region and increased spatio-temporal resolution. Lastly, other

techniques, including the ones mentioned in Chapter 4 for the extraction of coherent

motions and quantification of their spatio-temporal scales need to be implemented.

7.6 Spilling breaker experiments

7.6.1 Temporal evolution

The twenty second oscillation in the flume has precluded a meaningful inves-

tigation into the temporal behaviour of the breaker dynamics, including toe oscil-

lations and their possible correlation with coherent structures in the mixing layer.

This correlation has qualitatively been studied by Mossa (1998) and Mossa and Tolve

(1998), who suggested that a vortex roll-up process was linked to the fluctuations of

the longitudinal oscillation of the toe. On the other hand, Dabiri and Gharib (1997)

had found that the frequency of the persistent streamwise oscillation of the shear

layer below the surface was much smaller than the vortex shedding frequency. The

evolution of the coherent structures in time, including their advection, has only been

paid a cursory qualitative examination in this dissertation. Further, the dynamical

processes such as merging and tearing have not been investigated. It is obvious that

a more carefully controlled experiment with a higher spatio-temporal resolution than

the present is necessary to investigate these phenomena. The accurate resolution

of the air-water interface is vital in correlating the velocity field with the geomet-

ric and dynamic properties of the surface. This can be done either by developing

more accurate image processing techniques, which is currently being pursued, or a

simultaneous LIF experiment to independently locate the interface. With respect

to checking the validity of the theoretical model results, an accurate estimate of the
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spatial distributions of production and dissipation is essential. Further, it would

be interesting to investigate the similarities/differences in the turbulence structure

between quasi-steady breakers and unsteady breaking waves.

7.6.2 Spanwise turbulence structure

The measurements from the experiments have been limited to the streamwise-

crossstream plane, precluding any investigation into the three-dimensionality of the

turbulence. To the best of the author’s knowledge, the spanwise structure of turbu-

lence for steady breakers has received no attention in current literature. As an exten-

sion of the present study, it is of interest to determine the possible three-dimensional

structure of the coherent motions discussed in Chapter 5. Two-dimensional signa-

tures of streamwise vortices in the longitudinal plane of turbulent boundary layers

have been shown to be actually due to three-dimensional coherent structures such as

hairpin packets (Meinhart and Adrian, 1995; Zhou et al., 1999). It would indeed be

interesting to see if the coherent motions detected in the present study have span-

wise structures with similar/alternate topologies. With respect to breaking waves,

barring Cox and Anderson (2001) and the visualization studies of Nadaoka (1986) on

obliquely descending eddies, little attention has been paid to the spanwise structure

of coherent motions. Preliminary results from stereoscopic PIV of solitary waves

breaking as spilling breakers have shown randomly distributed spiral eddies (Ting,

2004). Detailed investigations such as these are also of relevance with respect to

recent numerical simulations of breaking waves, such as those by Christensen (2004)

and Rogers and Dalrymple (2005), whose simulations have indicated coherent three-

dimensional motions but await experimental observations for validation.

Finally, the author believes that the current state of knowledge about the

turbulent flow under breaking waves is still nascent, and there are numerous other

aspects beyond the few treated in this dissertation which need attention, both the-

oretically and experimentally. As Winston Churchill famously said, “This is not
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the end. It is not even the beginning of the end. But it is, perhaps, the end of the

beginning.”
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