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Seismic tsunami generation, propagation and
inundation

* Generation phase for seismic cases: either
— FEM of ground deformation in 3-D (Masterlark, Grilli)
— Dynamic water surface displacement using NHWAVE
...or

— Static surface displacement using Okada sources

* Propagation phase:

— FUNWAVE in spherical coordinate version. Boussinesq model for weakly
nonlinear, weakly dispersive waves

* |nundation phase:
— FUNWAVE in Cartesian coordinate version. Boussinesq again.



(1) Continuous source subdivided into a set of “Okada” sources,
cach representing a finite slip 1n an elastic half space.

Predicted displacement at earth-water interface transferred
instantaneously to a static deformation of the water surface

U,: Strike-slip
U,: Dip-slip 5
U,: Tensile dislocation 4
0: dip angle
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Solitary wave overtopping an island
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Submarine Mass Failure

Watts and Borrero, 2001



Modeling methodology: SMF

* Here, time-dependent kinematics of bottom motion used
directly in 3-D hydrodynamic model NHWAVE

1.  Model solves 3-D Euler equations in surface and terrain following ¢
coordinates.

2. Model parallelized, uses public domain package HYPRE to solve
pressure Poisson equation.

3. Bottom may be specified as a time-dependent function.



Example: Solid slide of Enet and Grill1 (2007)




Enet & Grilli: Model — data comparison.

Solid: observed, dash: fully-dispersive, dash-dot: nondispersive
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Future: representation of deformable slides with
various rheologies (Ma et al, forecoming)
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time = 1.0 sec

Viscous fluid slide
(Nicolsky)

Solid slide
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* Discussion of models employed
 Review NTHMP East Coast USA Effort

 SMF’s as (potentially important) parts of large
tsunami events.
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Florida Straits SMF of Grand Bahama Bank carbonate platform

slope failures e 5 2 Siliyelar potential for
Gregor P. Eberli*

o e tsunami generation by submarine slope failures

It Pl PV Bahama Bank shows slope failures

[sgm etvarious seeles (. . Tomes land. T , along the western Great Bahama Bank
slides were identified; i.e. alpha-,
beta-, and gamma-landslide. d NH42A-1689 jschnyder@rsmas.miami.edu
Y
. failure scenarios numerical domain
Incipient 8 - scar
In addition, creeping and incipient Three possible failure scenarios were designed based on esti- tab. 1

slump scars indicate slope instabili- mated volume and nature of the failure mechanisms (tab. 1).
ties that will lead to large-scale fail-

ures in the near future (fig. 2). Single Slope Failure (SSF) 5 CSF pMSF

Anisolated collapse of the beta-failure mass is simulated
(fig. 2). Thickness 50 Florida Keys

fig. 4 Florida

Parameters Landslide Names Failure Scenarios
80km- L= =

m (visible)
Combl.ned Slope Failure (CSF) ) Lengthkm] | 3. R
The fa.llu.re of alpha-, beta-, an.d gamma-mass slmult.ane- ) Straits of Florida
ously is simulated and approximated as single landslide Widthkm] | 2 g 8o
mass (fig. 2). Water depth
Bahama
the volume and nature of past large mass movements Potential Major Slope Failure (pMSF) tm Archipelago
within this area and the mass transport complexes (MTC) . The failure of an over 80 km long scar is simulated (fig. 3). Slope angle Ay

in the basin (fig. 3).
[degree]

Two bathymetric grids were used for the simulations (fig. 4).
(1) is a 30 x 30 m grid based on multibeam data acquired during CARAMBAR
cruise (Mulder et al. 2012). The grid was used for landslide and tsunami initi-
ation.
(2) is the general bathymetric chart of the oceans, GEBCO-grid, in a 700 x
. . 700 m resolution and was used for the propagation simulations.
landslide duration

Sea surface elevation for 15 min

ropagation time of CSF scenario . . ) i i
fpor 24(9) s landslide duration (fig. 8) Tz 2min I - single grid I
and 10 min propagation time of i i
PMSF scenario for 240 s landslide = B 2 " f ! landslide
duration (fig. 9). . : i ;

Maximum wave elevation comput- o i " ansiceoroim foomis © ' -mdsmm‘D = mm’/ﬂ
ed with FUNWAVE-TVD in Carte- s ey P ) kit el

sian grid for the pMSF source with : ‘

50 ms™ terminal landslide velocity . .

and 120 s outrun time (fig. 10) and ﬁg_ 7 terminal VeIOCIty

with 100 ms™* terminal landslide ve-

locity and 240 s outrun time (fig. v=20mis ) 1 v =100 m/s

11). T

& The 30 x 30 m resolution bathymetric grid was converted into UTM and
All simulations ending in a consid- 5 [ @ re-gridded in MATLAB (fig. 5).
erable wave impact on the coast- : :
line show arrival times of less than i 5 Ll
20 min between landslide initiation - g | = 3 . Ay . .
and wave impact. For bigger Rl T g o = numerical models
waves, the propagation velocity is Landsiide of 80 km, iy Landside of 80 km, 41" .

larger. . ) .
For the simulations we chose landslide durations of 1, 2, 3, and 4 minutes. Terminal velocities The tsunami wave generated by a landslide was modeled using the non-hy-

of 20, 50 and 100 ms* were used. Landslide outrun direction was assumed to be westwards. drostatic wave model NHWAVE (Ma et al., 2012). The model was devel-
oped for submarine landslide induced tsunami wave simulation and simu-
lates fully dispersive surface wave processes.

The resulting wave from these first simulations, then was reinterpolated as

Our simulations show that the submarine landslides along Western Great Bahama Bank have the potential to create hazardous tsunami waves. input into the fully nonlinear and dispersive Boussinesq model

First order predictions show local wave crests can build up to 26 m height for a worst-case scenario and result in a 6 m run-up on the coastline
The shallow waves dissipate quickly during propagation through the ocean. More conservative estimates result in 5 m crest height and 12 m run-up.
However, the fast moving run-up can create dangerous currents in surf zone, inlets, and river entrances.
The governing factor for a disastrous event is the terminal velocity of the landslide and the duration of the slide event (fig. 6&7).

An over 8o km extending incipient scar indicates a large-scale failure in the near future. (e EmR I " mod B ’
These are low probability but high impact events. references [iariiarirtmindyaras s “Gadoy 15,00

hi, Fengyan, JamesT. Kirby,Jefrey C. Hari, Joseph . d StephanT, Grll.*A high-

FUNWAVE-TVD to simulate the wave propagation and estimate an
impact with the coastline (Shi et al., 2012).

conclusions




FY10-12 and FY 13 DEM coverage
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Strong bathymetric control of wave height distribution by outer shelf
edge geometry and shelf depth variations
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Grid nesting from ocean to DEM and DEM to local 1 arc
second
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Inundation Lines
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Maximum occurring velocities
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* Discussion of models employed
 Review NTHMP East Coast USA Effort

« SMF’s as (potentially important) parts of large
tsunami events.



Tohoku (2011) event: Coseismic slip and deformation. a) slip
and horizontal deformation. b) Vertical deformation.
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Finite Element model of deforming forearc, oceanic crust and mantle,
accounting for variations in material properties (Masterlark, JGR 2003).
Source based on seismic and GPS data inversion.

oceanic crust
(6-km-thick) 5

oceanic
crust

mantle

FEM model configuration (Masterlark, JGR 2003)



Example: Maximum far field wave heights for Tohoku event
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Farfield results (Kirby et al, 2013). Observed (black), modeled
(red)
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Model (red) vs. measured (black) inundation:
Sanriku coast

a) UCSB source b) UA source



Response at GPS and DART buoys: black (measured), red (UA -
seismic + GPS), blue (UA + slump)
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A plausibly more complete answer?

Bathymetry along trench boundary suggests history of mass-wasting events.

Several prior events have been attributed to possible landslides.
(Sanriku 1896; Kanamori and Kikuchi, 1993)



Constraining the SMF location based
on travel time analysis
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a) Inundation and b) runup along Japanese coast.
Measured (black), UA (red), UA+slump (blue)
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