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* FUNWAVE-TVD:

— Boussinesq model with extended dispersion and full nonlinearity.

— Hybrid finite volume/finite difference scheme
* Godunov-type finite volume scheme with a variety of TVD limiters
* Time stepping using a 2d order Runge-Kutta scheme, allows adaptive time
stepping.
e Accurate wetting and drying using Riemann solvers.
* Wave breaking using several options:
— Explicit breaking term of Kennedy et al (JWPCOE, 2000)

— Boussinesq -> NLSWE transition and resulting shock formation and capture
(Tonelli and Petti, many others)

— Parallelized using MPI

— Applications: Surf zone, nearshore wave propagation, tsunamis
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Surf zone: Rip current generation on a complex beach planform
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Solitary wave overtopping an island
located at a shelf break (data from
Lynett)

Shi et al, Ocean Mod 2012.
Model revisions largely motivated by need
to improve moving shoreline treatment
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Reproduction
of measured
velocities in
model

U (m/s)

U (m/s)

U (m/s)

AN ADV 3 ]
, N\ , AN e —

| | | | | | | |

10 15 20 25 30 35 40 45

I I I I I I I I

| | | | | | | |

10 15 20 25 30 35 40 45



Tsunami application: Tohoku (2011) event
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Maximum wave height
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Tohoku (2011): Reproducing event at DART buoys
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U. S. East Coast hazard analysis

Currituck slide
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Local inundation: simulations down to 5-10 m
resolution

33.762 33.762

3378 3376

33.758 33.758
o
S—
D
-
=
43 756 = 33756
: =
|

33.782 33752
33.75 3TS-
-78.8 -78.798 78796 -738.794 -78.792 -78.79 -7B.788 -73.786 -f88 -78.798 -78.796 -7BV94 -78.792 -FBVS -78.7B8 -7B.786
- 0. 2 Q
Longitude(“) Longitude(”)

Myrtle Beach, SC



Model development: CACR history of developing
public-domain open source models:

1. REF/DIF - forward propagation model for refraction/
diffraction of surface waves (80’s — 90’s)

2. FUNWAVE — fully nonlinear Boussinesq model for time-
resolved, weakly dispersive surface waves (90’s — present)

3. NearCoM - coupled wave/circulation model for wave- and
tidally-driven currents (90’s —present)

4. NHWAVE - 3-D RANS model for time-resolved fully-
nonhydrostatic processes (2010-present)



* NearCoM — coupled model for waves and currents

— Quasi-3D model for hydrostatic circulation processes (SHORECIRC)
— Closely coupled to wave model (SWAN)

— Recently converted to finite volume form and fully parallelized (same
scheme as FUNWAVE)

— Morphology modules (including acceleration effects to facilitate long
term morphology calculations)

— Principle applications are to modeling wave and tidally-driven
processes in shallow, unstratified coastal and estuarine regions.



New River Inlet, NC (Chen, Hsu, Shi)
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Circulation in tidal marsh — Brockonbridge Gut, Delaware
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NHWAVE — nonhydrostatic, surface and terrain-following
Euler or RANS model (Ma et al, Ocean Mod 2012)

Solve equations in a domain bounded above and below by surfaces
which are single-valued functions of (x,y,t)

ow
( D ( Dui + Dvj + wk \
o Du o — (Duu + (%Q’UQ + ghn))i + Duvj + uwk
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Numerical scheme: Godunov TVD (as in previous models),
two step, second order Runge Kutta scheme.

Spatial differencing for finite volume terms based on Box-
Keller scheme with pressure defined on top surface of cell.

Each step in RK scheme employs a split step solution to
update velocity and pressure:

1. Predictor step using full hydrostatic pressure, no dynamic
pressure (stop here if doing a hydrostatic simulation)

2. Solve Poisson equation for pressure field
3. Corrector step updates velocity using dynamic pressure
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Landslide applications: solid body slides in NHWAVE
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Turbulent bubbly flow under
unsteady breaking waves

M. Derakhti' and J. T. Kirby!

1. Center for Applied Coastal Research, University of Delaware
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Goals:

Understand processes related to entrainment, retention and transport of air bubbles at
wave crest scales in the surf zone,

Use this information in parameterized form to model optical properties of larger scale
surf zone.

o 2 - s T 'A‘.
The ocean upper layer
Unsteady breaking



Problem characteristics
« 3D

* Unsteady two phase turbulent flc
* Bubbles have size distribution

 Complex interface

Top
view

Side
view

P i e SR
™ s

an and Stokes (2002)_»

t=0ms



Different approaches
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Problem characteristics

-3D

- Two phase flow with bubble size distribution (0.1 to 10 mm in laboratory breaking waves)

- Unsteady turbulent flow with non turbulent and transition regions

- Complex interface

Fluid
Selected approach > oo
Polydisperse Soo o
(@]
- Bubbles are divided into 20 groups from 0.1 to 8 mm bubbly flow o°~ 9
% & L0
diameter £ 0% 5% % o
. @e% 8.y o

Accounts for the actual bubble size distribution

- Bubbles are introduced at the free surface using the entrainment model

Avoids bubble entrainment details

- 3D Eulerian-Eulerian framework

Not resolve the interface between individual bubbles and liquid

sJa13welp uadIp yum sdnous ajqqng

Accounts for the momentum exchange between bubbles and liquid
- Turbulence is modeled using LES with dynamic Smagorinsky model
- Bubble-induced dissipation is considered using eddy viscosity approach

- Second order VOF method for free-surface tracking

Resolves complex interface



Filtered poly-disperse two-fluid model

(Carrica et al. 1999, Ma et al. 2011, Lakehal et al. 2002, Derakhti and kirby 2013)
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Isolated single unsteady breaking wave event

- All corresponding experiments conducted in a glass walled channel
25~30 m long, ~ 0.7 m wide, with still water depth 0.6 m by Melville

and students
- Single breaking wave event formed by dispersive focusing method

- N = 32 number of waves in the packet
at the inlet boundary condition
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Free surface and bubble plume evolution for the
large plunging breaker

Free surface evolution

! !

| |
Bubble plume evolution

Isosurface of a =0.1 %




Evolution of bubble void fraction comparing to the
measurements by Lamarre and MeIV|IIe (1991)
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TKE evolution
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Rapp and Melville (1991) — plunging case

TKE normalized by C*> where C = phase speed ~ 1.73 m/s
Rapp and Melville 1990 estimated the levels of turbulence initially of 0.02C and decaying slowly
to 0.005C after over 60 wave periods or normalized TKE on the order of 5*107-4 to 25*107-6
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Free surface evolution comparing to Exp.
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Shear- vs bubble-induced dissipation rate

Total SGS dissipation rate:

_ d _
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J

T

Shear-induced dissipation rate:
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From dynamic Smagorinsky model

Bubble-induced dissipation rate:
2
epr = vBr|S|
NG
l b b~
vpr = Cp,BI Z apdy|ur k|,

\L k=1

After Sato&Sekoguchi (1975)
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Total dissipation per unit length of breaking crest

- Bubble-induced dissipation accounts for more than 50% of the total dissipation, which is
compatible with the measurements of potential energy of the bubble plume by Lamarre

and Melville (1991).

- Although the total dissipation differs between different breaker types, the ratio of

bubble- and shear-induced dissipation is invariant with respect to breaking type and

intensity.

- The corresponding simulations without the inclusion of dispersed bubbles underpredict

the total dissipation about 35%.

Case no. LM (J/m) Ewta(J/m) €bu/étotar (%) €5k /etotar (%) €LY /Etotar (%)

Large plunging 17.8 14.7 63.7 45.9 52.9
Plunging 8.6 7.7 64.8 45.4 53.0
Weakly plunging/spilling 4 3 2.6 65.9 43.2 53.7

Spilling 1.4 64.5 42.3 51.6



Large scale: NHWAVE with multiphase extensions
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Application area: Mouth of Columbia River (Hsu, Shi, Kirby)

ambient front two—layer transition liftoff
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NHWAVE extended to include salinity stratification and
suspended sediment component

Plume liftoff — nonhydrostatic case

(b)




Unsteady Xg(mr)avity current Model reproduction of velocity
and concentration fields (Garcia)

Interface rollup 002
in lock exchange = 04

problem: N -0.06
-0.08

Nonhydrostatic

-0.02
= -0.04
£

N -0.06

Hydrostatic

-0.08




Inclusion of continuous density stratification and of tracers
with or without fall velocity leads to excessive vertical
resolution requirements, compared to Euler gravity wave
examples.

Formally, pressure does not contribute to the generation of
vorticity and strong shear in the flow field.

Can accurate solutions for the velocity and concentration
fields be obtained without corresponding resolution of the
pressure field?



Numerics: Decimating the pressure solution
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Lock-exchange problem: pressure, and U results
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Short breaking wave crests in shallow water provide a
mechanism for generation of persistent vorticity in the surf zone
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How is deep water different?

Surf zone: Flow field is primarily
horizontal, depth uniform

dU/dt + ... = F, + other dissipative
effects

Dw,/dt + ... = curl,(F,) + other forcing

Deep water whitecaps: Finite I . <
breaking crest width + depth P >

of wave motion << water - St

depth -> reconnection of -

vertical vortex cores under ( "

breaking event.
Pizzo + Melville, JFM 2013

So, where is the boundary between these two regimes? What does a shift from
one to the other imply about form of breaking induced vorticity?



Prefer to pursue this using NHWAVE, but can the model
predict deep water breaking?

-0.1k 1 1 1 1 1 1 -0.1k 1 1 1 1 1 1
-0.4 -0.2 0 0.2 04 0.6 0.8 1 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

X X

Surface snapshots for $=0.278, Rapp + Melville. Fine solid line = TRUCHAS.
Other lines are NHWAVE at 3 vertical resolutions — 5, 10 and 20 levels



Generation and persistence of a horizontal vorticity patch
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Times series of surface at fixed locations before and after breaking

01} z* =-0.31

Model identifies breaking events reliably and without
any imposed breaking criteria. Breaking handled
completely by numerics, as in typical shock-capturing
approaches for the NLSWE’s. Result is possibly
unexpected, even encouraging, but ...



... the shock capturing scheme does everything :A(

* Turbulence production in k-€ model never triggered — no
generation of an eddy viscosity

* Wave energy dissipation under-estimated, particularly in
spilling breakers

* Generated vortex structures persist for unrealistically long
times.
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Fixes?

 Two-level approach described above?

« Attempt to estimate turbulence properties at free surface in order to
provide BC’s for turbulence model (Brocchini and Peregrine, JFM 2001)



