
CHAPTER 32 

Large-angle Parabolic Equation Methods 

James T.  Kirby* 

Large-angle parabolic equation methods for the propagation of 
surface water waves are discussed. The methods described here are 
limited to forms which are solvable by the Crank-Nicolson method, but 
are successful in opening the allowed range of propagation directions 
to ~ 50° with respect to normal incidence. 

Introduction 

The application of the parabolic equation method (PEM) to any 
relevant wave propagation problem implies that a principal propagation 
direction may be identified in the {x,y} plane of propagation. Then, 
an aperture, or window of directions with respect to the principal 
direction, is associated with any particular approximation, and limits 
the range of propagation directions which may be adequately repre- 
sented by the approximation (Figure 1). The borders of a given 
aperture are defined only loosely and depend mainly on the amount of 
error the modeller is willing to allow in the wave prediction. This 
error may be evaluated for any given approximation by examining the 
approximation in terms of the related expansion of the wavenumber 
vector. Errors in predicted wavelengths and propagation directions 
may then be evaluated directly. 

The purpose of this paper is to examine two methods of extending 
the basic parabolic equation method to include large-angle effects. 
The first scheme is based on the Pade approximant extension of the 
lowest-order scheme, following the work of Booij (1981) and Dingemans 
(1983). The second scheme is based on a minimax principle, and has 
been applied previously by Green (1984) to the problem of underwater 
sound propagation. 

Parabolic Equations and Pade Approxlmants 

The lowest-order parabolic equation for forward scattering of 
time-harmonic linear waves in the x (principal) direction in water of 
constant depth may be derived by substituting 

H(x,y) = A(x,y)e1(kx"ut> (1) 

into the governing Helmholtz equation to obtain 

2ikAx + A^y = 0 + higher order terms (2) 
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where we have assumed that |Ax| « 0(k|A|).  This approximation may be 
examined in light of the plane wave of permanent form 

i((tx + my - ut) 2   2 
iT +  m (3) 

A(x,y) in eq. (1) is then given by 

.,   .    i[(£-k)x + my] 
A(x,y) = ae L        ' i (4) 

which gives 

k 
1 (2.) 2 V (5) 

after substitution in eq. (2). 
order binomial expansion of 

8        m 
2 1/2 

Equation (5) in turn is the lowest 

(6) 

for fixed m/k = sin6 « 1, 8 being the propagation direction. The 
accuracy of any approximation over the range of propagation direc- 
tions 0 < 8 < 8a, where 8a is the aperture width, may be evaluated by 
comparing predicted H/k to exact £/k = cos8 over the range in 
question. This comparison is given in Figure 2 for eq. (5). Equation 
(5) forms the basis of the so-called lowest-order approximation. 
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Fig. 1: Definition of aperture 
for parabolic approximations 
//// allowed aperture: lower- 
order approximation 
\\\\ allowed aperture: higher- 
order approximation (reprinted 
with permission of Elsevier 
Press) 

Fig. 2: Absolute errors (£/k) - cos8 
for several expansions of (£/k) = 
(1 - (m/k)2)1/2 about (m/k)+0 
(reprinted with permission of 
Elsevier Press) 
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One of the simplest ways of extending the accuracy of a poly- 
nomial expansion is to construct a rational approximation consisting 
of the ratio of two polynomial expressions. Of the possible choices, 
the Pade approximant serves as the logical starting point (Baker, 
1975). For eq. (6), the appropriate (1,1) Pade approximant is given 
by 

i   2 

1 - - (-) 

<*>—r1^ 
The Pade approximant has the property of predicting the proper value 
and slope of the approximated function Ji/k as m/k (or 8) becomes 
small. The approximation thus maintains the accuracy of the lowest- 
order approximation at small 6, and at the same time extends the 
accuracy of the approximation as 9 increases, as shown in Figure 2. 
Using eq. (7) and retracing the steps of eqs. (2-5) in reverse order 
then gives 

2ikAx + \y + k ^yy " ° <8> 
Dingemans (1983) has shown that the no-current, constant depth form of 
Booij's (1981) parabolic approximation is essentially equivalent to 
eq. (8), and proposed the Pade approximant as the relevant analysis of 
the splitting method employed by Booij to obtain his PEM approxima- 
tion. 

Pade Approximant: Computational Example 

As a test of the higher-order parabolic model, we study the wave 
field in the vicinity of the shore-attached breakwater described in 
Figure 3. An extensive set of data for the wave field in the shadow 
zone downwave of the breakwater has been given by Hales (1980) for a 
number of wave periods, amplitudes, and angles of incidence. A closed 
form asymptotic solution in the linear, mild-slope approximation has 
been provided by Liu et al (1979) and has been compared to the experi- 
mental data by Liu (1982), who found qualitative agreement between the 
linear theory and experimental results. 

The parabolic equation for the general case of uneven topography 
was developed according to the approximation of the previous section 
and is given in Kirby (1986). 

For this case, we restrict our attention to the linearized theory 
in order to compare parabolic model results to the asympototic theory 
of Liu et al. The experimental results are complicated by the pres- 
ence of a wave-induced current system due to the surf zone in close 
proximity to the measurement transects, and it is likely that 
neglected wave-current interaction effects have as much influence on 
the data as the neglected nonlinearity. 
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Fig. 3: Geometry of shore-attached breakwater (reprinted with permis- 
sion of AGU) 

Fig. 4a: Shore-attached break- 
water: comparison of lowest- 
order approximation and 
asymptotic theory of Liu et al 
(1979).  Dashed line, lowest- 
order approximation; solid line, 
asymptotic theory; T = 0.75 s, 
6 = 30°. (reprinted with per- 
mission of AGU) 

Fig. 4b: Shore-attached breakwater: 
comparison of higher-order approx- 
imation, asymptotic theory of Liu 
et_^l_ (1979), and data of Hales 
(1980).  Dashed line, higher-order 
approximation; solid line, asymp- 
totic theory, * experimental data; 
T = 0.75 s, 6 = 30°. (reprinted 
with permission of AGU) 
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The geometry corresponding to the experimental arrangement con- 
sists of a plane beach with slope 1:20, extending out to a depth of 1 
ft (.3048 m), beyond which the bottom is flat. The x coordinate is 
oriented offshore from the shoreline. The breakwater extends to x = 
15 ft (4.572 m), and measured wave data in the shadow zone of the 
breakwater are available for the transects x - 6, 8, 10, and 12 ft 
(1.829, 2.438, 3.048, and 3.658 m) (Hales, 1980). Values for incident 
wave data are with reference to the offshore region with h = 1 ft 
(.3048 m). 

In Figures 4a and 5a we show comparisons of the predictions of 
the lowest-order approximation with the asymptotic theory of Liu et al 
for the extremes of the test conditions T = 0.75 s, e = 30° and T = 
1.5 s, 6 = 20°, respectively. In both cases it is apparent that the 
diffracted wave disturbance spreads laterally at a much slower rate in 
the lower-order approximation than in the analytic theory, which 
encompasses an unapproximated mild-slope equation. Both the height of 
the reflected wave on the upwave side of the breakwater and the wave 
height in the shadow zone adjacent to the downwave side of the break- 
water are well predicted. However, most of the diffracted wave 
information is lost farther from the breakwater, well before signifi- 
cant amplitude modulations in the asympototic wave field die out. 
These results indicate that the group velocity for lateral motion of 
diffracted waves is too small in the lower-order approximation. 
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Fig. 5a: As in Figure 4a; T 
1.5 s, 6 = 20°. (reprinted 
with permission of AGU) 

Fig. 5b: As in Figure 4b; T = 
1.5 s, 6 = 20°. (reprinted with 
permission of AGU) 

For the Pade approximation, plots of results for the two test 
conditions are given in Figures 4b and 5b. Data in the shadow and 
downwave regions for these cases correspond to the lowest-amplitude 
runs from Hales (1980), which would be expected to correspond more 
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closely to the assumption of linearity. The plots indicate that the 
diffracted wave field is able to spread laterally in the higher-order 
approximation to a much greater degree than in the lower-order 
approximation. A comparison of the parabolic model results to the 
asymptotic theory indicates that the parabolic model is initially 
contaminated by components with large transverse wavenumber, which 
cause the computed amplitude modulations transverse to the breakwater 
to undulate more rapidly than the corresponding asymptotic results. 
These rapid undulations may be successfully damped using any one of 
several types of dissipative filters. 

Minimax Approximation 

Greene (1984) has suggested that improvements may be achieved 
while staying within the scheme of eq. (7) by relaxing the exact 
connection between eq. (7) and eq. (6) as (m/O+0 in favor of adopting 
an approximation which minimizes the maximum error (£/k - cos9) over a 
prespecified aperture 0 < 9 < 9 . These so-called minimax approxima- 
tions may be written in the present context as 

2 

,U      a0 + al © ® = ]~^        ' (9) 

The coefficients of the minimax approximation are chosen so as to 
minimize the error 

e = MAX|«,/k(9) - cos9|  ;  0 < 9 < 9  ,  9g given     (10) 

where &/k is predicted by eq. (12) and cos9 = SL/k is given by eq. (6). 
The procedure for obtaining minimax approximations is too extensive to 
summarize here; the reader is referred, for example, to Chapter 6 of 
Morris (1983). A list of values of ao, a\ and bj are given in Table 1 
for aperture widths ranging from 10° to 90° in increments of 10°. The 
coefficient values are seen to be asymptotic to the (1,1) Pad^ approx- 
imant at 9a+0. Figure 6 gives plots of the absolute error in pre- 
dicted U/k) for values of 9a = 40°, 60° and 80°. A plot of the (1,1) 
Pade approximant is included for comparison. For values of 9a < 60°, 
the correspondence between the minimax and (1,1) Pade approximant 
remains close at 9-0, the deviation for 9a = 60° being (1 - ao) x 100 
= 0.2%. Deviations for 9a > 60° at 9=0 increase rapidly due to the 
difficulty in approximating eq. (7) as m/k->-l. However, the advantages 
of the 9a = 60° approximation over the (1,1) Pade approximant, when 
considered over the entire range 0 < m/k < 1, are apparent. A compar- 
ison of Figures 2 and 6 indicates that the 9a = 60° approximation 
attains about the same level of accuracy as m/k+1 as the (2,2) Pade 
approximant, with only a slight decrease in accuracy at small values 
of 9. 

Equation (12) may be used to derive the corresponding parabolic 
approximation 
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TABLE 1.  COEFFICIENTS  OF THE RATIONAL 
VARYING APERTURE WIDTH. 

APPROXIMATION DETERMINED BY 

Aperture a0 al 
Pad! 1 -.75 

10° .999999972 -.752858477 

20° .999998178 -.761464683 

30° .999978391 -.775898646 

40° .999871128 -.796244743 

50° .999465861 -.822482968 

60° .998213736 -.854229482 

70° .994733030 -.890064831 

80° .985273164 -.925464479 

90° .956311082 -.943396628 

-.25 

-.252874920 

-.261734267 

-.277321130 

-.301017258 

-.335107575 

-.383283081 

-.451640568 

-.550974375 

-.704401903 

0.50 

0.40     0.60 

sin9 

1.00 

Fig. 6: Absolute errors (A/k) - cos0 for various aperture widths 9a 
for the minimax (1,1) rational approximation, (reprinted with permis- 
sion of Elsevier Press) 
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9 2ibl 
2ikAx + 2k/(a0 - 1)A + 2(bx - a^Ayy - -^-± k^yy  = 0   (11) 

which reduces to eq. (10) as Q^O. 

Tests of the Minlmax Approximation at Large Angles of Incidence 

The minlmax approximation of the previous section has been used 
to develop a corresponding refraction-diffraction model including the 
effects of weak nonlinearity and wave current interaction: details are 
given in Klrby (1987). In order to test the large-angle capabilities 
of the model, we choose a shoal geometry given by 

fhQ = 0.336 m ;   r > R 

Mx,y) - 1 2     2  1/2 
[h0 + 0.3 - 0.5{1 - [(f) + (f) ]}      ;  r < R 

where R = 4 m and r = (x + y ) ' . The symmetry of the shoal allows 
the incident wave field to be rotated to any angle to the x-axis; a 
"correct" model will be one that causes no distortion to the resulting 
focusing pattern resulting from changes in SQ, the incidence angle. 

We take a rectangular grid with Ax' - Ay' = 0.25 m and overall 
dimensions 0 < x'y' < 24.75 m. We use the incident wave period and 
amplitude conditions of Berkhoff et_ jal^ (1982). Two incident wave 
directions are studied; 6Q = 0°, with the shoal centered at (x',y') = 
(5,10), and 60 - 45°, with the shoal centered at (x',y') = (5,5). 

For the first series of tests, we use the (1,1) PadS model to 
study the two incident wave angles. Figure 7 shows the wave patterns 
for the two incidence angles in the form of contours of surface eleva- 
tion in increments of 0.5 AQ. The asymmetrical distortion to the 
focusing pattern at the 45° angle of incidence is apparent, as is a 
tendency for the focus to be shifted off the picture diagonal in the 
+x direction, or downwave in the computational sense. The distortion 
to the wave pattern due to the 45° angle of incidence is illustrated 
clearly by the superposition of wave amplitude contours in Figure 8. 
The superposition was obtained by rotating the wave field of Figure 7b 
about the center of the shoal by 36.5° in a counterclockwise sense, or 
45° minus an 8.5° distortion which represents the angle between the 
diagonal and the line joining the shoal center to the point of maximum 
wave height in the focus. This 8.5° distortion accounts for the shift 
of the diffraction pattern in the downwave sense on the computation 
grid. Figure 8 shows clearly that the focus is elongated and shifted 
further from the shoal center than in the normal incidence case, with 
corresponding distortion in the diffraction fringes. Contour values 
in Figure 8 (and 10) are relative to incident wave amplitude. 

Figure 9 shows the wave field for the 45° angle of incidence, 
using the 6a = 70° minlmax approximation. There is still some appar- 
ent asymmetric distortion and a shift of the focus off the diagonal in 
the +x direction; however, these effects are much less accentuated 
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Fig. 7: Wave fields calculated using the (1,1) Pade model. Contours 
are in increments of 0.5 AQ for instantaneous ri(x,y). a) 6Q = 0, 
normal incidence, b) 8Q = 45°. (reprinted with permission of Elsevier 
Press) 
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/// ^ \\\ 

Fig. 8: Amplitude contours and topography for circular shoal.  Ampli- 
tude contours  |A/AQ|  as labelled;  (1,1) Pade  approximant.   8. 
" 0°; — •—•— 6 = 45 ;  depth contours, (reprinted with permission 
of Elsevier Press) 
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Fig.  9: Wave field calculated using 6 

25 

70° model; 9 0 45°. 
Contours as in Figure 7. (reprinted with permission of Elsevier Press) 
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than in the Pade model. Amplitude contours for the normal and 45° 
incidence in the 70° approximation are superposed in Figure 10. Here 
the counterclockwise rotation of the 45° case is 39.75°, with a dis- 
tortion of 5.25°. The two results agree reasonably well in terms of 
the area and extent of contours in the focus, and in the distance of 
the focus from the shoal center. The overall diffraction pattern is 
maintained reasonably well out to two maxima of the diffraction fringe 
away from the central focus. 

Fig. 10: Amplitude contours and topography for circular shoal, 6 
70  approximation. 0 0°; —  = 45° 
(reprinted with permission of Elsevier Press) 

depth contours. 

model for large-angle propagation than does the Pade approximant 
model. Further tests were conducted using the 80° approximation. 
This model exhibited marginally better agreement between 8Q = 0° and 
45° than did the 70° model, but caused a significant distortion to the 
overall extent of the focus in comparison to the Pade and 70° models. 
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Refraction Effects In Parabolic Approximations 

For the special case of topographies varying as h(x) only, and 
for angles of incidence 6Q at reference depth hg, each of the para- 
bolic approximations may be solved to yield an estimate of the 
leading-order, slowly varying wave field undergoing shoaling and 
refraction. Solutions for the full refraction approximation and for 
each of three parabolic methods follow: 

Exact Refraction Solution 

C~   l/2     cos6   I/, - 4  r  g°1       r o/2   i/kcose dx-my) 
C-C    '       '•cose 

g 

Small-Angle Equation Solution 

C- ,> iWl)c 

(1,1) Padg Approximation 

Mlnimax Approximation 

"g0^(l + blSin
2e0) _i/k(i)dx-my _ £  aQ + ^   (f) 

»1® 

2 

(12) 

n = Vc-J e ; k  * " 2 <F (13) 

Cg V2 (1 - | sin29 ) i/k(|)dx-my    1 - J (|) 

g   (.1 - j  sin 6J x _ 1_ j-m^ 

n = V—J  f1 +h 4 2fl, 
e ; k r      (15) 

g   (, 1 + b. sin e J 
1 + b. 

It is apparent that, with each increase in level of approxima- 
tion, that the phase function of the shoaled wave becomes better 
approximated. Also apparent are large variations in each model's 
ability to reproduce the refraction coefficient (coseg/cose)1/2 of the 
"exacf'solution; in particular, it is not modelled at all in the 
lowest-order case and is only apparent starting with the (1,1) Padg 
approximant method. Figure 11 gives results for computed refraction 
coefficients for four angles of incidence 20°, 40°, 60°, and 80° with 
respect to shore-normal.   The minimax values are  based on a chosen 
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Fig. 11:  Variation in refraction coefficient with deepwater angle of 
incidence 9Q and water depth. 
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70°. For small angles of incidence, the (1,1) Pade 
approximant method exhibits favorable behavior in comparison to the 
minimax approximation, due to its enhanced level of accuracy as local 
6(x)+0. However, for 9Q = 60°, the minimax approximation performs 
quite well, while the (1,1) Pade1 approximant is clearly over-extended. 
For 9g = 80°, the propagation angle is outside the range of both 
higher-order models, and each perform poorly. In each of the cases 
above, 9Q is taken to be the deepwater value. 

Conclusions 

It has been shown that the range of wave angles which is allow- 
able within the limitations of the parabolic approximation may be 
significantly increased by relaxing the local accuracy of approxima- 
tions based on Pade approximants at normal wave incidence in favor of 
minimax approximations, which minimize the maximum error occurring 
over a prespecified range of wave directions. We have shown that the 
minimax approximations provide quantitatively accurate results for a 
focussing pattern developing in a wave propagating at 45° to the 
principal direction. This range of quantitative accuracy is seen to 
be well beyond the limitations of the (1,1) Pade approximant model 
given above. Results for wave refraction calculations suggest that it 
would be desirable to limit the aperture width 9a in the minimax 
approximation to a value consistent with the largest expected local 
propagation direction, since the Pade* approximant model is somewhat 
better at predicting the refraction coefficient at small angles of 
incidence. 
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