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Time-Dependent Solutions of the Mild-Slope Wave Equation
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Abstract

Time dependent forms of tlie mild-slope rvave equation are applie-d to the.propagation

oi ,"gulu, and irregula,r wave trains over variable bathymetry. The nTo-del equation of

Siniti and Sprinksls found to be a robust prcdictor of irregular waves, if the frequency

tptuua for a single component calculation is not made too large'. The model is.extended

ti i 'clude forcJi, low-irequency components, and some prelitninary results for bound

and free long wave computation are shown'

Introduction

Based on the rvork of Smith and Sprinks (19?5), the rnild-sloPe waYe ecluation for linear

\\,a\,es with a dominant carrier fre[uency rl and srnall frequency spread rlay be rvritten

^tds 
6u-Yn. (ccsvh i l+( r ' - t ' \ c r )o=o (1)

rvhere { ir th" value of the velocity potential at the mean surface z = 0. This equa-

tion reduces to Berkhoff's (19?2) 
"[iftic 

equation when the time dependence of purely

periodic waves is extracted.
In the past, many solutions of the elliptic problem for open coastal zones have been

obtailed ,riing'u putuboli. approxirnation, which treats the forrvard-propagating portion

of the *u.ue d'eld only. This- step has often been taken because of its computational

offtciency. The applicability of parabolic approximations is limited, horvever, to regions

without complicifed structuri boundaries. In particular, complex entrance c'hannels

and interiors of harbors are not good candidat,es for this modelling technique, since the

rvave field is built up by a numblr of reflections and re-reflections of rvaves within the

enclosed 6omains. For ihu." applications, full solutions to the complete bound-ary-value

problern must be found. Progiess in obtaining eflicient solutions using sophisticated

pre-condit ioning schernes has been made by Pa]}chang-et al  (19-91). .

As an alteriative to the elliptic equation approach, severa.l authors (Ito and Tan-

imoto, 1gZ2; Copeland, 1985; Madsen and Larsen, 198?) have obtained solut ions to

time-depe1delt, ihree-equation models using time-stepping techniques based on equa-

tions rvirich are first-order in time. These models are cssentially numerical analogs to

the more familiar shallow rvater equations. The rnodel solutions are computed until
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the amplitude envelopes reach a steady state. The final solutions are only valid for

purely periodic wave trains, since the three-equation models used are, for the most

part, equivalent to the second order model

o*- ftv^'(ccsvhd):0.
(2)

This model difers from the correct form (1), and is non-dispersive in the sense that

modulations of the carrier wave train propagate at the wave phase speed, rather than

at the group velocity, as would be required in a correct time-dependent model.

Sinie the application of time-stepping solutions to the mild-slope equation is,a rea-

sonably efficienl-line of approach, and since it is desirable to provide a model which is

vald fbr unsteady wave trains, it would be advantageous to use a set of rnodel equa-

tions which pr"ruiu"r the proper wave group behavior for non-periodic, narrorv-banded

wave trains. Such a model ivould be uieful in computing effects such as second-order

oscillations forced by wave groups.
In sectiol 2, we derive the time-dependelrt mild-slope equations. In section 3, the

dispersiveness of the resulting model is verified by studying wave group propagation

ou"i r flat bottom. In section 4 we consider the propagation of linear and rveakly

nonlinear waves over an elliptic shoal. Section 5 considers two-dimensional propa.gation

of rvaves over an elliptic shoal using monochrornatic and random waves. Finally, in

section 6, we discurs the forcing of long wave components at difference frequencies due

to non-resonant wave-wave interactions.

Derivation of the time-dependent model equations

The model equations are derived here using I{amilton's variational principle. The La-

grangian for irrotational motion is given by

L = -P 
l lJr,+f,rvno)'+|tQ't szld'z

The z dependence is extracted from {(c, A,z,t) agcording to

6(r,  y,  z, t )  -  6(r ,  A, t )  f  ( t )

(3)

where
cosh k(h + z)

f(") = cosh kh
From the variational principle the change of the integral of the Lagrangian, -t, over all
time and space must be equal to zero:

6[ [ [ t@,e , t ,d , ,Yn6 ,d t , r )d ,xd ,yd t=o  (6 )
J t  Jy  J t

Substituting (3) into (6) and retaining the terrns to the second order in { and r7 gives

(4)

(b.,

- pL: ndt * |nn" +r+f,nn" +iffw,aY *ir (cr- - k2ccs) (
' \ (7)it2

Y)g

Varying the Lagrangian .L with respect to { and 4 gives

r  ,CC"Vn6) *@2 -  kzCCg)  
QT t  =  - v t . ( l  

g
;
Qt : -gIl

(8)

(e)
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rvhich are the time-dependent mild-slope equations. The surface displacement may be
eliminated from (8) and (9) in order to obtain the model equation (1)- In this study,
we have employed a number of numerical methods fairly interchangeably, including a
second-order, centered-time centered-space finite difference approximation for (1), and
a fourth-order accurate Adams-Bashforth-Moulton method for (8) and (9). (Use of this
latter method rvas motivated by a parallel effort for the Boussinesq equations, which
will be reported separately.)

As in Madsen and Larsen (1987), it is convenient to remove the fast time behavior
from the dependent variables by means of the transforrnation

n,6 = (i ,A)"-i" (10)

where ar is the frequency used to evaluate the model coe{ficients. The resulting modei
equations are

rt,  = ir i  - vo. (?nvno) +@2 
- 

\2cc) 6
9  

' - "  g

Q ,  =  i r 6 - g r t

instead of (8) and (9), and

$rr -z t r$r -v r . ' (ccsvhA)-kzCCn$=o (13)

instead of (1). The same set of numerica.l schemes are also used for the revised model.

Wave group propagation

The basic ability of the model to propagate dispersive lnear waves is tested by exam-
ining wave group propagation over constant depth. Two numerical experiments rvere
performed. An initial wavelength of 10rn rvas specified,,with shallow and deep water
depths of. 0.25m and 9nz, respectively. Tlie initial conditions are 4 and 6 = 0. A
narrow-banded groupy wavetrain is generated at the borindary according to

6, = uosin(art) sin(frr);

The results shown in figure I are water surface elevations plotted at a sequence of
twenty time levels spaced one wave period apart. These results were obtained using the
Euler Predictor-Corrector method with second-order accurate finite differences (Kirby
and Rasmussen, 1991). Two lines are shown on each graph; one following the ma;rimum
amplitude of a specific wave group, and the other following a zero crossing of a speciflc
wave. Visually, it appears that in shallow wa,ter Cn x C, and in deep water Cn x Cf2,
which shows the validity of the models to predict wave group velocity. Examination of
the wave records and computed envelopes using cross-correlation techniques shorvs that
the phase and group velocities are accurately predicted to within l%fot the differencing
resolutions used here.

Berkhotr, Booij and Radder shoal experiment

As an example of the application of the models in two-dimensions, we study the focussing
of waves by a shoal, using the geometry and experimental parameters given in Berkhoff
et al. (1982). It is known from parabolic model computations (Kirby and Dalrymple,

( 11 )

(12)

r>0 (  14)
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Figurp L: Propagation of wave Sroups in deep and shallow water.

1984) that the waves in this example are significantly a,ffected by wave nonlinearity.

Following the appendix in I(irby and Dalrymple (1984), we provide a heuristic extension
to the mild-slope equation that is appropriate only for progressive Stokes waves. The
resulting modification to (8) is given by

rtt=-Yt.fffv^Orryf
where

( rc.,

( 16)

We apply both the [near and nonlinear model equations to the shoal described by
Berkhoff et aI. (1982). The data on wave amplitude rvas obtained over the entire
vicinity of a refractive'focus. The Ursell parameter remains of a reasonably small size
over the entire domain of interest, thus indicating that Stokes theory should be a valid
representation of the experirnent.

In the model test, normally incident waves are generated at a period of 1.0s at the
deep end of tlie wave tank, and are dissipated by a breaking process on a gravel beach
at ihe shallow end. At sections 1 through 8 (see Berkhoff et aJ) there are alrays'of
resistance type rvave gages spaced 0.5rn apart which record time series of rvater surface
elevations.

In order to dissipate wave energy at downrvave boundaries, we presently use a wave
damping layer at the downrvave boundary. Equation (9) is modified to

(  17)

rzt ft3C cosh 4kh + 8 - 2 tanh2 khn=aW

6 t= -9 \ -wd

I  o ,  r1x "pons"
w  =  1  . . r " F ' - 1  r

1 cu( f f ) ,  x)  tsponse

water

rvhere
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n x - rsponge
I : - . . - - - t

tmoc *  rsponge

and the sponge length nsponse is specified as 2.5 times the initia-l wave length-
Followingl method of tine approach, the model equations (8) and (17) (linear), or

(i5) and (17) (nonlinear) are solved using the A-B-M predictor-corrector rnethod. The
grid sizes are Ac - Ay:0.25m and At = Ll40s.Input waveperiod is 1s. We run the
models until f = 80s and compute average wave heights between t = 70s and t = 80s,
after the waves reach steady state.

Referring to figure 2, rvhere model results are compared to measured data along

transects 1 through 8, we see that the linear model tends to overpredict maximum arn-
plitudes in the vicinity of focused waves, where wave steepness may become large and

nonlinear effects become important. In these regiotts the nonlinear models give better

results. The nonlinear model results appear to contain some spurious amplitude modu-
lations. These are not a manifestation of instability, and the effect may be suppressed
by a suitable lagging of the nonlinear term in the numerical scheme.

Vincent and Briggs shoal experiment

A further study of monochromatic and random wave propagation over a shoal has been
performed by Vincent and Briggs (1989). These tests are used here as a validation of
the present numerical scheme as a model for irregular wave propagation.

For a random wave trai1, the water surface elevation may be written as

L M

\(r,A,t) = I L ,qt^cos{k; cos2*r * kr sin 0*! - 2r ffi t tl:1*} (20)
l=1 rn=l

rvlrere A1* is wave amplitude; /1 is wave frequency; 0- is wave direction; and ry't,,, is
random phase independent of frequency and direction. Instead of using a discrete set of
*a.'e angles, we use here a discretization of the longshore rvavenumber spectrum. The
longshore wavenumber )- is defined as

)- = kl sin 0* (21)

which determines the wave direction 0* at each frequency. At the uprvave boundary
(o = 0), the water surface elevation is given by

L M

n@,t)= t I A1,,, cos{)* g - 2tr fft * {tt*}
l=1 rn=l

For given frequency fi and longshore wavenumbet )*, rve get the amplitude of the watef
surface elevation

(1e)

(22)

A -^ l n  - (23)

where Sr(/) is the spectral density dependent on the frequency / and .t-()) is the
directional spreading function dependent on the longshore wavenumber l. We can get
.9,"()) from D^(0) (which is the spreading function dependent on the direction 0) by
the condition

,r,(r)or*Po^

It, o1e1at = l:r$)a.r : ,,

Ki rby
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Figure 2: Comparison among linear model (dashed lines), nonlinear model (solid l-ines),

and experimental data of Berkhoff et al. (1982)
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and so,

The o-component of fluid
potential and is given bY

wlrere the amplitude Bm is given by

s() )  ^ .  ̂ .  d0 D(0)
ii = D(o) d^ = ft;#
velocity at xrz: 0 can be obtained frorn

M

D B,*cos{)-y - 2tr fft + tm}
tn=l

BI* =
2n ft

the

(25)

velocity

(26)

(27)

(2e)

(30)

When the spectral density ^9(/) and the directional spreading function D(d) are

given, we can get the amplitude of the wave velocity 86. Using a 2-dimensional

it uu.ru FFT froin the frequency and longshore rvavenumber domain to time and y space

domain, we can generate the velocity /"'
Since the model equation (1) is not valjd for an arbitrarily large range of {requencies,

we proceed by separating the rvhole spectrum into several bands. In each frequency

bani, we then conitruct i rvavemaker or offshore boundary condition using the spectral

inforilation falling within that band. The tirne-dependent mild slope equation is then

solved for the nariow-banded irregular sea lying within each frequency band. The final

solution is obtained by adding the different bands.
Pollowing Vincent and Briggs (i989), we use the TMA spectrum as the target fre-

quency spe6rum and a wrapped normal function as the directional spreading function'

The TMA spectrurn is given bY

s(/) = as2(21,1-a 7-5 exp{-l. ,5(+Y* (ln 7) exp[- 
ffi l lrf 

t,nl (28)

.9(/) depends on the parameters a (Phillip's constant), fp (peak frequency) 7 (peak

"nhin."*"nt 
factor) ind o (shape parameter). The factor 4Urh) incorporates the

effect of the depth h and may be approximated by

L

; _ = \ -
Y &  L J

t = L

(  o .s r ' , ,  w6 11
d =  1  1  -  0 .5 (2  -an)2 ,  7  1  w6 12

I  t ,  . i h>2

where u1, = 2rf (hliltl '. The parameter 7 is assigned values of 2 (broad frequency-)

and 20 (narrow fiequency). For the cases studied here, ? was assigned a value of 20'

The directional spreading function D(0) is obtained by assigning the values of either

10o (narrow spreading) or 30o (broad spreading) to the spreading parameter os:

D(o) = * - :t "*'-($1 cosn(e - os)

where 0o = mean wave direction ( = 0o) and -l[ = number of terms in the series (= 2S).

Vincent and Briggs (i989) present a number of cases with a combir-Lation of monochro-

matic, narrow-banded or broad-banded frequency spectra and unidirectional, narrow-

banded or broad-banded directional spreads. Hete, we show results for three typicai

^ s\fk? - AL
AIm-*-
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cases: a monochromatic unidirectional sea (M2), a sea with narrow frequency and nar-

rorv directional spreading (N4), and a sea rvith natrow frequency and broad. directional

spreading (84). 
'Ail 

thrie cases involve non-breaking waves. Wave perio.d (M2). and

po"k p"tla 1N+, 84) are 1.30s. Wave height (M2) and rms wave height (N4, 84) are

2.54cm. Phillip's a is taken to be 0.00047.
\4Ie separaie the whole frequency spectrum into five components with equal band

rvidths. ih" fiu" components of the frequency spectra cover 95 percent of the total

spectral density, and, using the grid spacings chosen-below, the ratio of minimum wave-

length to spatiai grid size is 4.5a. We use i rveighted average of the frequencies in each

fr"{u"ncy band t6 deterrnine the representative frequency. used to compute the model

.o"^ffi.i"rits for each band. The band rvidth is 0.267 Hz (see figure 3). The grid size

is Ac - Ly = 0.1905rn and time step is a, = 1.3/80s. we compute until t - 260s.

Variances o-f water surface elevation, rzo a.re computed between t = 65s and I = 260s

a.nd, by the assumption of the Rayleigh distribution of the rvave height, significant wave

heights are computed according to

H, :AJms (31)

In figures 4-6, the water surface elevations in the whole spatial domain at t = 260s

are shoin for cases IlI2, N4, and 84. The figure for Case M2 shows that the waves are

long-crested a1d symmetric along the line crossing the center of the shoal parrallel to

r rii.. After the waves pass theitrout they become short-crested because of refractive

iocusing. When *. .o*pur" the cases with directional sprea$lng (N+ a1d Ba) we clearly

see thai the wave fietd with broad directional spreading (B ) is more short-crested than

the wave field with narrow directional spreading (N4).

In figure 7, the computed norrnalized wave heights along the section 4 are compared

with me'asur"d drtr for cases \,t2, N4, and 84. For case M2, the normalized wave height

near the celterline is greater than 2, which shorvs the considerable effects of refractive

focusing over the shoal. For case N4, the computed res-ults shorv underestimation near

the cerJerfine and overestimation away from the centerliue. For case B4, the computed

results show overestimation all along the section. The model results and data indicate

that increasing directional spreading leads to much less spatiai wave height varia,tion

induced by loJaUzed topogriphic irregularities. This result is seen in all spectral wave

studies, und ir a manifestation of the fact that the local minimums and maximums

in the difraction pattern for each spectral component overlap and experience mostly

destructive interference.
Roughly, a.ll three cases show that the model yields reasonably accurate results

.or11pur"-d *ittt thu measured data. It is found that for directionally broad spreading

case'(84) the refractive focussing effects are not noticeable behind the shoal.

Forced long waves

The forcing of long waves at difference frequencies is of particular interest in coasta,l

design duJto the influence of long waves in lorv frequency harbor seiching and forces

on iroored ships. I(irby (1983) extended the [near mild-slope equation to include

forced low-frequency componenfs, using the Stokes expansion to second order in the

Lagrangian. The *tdel foi the additional low-frequency_components is given by forced

lorrg rvJve equations, which for variable depth are given by

Ki rby
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Figure -, ;;; ;;.;;;;;;':'u;';;s (case M2)

Figure t, ;;"; ;t;;;;'L",'1, ,'= ,uo seconds (case N4)
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Figure r, ;;;;,,1,**""i"";;;;,'= ;';";s (case 84)
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where ( ) denotes a time average. The correct method for computing time averagesin

un oo.ieudy wave train is unclear. If the wave train is narrow-banded, we may use the

extraction of the dominant frequency in section 2 as the basis for isolating the slowly-
varying amplitudes. Foilowing this strategy, (32) and (33) may be further reduced to

ez , t  *Yn .  {hVn /1z }  =  -V t '  {TV ; }

dz,t*sqz = fiA*-;rrW-fiA

\z, t  * Y n'{hY ndz} = -}n (vo '  14.vndJ)

dz,t * srtz = *,o. 
- t^(o ^a. vud.) - 

#rr.

(32)

(33)

(34)

(35)

These equations may also be rvritten as a single second-order equation, analogous to
(13), after elimination of 42. The numerical schemes are again identical to those used

for the basic linear equations.
Figure 8 shows a plot illustrating the generation of a single wave group and the

associited bound and free long waves irr a one-dimensional wave flume. The wavemaker

motion used does not compensate for the decrease in tota.l volume (at second order)
associated with the entrance of the wave group into tlie wave channel. There is thus a

free long wave generated whose net positive volume compensates for the negative volume

associated with the setdown under the wave group. This positive wave propagates arvay

from the wavemaker as a free wave, and thus leads the short wave group in the tank.
Additional results for long wave generation and harbor resonance in 2-D will be

reported separately.

Conclusions

We have developed models for the numerical solution of time-dependent mild-slope
equations, and applied the models to the study of irregular and regular,wave propagation

in the coasta.l environment. Linear and nonlinear versions of the mode were applied to
Berkhoff shoal, and, as expected, we found that the nonlinear model showed better
results than the linear model. We also applied the linear version of the model to study
irregular wave refraction and diffraction by a submerged shoal,.and compared model
t"rriltr to experimental data given by Vincent and Briggs (1989). Finally, the models
were extended to include additional low frequency components which are forced by the
primary rvave envelopes, and some preliminary results on long wave generation were
shown.
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