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COMBINED REFRACTION-DIFFRACTION OF 
NONLINEAR WAVES IN SHALLOW WATER 

James T. Kirby,1 Philip L.-F. Liu,2 A.M's. ASCE 

3 4 
Sung B. Yoon and Robert A. Dalrymple , M. ASCE 

The parabolic approximation is developed to study the combined 
refraction/diffraction of weakly nonlinear shallow water waves.  Two 
methods of approach are taken.  In the first method Boussinesq equa- 
tions are used to derive evolution equations for spectral wave 
components in a slowly varying two-dimensional domain. The second 
method modifies the equation of Kadomtsev s Petviashvili to include 
varying depth in two dimensions. Comparisons are made between present 
numerical results, experimental data and previous numerical 
calculations. 

Introduction 

In recent years, the recognition of the need for an improvement 
on the predictive capabilities of standard refraction methods (for ex- 
ample, Skovgaard, et al., 16) has led to the development of several 
techniques for computing wave fields modified by the combined effects 
of refraction and diffraction. Among these methods, the parabolic 
equation method (PEM) appears to be particularly attractive in the 
study of wave propagation in open coastal regions since its usefulness 
depends on a nearly unidirectional propagation of waves with little 
backscatter. The method was first developed for monochromatic linear 
waves by Radder (14) and Lozano s Liu (12) and has been extended to 
include effects such as frictional dissipation (3) and wave-current 
interaction (1,6,9). Recently, the formulation has been extended to 
the case of second-order monochromatic Stokes waves (8,11,19). 
Iterative methods have been developed in order to model the gradual 
development of reflected wave components, both for the linear (10) and 
Stokes wave (7) formulations. 

Waves in shallow water near the coastline are rarely monochromatic, 
and are subject to fairly strong nonlinear interactions due to near- 
resonances as the phase speeds of individual spectral components 
approach coincidence.  In addition, the smallness of the ratio of water 
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depth to wavelength in such regions invalidates the assumptions under- 
lying the Stokes theory and leads, instead, to a description of the 
wavefield based on the Korteweg-deVries or Boussinesq equations.  For 
this reason, we have investigated methods for calculating the propa- 
gation and evolution of spectral wave components in an arbitrarily 
varying, two-dimensional domain, with the restrictions of shallow 
water and the parabolic approximation applied.  The results of this 
study extend the PEM to the case of nonlinear waves in shallow water, 
and are applicable to the study of harmonic generation and spectral 
evolution as well as refraction-diffraction. 

Two methods of approach are described.  First, Boussinesq 
equations are used to derive evolution equations for spectral wave 
components in a slowly varying, two-dimensional domain.  Secondly, we 
describe a similar modeling approach based on a version of the weakly 
two-dimensional Korteweg-deVries equation of Kadomtsev s Petviashvili 
(5) (hereafter referred to as the K-P equation).  The present approach 
extends the K-P equation to include varying water depth in two di- 
mensions.  The resulting systems of coupled nonlinear partial differ- 
ential equations for spectral wave components from two approaches are 
quite similar.  These equations are written in finite difference form 
using the Crank-Nicolson method, yielding an initial-boundary value 
problem for the spatial evolution of each spectral mode. 

The present model is used to examine the refraction of a cnoidal 
wave over a plane slope in a rectangular channel. Numerical solutions 
agree very well with previous analytical and numerical results.  The 
formation of stem waves along the boundary and the development of a 
high-frequency modulation are observed and discussed. Comparisons are 
also made between the predictions of each model and the experimental 
data of Whalln (18) for his three second wave period case.  The agree- 
ment between experimental data and numerical results is reasonable but 
not excellent. Both models predict much higher first harmonic ampli- 

tudes along the centerline of the tank.  The prediction of the second 
and third harmonic amplitudes is seen to be better. 

Nonlinear Shallow-Water Wave Equations and Parabolic Approximation 

The Boussinesq equations, which include nonlinearity and 
dispersion to the leading order, are used as a basis of the first 
approach.  Using 10 as the characteristic frequency, a0 as the charac- 
teristic wave amplitude and hQ as the characteristic water depth, we 
introduce the following dimensionless variables: 

t = wt'   ,   (x,y) =  (x1,y')   ,  z = z'/h 
/^T ° 

o 

h = h'/h0       -      u = u'/[~ /giT]       ,       ?  = ?'/ao (1) 
o 

where  £  is  the free  surface displacement and u represents   the depth- 
averaged horizontal velocity vector.     The quantities with prime denote 
dimensional quantities.     If  the  scale  of water depth  is  small  in 
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comparison with the horizontal length scale and the wave amplitude is 
small compared with the water depth, i.e., 

U2 = w2hQ/g « 1 (2) 

E = a /h « 1 (3) 
o o 

the Boussinesq equations take the following dimensionless forms: 

|| + V-I(h + eOu J = 0(e2, ev2,  u4) (4) 

|H. + eu-Vu + VC = v2 {| h A. viV-(hS)] - ~ h2 ^ V(V-S)} 

+ 0(e2, EU2, U4) (5) 

2 
where two small parameters, e and u , are assumed to be of the same 
order of magnitude.  In the present study we also assume that the 
variation of water depth is small in a characteristic wavelength, 
i.e., 0(|Vh|) < 0(u2). 

We shall study the propagation of a shallow water wave train 
which is periodic in time with the fundamental frequency u.  The 
solutions can be expressed as a Fourier series 

5(x,y,t) = i I ;n(x,y)e"
int , n=0, ±1, ±2, ... (6) 

ulx,y,t) = | E u (x,y)e"lnt  , n=0, +1, +2, ... (7) 
2 n n 

->- -> 
where (?_n, u_ ) are the complex conjugates of (5n, un).  Substituting 
eqs. (6) and (7) into eqs. (4) and (5) and collecting the coefficients 
of different Fourier components yields the set of equations 

-in Sn + V-Ch un) + f | V-(?s un_s) = 0(e
2,EW

2,u4)        (8) 

2 2 
-in u + Cl - Ji-|- h)VS + f I   (u -u  ) = 0(E2,EU2,y4)    (9) n        3     n  4 s  s n-s 

where s = 0, ±1, ±2, .... From these two equations we can find the 
following lowest order relationships: 

un = - i V;n[l + 0(£,y
2)] (10) 

V-u = in 5 /nil + 0(s,vi2)J (11) 

for n ^ 0, and 

"o " " -t I Cs "-s + °le2,Acp2) (12) 
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?O   =   ^IV"-8+0(£2'p4'Ev2) (13) 

For  the  case where water depth is  a  constant,  h =  1,   eqs.   (8)   and   (9) 
reduce  to  those derived by Rogers  & Mei   (15). 

+ 
Using eqs.   (10)   and   (11)   in eqs.   (8)   and   (9)   and eliminating u 

n gives 
,,2  2. 2 u  n n V-[(h - HrMVC  ]   + n2C    = f- {E   <n2-s2)S  C     a 3 n n       2h    s s  n-s 

3 \    i\ 
- h  I     <^)V?   -VC -   2h2  I    -r1—r (—^ •      n~S 

.       n-s       s       n-s ..  s(n-s)     ~   2       ~   2 
s*n s*0 3x        3y 

2 2 s*n 

-aVTT1))   +  0(e2,Eti
2,p4) (14) 3x3y    dx3y 

which constitutes  a system of  nonlinear equations  for  ?n   (n = 1,2, 
3,...).     Since  eq.   (14)   is  a differential equation of  the  elliptic 
type,   appropriate  boundary conditions must be assigned along  the 
boundaries.     Once  ?n   (n =  1,2,...)   are  found,   eq.   (10)   can be used  to 
calculate   the  velocity vector un.     The mean  free  surface   set-up or 
set-down,   C0,   is  obtained  from eq.   (13). 

We  now consider  the  cases where  the dominant wave propagation 
direction is known and  is  in  the  x-direction.     The  free  surface 
displacement for  the  n-th harmonic can be written as 

Cn = Vx,y)einx (15) 
where  tynlxiy)  denotes   the amplitude  function which  takes both  refrac- 
tion and diffraction effects  into account.     Substitution of  eq.   (15) 
into  eq.   (14)   yields 

32i|> 32i|) 3G 3I|I 3G    3I|> 
„   ,       n ". , „. n.        n n       n 
G   (—— + ——) +   (2in G     + -r ) -r  + -r -z  

n   -   2 ,2 n       3x dx 3y     3y 
3x 3y 

3G 
+   (in IT - "2 Gn + "X = k {l   [h  S(n+S)   +   (n2-s2)1   Vn-B 

3i|j 3iJ) 

-hi     (2i±§-  tvip   -W + i   si|>    -—— +  i(n-s)   i|< —] 
.       n-s s       n-s s     3x n-s  dx 

s*n 

32i|)    32i|)             32iJ)    32i|> 
2  ]_     'js n-s       [s n-s 

I„ s(n-s)   L.   2       .2       "  3x3y    3x3y 
s*0 3x 3y 
s*n 

32Tp 3I|J     3 til 3 ill     32i|> 
2, n-s ,        .        s       n-s        .,- s n-s 

- s ty — + s(n-s) -5 5  + i(2s -5 ^— 
S   3y

2 3*    8* 3X    3y2 

3* 324> 3% 3* .  , , s   n-s   ,   %   s  n-s.,   „, 4  2 ,2 ,,,., 
- s -5 5—5— - n-s) T—5- 5 1 + 0(u ,ep ,e ) (16) 3y  3x3y        3xdy 3y 
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where 
2 2 2 

G - h - 2-£-£- (17) n       3 

In principle, eq. (16) can be solved as a system of boundary value 
problems for IJJ . 

The amplitude function ipn is primarily a function of the water 
depth due to wave shoaling. Therefore, tyn  varies slowly in the direc- 
tion of wave propagation at the same rate as that of h in the x- 
direction,  Thus 

Tn . 3h  .,  2, ,.„. 
W    Si - oi£'v > (18) 

—-2- „ 0(£2,u4,eu2) (19) 
3x^ 

The diffraction effects are considered important.  Hence, 

3\|i 

jf-  - 0(1) (20) 

Using eqs. (18-20) , we can simplify eq, (.16) significantly to get 

3i|i 32* ,    3G    3i|i .     3G 
-. n n       1        n      n   ,    rxn      n 2.,        1 ., . 
2ln W + TT + G- W 3F +   [G~ ^T - n   (1  - G~n*n 3y n n n 

3* 3* 
e      r„   ,,       ,        . 2  2,..        _  ,n+s,   s  n-s 

= _. _ {2 [h s(n+s) + n -s ]if ^   -h 5  ( ) -5 5  2hG  s s n-s    sfn n-s  3y  3y 
n 

a V       3* 3'f' „, 2 v  1  r  ,    n-s   ,   .   s  n-s. -i ..... 
+ 2h  5   ts i>    —^ n-s) -5— 5 ] i (21) sfn n-s    s „ 2 ' 3y   3y 

Significantly, we have converted a set of elliptic equations (16) into 
a set of parabolic equations, (21), which may be solved with efficient 
numerical techniques.  For later use, we can rewrite eq. (21) in a 
dimensional form _ 

3ip .      . 3* , 3G .   , 2  2 
-, •     , n       13,—      rn. ,    1    ,. , n 2, 2— ,   n u  , . 
2in k    -— + — -r—  (G    T—) + — (xn k    •?  n k G +  )ty 

o  3x        —    3y      n  3y — o  3x on g       n 
G G 

n n 

1     rl   v    r, 2       , * ")2    ,    2      2>!  ,     , 1      v       ,n+s 

G 
n 

{•=• I   [k    s(n+s)   + =7- (n-s  )]* t        - r-   S     (iL-2-) 2  s      o gh s n-s       2  s^n    n-s 

3ih     3i(i g k    h               M                           3*     H 
s      n-s „           o .   .           n-s                ,       s      n-s., 

•3 5  +    S    -5  Es*„  5-  (n-s)  v- 5-—] i       (22) 3y       3y sf n    2,                   s     .  2                          dy       dy 
*         * oj   (n-s)                3y 

where 

*n " *«• - 4g^> (23) 
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is   the dimensional  form of eq.   (17)  and 

ID 

/g h" ^    o 

(24) 

is the wave number associated with a reference constant water depth 

The Crank-Nicolson method is used to rewrite the governing 
differential equations, (21), in a finite difference form.  The for- 
ward difference scheme is employed in the x-direction, which is a 
time-like variable, and a centered difference scheme is used in the y- 
direction. Details are similar to those given by Liu and Tsay (11) 
and are omitted here. 

An Alternate Approach Based on the K-P Equation 

The application of the parabolic approximation to the more 
general Boussinesq equations involves an implied restriction to the 
case of waves with a unidirectional propagation direction and small 
transverse modulation.  In this connection, it is of some interest to 
examine model equations with time dependence incorporated which em- 
body the same basic assumption. For the case of shallow water and 
constant depth, an equation of this form has been developed by 
Kadomtsev & Petviashvili (5). The K-P equation may be written 
(following Bryant, 2) as 

ox      ay 
The connection to the parabolic approximation may be seen by consider- 
ing only 0(1) terms and making the substitution 

? = i|)(x,y)el(X_t) (26) 

yielding   (after assuming 0(32iC/3x2)<<0( 3i|V3x)) 

2i_l+       t=0 (27) 

3y 

which is the parabolic approximation of the Helmholtz equation (rue & 
Mei, 19).  The K-P equation, which extends the Korteweg-deVries 
equation to include weak transverse modulations, thus contains the 
same degree of information as the parabolic approximation. 

Based on this correspondence, we may construct a version of the 
K-P equation for variable depth.  Retaining dimensional quantities, 
the resulting model equation may be written as 

3  ,1 3C   H' 1 3h' „,   3 ,, 3?'   (h')Z33S' 
3x' (C 3t' + 3x' + 4h'" 3x' ?' + 2h' V   3x' + 

3  ,u, 3S' + ^37r(h' Ty-> -° <28) 
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where C' = /gh'. Neglecting y derivatives, the equation reduces to 
the form given by Johnson (4) after non-dimensionalization.  Re- 
taining only lowest order terms, making the substitution (where we 
drop primes for convenience), 

X.  =?(x,y)eit/kdx-wt) (29) 

m =  C'k (30) 

and referencing the phase function to a constant value k (following 
Kirby & Dalrymple, 8) leads to the parabolic approximation 

2ikh f + 2 kh(k-V* + i ^* + £ (h |f) - 0 (31) 

which is simply the shallow water limit of the linear approximation 

2ik ccg H + 2k ^g*-^'* + i h  (k CCV* + h  (CS S)=0 (32) 

obtained by Kirby & Dalrymple (8).  In eq. (32) C = 3d)/3k is the 
group velocity. 

Before substituting a series expansion for t,,  it is advantageous 
to alter the dispersive term 33£/3x3 by the following substitution 

2 

yielding the modified equation 

3x lc 3t  3x  4h 3x 4  3h ^ ax7  ,2 .2,  ln 3x' 
6C  3t 3x 

which has approximately the same dispersion relation as the set of 
equations (4) and (5).  The parabolic approximation is obtained in 
similar fashion to the procedure of the previous section; we proceed 
using the slightly revised form 

1 ^  T /   * in(/kdx-cot) , ,c, 
? =1 n£-oo V

x'y)e (35) 

to manipulate eq. (34) initially, after which a shift to a reference 
depth is employed (as in eq. 31) to obtain 

3il)    k   .    3i|i in k 3G 
,,  ,   Tn ,   o  3 ,,   n. , 1 .   o  n  _ 2. „  , .— 2in k -— +  — (h T—) + — [—=— -r 2n k (k -k)G o 3x     — 3y   3y    —    2       3x       o o   n 

n n 

4 k   4      3n k k   n-1 N-n 

3  k  g Tn    —       _ rsyn-s     ,  -sTn+s 
4G      s=l s=l 

n 

1 S n < N (36) 



1006 COASTAL ENGINEERING -1984 

where 

00 

1 v  i /   > in(k x-(Dt) ,„_,, 
C = - I i|i (x,y)e   o                                (37) 

2 n=-» n 

and where G and kQ are defined previously.  The difference in the 
coefficients of tyn  in eqs. (22) and (36) is accounted for by the fact 
that the substitution (37) is used throughout the entire process to 
obtain eq. (22) rather than the intermediate form, eq. (35). 

Comparing eq. (36) to the corresponding equation (22), derived 
from the Boussinesq equation, we observe that the basic characteristics 
of these equations are the same. We remark, however, that in the ap- 
proach using the K-P equation the nonlinearity is localized due to the 
original form of the equation (no y-derivatives in nonlinear term), 
and that the retention of only the lowest-order depth dependence in 
the y-derivative term implies a possible error in energy flux con- 
servation and refraction for waves shoaling over a general two- 
dimensional topography.  This latter effect could be alleviated by 
making the substitution 3(G 3I|I /3y)/3y for the given term in eq. (36). 
However, numerical experiments for the case of Whalin's experiment 
(18) have shown that this effect is not important to the present 
s tudy. 

Refraction of Waves over a Plane Slope 

Both of the models derived here are strictly applicable to the 
case of waves propagating over topography which is very slowly varying 
in comparison to the fundamental wavelength.  Experimental data which 
satisfies this criterion is lacking due to the large wave basin 
needed.  Therefore, we first compare the present model's results to a 
case for which computational results are available.  Such a case has 
been provided by Skovgaard & Peterson (17), who used the properties of 
a very slowly-varying train of cnoidal waves to develop a theory for 
the refraction and shoaling of obliquely incident waves on a plane 
beach.  This situation has also been studied recently by Madsen s 
Warren (13), who obtained a numerical solution for the case of waves 
propagating in a rectangular channel containing a plane slope oriented 
at an angle of 26.6° to the channel side walls. Madsen & Warren used 
a time-dependent, finite difference solution of a set of conservation 
laws equivalent to eqs. (4) and (5) to obtain their numerical results. 
Here, we use the parameters chosen by Madsen & Warren and study the 
same channel configuration; however, we neglect the lateral boundary 
damping employed by Madsen & Warren in order to study the details of 
the reflection process at the vertical, impermeable side walls.  The 
computational domain is given by 0 _<^ x <_  2154.5, 0 _<_ y <_ 1534.5, with 
waves normally incident at x = 0.  Slope-oriented coordinates are 
given by 

x' = (x - 420) cos (26.6°) - (y - 775) sin (26.6°) 
(38) 

y' = (x - 420) sin (26.6°) + (y - 775) cos (26.6°) 

with water depth given by 
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x' < 0 

0 ^x'   <_  1076.9 m       (39) 

x' > 1076.9 m 

Wave parameters for the problem are given by 

T = 17.3 s = wave period 
H = 1.74 m = wave height at 21 m depth 

which gives a deepwater wavelength LQ = 467.1 m and an Ursell number 
Ur (H/2h)/(kh)z = 0.13 in the deepwater portion of the channel. 
Initial conditions for the calculation are thus specified according to 
a third order Stokes wave at x = 0. A total of N = 6 components are 
retained, and the computational domain is divided into a rectangular 
grid with Ax = Ay = 15.5 m. 

A plot of the model topography is given in Figure 1 along with a 
snapshot of the instantaneous water surface elevation, with contour 
increments of 1 m for bottom topography and 0.4 m for surface eleva- 
tion. As the wave shoals, refraction effects are apparent in the cen- 
ter of the channel, and the wave develops from nearly sinusoidal form 
to shallow water profiles with narrow crests and broad troughs.  The 
formation of a "Mach Stem" is apparent on the right boundary, where 
refraction turns the incident wave towards the wall, inducing a 
grazing-incidence reflection as in the study of Yue s Mei (19). Also 
apparent is the development of a high-frequency modulation, possibly 
consisting of an un-phaselocked higher mode, which evolves in the 
shallower portion of the tank.  This short wave component causes a 
significant modulation of waveheight H(x,y) in the shallow (h = 7 m) 
portion of the domain. 

A plot of normalized waveheight H/h versus normalized water depth 
h/LQ for y = 750 m is given in Figure 2 in comparison to the refrac- 
tion model of Skovgaard S Peterson (17) and the time-dependent numeri- 
cal results of Madsen and Warren (13).  The evolution of H/h is seen 
to be quite smooth up to the shallower depths, with the plotted points 
(corresponding to every fifth computational point) agreeing quite well 
with the refraction theory.  In the shallow portion of the tank, the 
short wave modulation causes a significant variation in local wave 
height about the theoretical value.  Wave height H was obtained by 
stepping the individual components through time to construct C'(x,y,t) 
and then determining H(x,y) according to C ?' •    . Bin 

Refracted  angles  of   incidence  between  the wave  and  slope  also 
agreed quite well with  the  refraction model and  are  not shown. 

Plots  of   the water surface profile along  the  line  y =  750 and 
through  the   "Mach  Stem"  region y =  0 are  shown in Figures   3a and b, 
respectively.     In both  cases,   results  show the presence  of  separate 
peaks  in  the wave  troughs;   this was  also noted  in  the  results  of 
Madsen s Warren and was  attributed  to  truncation errors.     The  rapid 
evolution of a  nearly uniform wave  train is  evident in  the Mach-stem 
region in Figure  1.    We  remark  that,  due  to  the  narrowness  of   the wave 
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800 1200 1600 2000 
x(m) 

Figure 1. Bottom topography and contours of instantaneous surface 
elevation at t = 0; - - - - bottom contours in increments 
of 1 m, 7 m < h < 21 m,   contours of free surface 

elevation in increments of 0.4 m. 
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 SKOVGAARDand PETERSEN 
A  MADSEN and  WARREN 
•   PRESENT STUDY 
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Figure 2. Normalized wavehelght H/h as a function of h/Lo; error bar 

$ at h/L0 = 0.015 indicates range of H values in shallow 
part of tank due to short wave modulation. 
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Figure 3.  Free surface profiles for onoidal wave refraction: (a) 
along y = 0 m, sidewall and through Mach stem region, and 
(b) along y = 750 m, near the centerline of channel. 

crests, displacement of these crests away from actual computational 
grid points may contribute significantly to the modulation of crest 
elevations ?'  which is apparent in the plotted results. 

We remark that increasing the number of modes without a further 
reduction of grid size did not significantly alter the results of this 
example.  Tests with smaller grid size have not yet been conducted. 

Wave Focusing By a Topographical Lens 

Whalin (18) conducted a series of laboratory experiments 
concerning wave convergence over a bottom topography that acts as a 
focusing lens. The wave tank used in the experiments has the 
horizontal dimensions 25.603 m x 6.096 m.  In the middle portion of 
the wave tank, 7.62 m < x < 15.24 m, eleven semicircular steps were 
evenly spaced and led to the shallower portion of the channel (Figure 
4).  The equations approximating the topography are given as follows: 
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o L 
_L_ 

ooooooooooo 

assasaaa3a3 

_i_ _i_ _L_ _1_ 
0 2 4 6 8 10 12 14 16 18        20        22        24        26 

Figure  4.     Topographical   lens   in Whalin's   (18)   wave   tank  experiments. 

0.4572 m        (0  <_ x  <   10.67  -  G(y)) 

h(x,y)   =•(  0..4572  +—  (10.67-G-x)   m(10.67-G  <_ x _<_ 18.29  - G)      (40) 

.0.1524 m       (18.29   - G  <  x  <   21.34) 

where 

G(y)   =  [y(6.096  - y)] 1/2- (0  < y  <  6.096 m) (41) 

The bottom topography is symmetric with respect to the centerline of 
the wave tank, y = 3.048 m. 

A wavemaker was installed at the deeper portion of the channel 
where the water depth hQ is 0.4572 m.  Three sets of experiments were 
conducted by generating waves with periods T = 1, 2, and 3 sees., re- 
spectively.  Different wave amplitudes were generated for each wave 
period.  For the cases of T = 1 and 2 sees., a second order Stokes 
wave theory (11) has been shown to describe the combined refraction- 
diffraction mechanisms adequately.  The focusing of water waves by 
refraction led to a focal region, in which energy was transferred to 
the second harmonic.  For the experimental set with T = 3s the Ursell 
parameter, Ur = (a/h)/(kh)^, is generally greater than unity in the 
shallower water region, which indicates that the Stokes wave theory is 
no longer valid and the present shallow water wave theory should be 
used.  In Table 1, we summarize the experimental data and the corre- 

sponding small parameters E and v' The water depth in the shallower 
region, h-i = 0.1524 m, has been used as the water depth scale. 

Wave Period 

T(s) 

Incident Wave 
Amplitude 

a0(cm) e  = ao/hl = (Aj/g 

3.0 0.68     0.98     1.46 0.0446     0.0643     0.0958 0.0682 

Table   1.     Experimental and Numerical Parameters 
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According to Whalin's report, the second and the third harmonic 
waves grow rapidly in the focal zone.  In fact, the ampli-tude of the 
higher harmonics becomes larger than that of the first harmonic (see 
Figures 5 and 6).  To study this problem, we obtain numerical 
solutions by using both approaches described above.  In numerical 
computations for each model, five harmonics (N = 5) are considered. 

Owing to the symmetry of the problem with respect to the 
centerline of the wave tank, only one half of the wave tank is 
discretized. The computational domain starts from the wavemaker, 
x = 0, and ends at x = 22 m.  The no-flux boundary conditions are used 
along the side wall and the centerline of the wave tank, i.e. 

-g  = 0        along y = 0 and 3.048 m (42) 

for all n.  The wave amplitude for the first harmonic waves at the 
wavemaker (x = 0) is prescribed with the values shown in Table 1.  The 
initial conditions for higher harmonic waves are zero. 

In numerical computations different grid sizes are tested for the 
convergence of the numerical scheme.  Numerical solutions presented 
here are obtained by using Ax = 0.25 m and Ay = 0.3048 m, although no 
noticeable differences are observed when the grid sizes are doubled. 

In Figure 5a, numerical results based on the Boussinesq equation 
approach for the case with e = 0.0446, v2 =  0.0682 and a0 = 0.0068 m 
are presented with experimental data.  Wave amplitudes along the 
centerline of the wave tank are plotted.  Since it is assumed that 
only the first harmonic waves are generated at the wavemaker, the wave 
energy in the higher harmonic components are sufficiently small over 
the constant depth region (0 < x < 8 m).  However, as waves start to 
refract over the topography and focus along the centerline of the 
tank, a significant amount of energy is transferred into higher 
harmonic components. The agreement between laboratory data and 
numerical solutions is reasonable.  The numerical model overestimates 
the first harmonic amplitudes.  The second and third harmonic wave 
amplitudes are in good agreement with reported data.  (Several experi- 
ments with higher values of N indicated only minor changes for modes 
1-3.)  Results for the cases a0 = 0.0098 m (£ = 0.0643, V2,   = 0.0682) 
and a0 = 0.0146 m (e = 0.0958, u2 = 0.0682) are shown in Figures 5b 
and 5c, respectively.  Again, the model uniformly overpredicts first 
harmonic amplitude along the channel centerline, although the 
amplitude of the second harmonic is well-predicted in both cases.  The 
third harmonic amplitude is also well-predicted in Figure 5b.  The 
high-amplitude case of Figure 5c indicates a tendency for the 
numerical result to undergo the start of a recurrence behavior before 
the experimental maximum of £3 is obtained. 

Numerical results for the three cases presented above were also 
obtained using the K-P model with N = 5.  Here, h0 and kQ are taken to 
correspond to the shallow portion of the tank.  To compare these 
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Figure 5.  Harmonic amplitudes along centerline of Whalin's channel, 
a) aQ = 0.68 cm, b) a 
using equation (21). 
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Figure  6.     As   in Figure  5.     Results using  equation   (36) 
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two models, numerical solutions for the first three harmonics are 
shown in Figure 6a-c.  For the low amplitude case aQ = 0.68 cm 
(Figure 6a), the results from the K-P model show an underprediction 
of second and third harmonic amplitudes, indicating the possible effect 
of the lowest-order y derivative term given in eq, (36),  For the 
higher amplitude case (Figure 6b and c), nonlinearity becomes relative- 
ly more important and results of the two models are in closer agree- 
ment, with the exception that harmonic amplitudes grow somewhat more 
slowly in the K-P model.  Both models are seen to be capable of pre- 
dicting the essential features of harmonic generation in the 
focusing of a nonlinear wave, We remark that results of each model 
are sensitive to the choice of initial conditions, so that more de- 
tailed comparisons than those obtained here are not possible in the 
absence of detailed data in the vicinity of the wavemaker (x < 8 m). 

Finally, the evolution process described in the present cases 
occurs in the space of about two first harmonic wavelengths, indi- 
cating that the theoretical limitation to slowly varying topography 
and amplitudes is not restrictive in practice. 

Concluding Remarks 

The present study has demonstrated that the parabolic equation 
method may be successfully applied to the modeling of weakly nonlin- 
ear, weakly dispersive wave motions governed by the Boussinesq equa- 
tions.  The present study has been confined to the investigation of 
the propagation of monochromatic waves together with their nonlinearly- 
generated harmonics. However, given the necessary computer capacity, 
the method is directly applicable to the problem of modeling two- 
dimensional spectral evolution in shallow water. 

In this study we have neglected the effects of frictional 
dissipation and wave breaking; the models in their present form are 
thus applicable to the region seaward of the surf zone.  The inclusion 
of wave breaking effects in the models may be expected to be a non- 
trivial extension of the present results, since the models do not 
directly calculate the total wave height at each computational point. 
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