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Abstract

This thesis describes a hydrodynamic model extended with sediment transport capabil-
ity in order to study bedform changes on time scales up to several days. The hydrodynamic
model treats the nonlinear shallow water equations, and the sediment transport equation
used is a basic formula relating the current velocity raised to some power to the volumet-
ric sediment transport rate. The bottom change is computed through a standard sediment
conservation equation.

This coupled model is mainly used to study the evolution of rhythmic topographic bed
forms in a rectangular channel with nonerodible side banks. The onset of the topographic
instabilities is achieved by initially introducing perturbations to the bed. A linear stability
analysis of the flow field and bed forms for the rectangular channel case is presented. The
initial channel geometry and bed perturbations are chosen according to the results obtained
from this analysis. The resulting wave number to frequency relations provide information
on the growth/decay and propagation speed of the bed forms within the finite amplitude
limit. The numerical results reveal information beyond this limit for more complicated flow
structures.

Parameters like the bottom friction coefficient, the power of the velocity in the sediment
transport equation, or the channel width-to-depth ratio affect the results significantly. These
are discussed considering both the analytical linear stability analysis along with results from
previous related studies, and also the results from the current numerical model.

Results are compared to laboratory data, which are discussed qualitatively.

The model is also used for a planar beach geometry, with forcing terms in the hy-
drodynamic part appropriate for the coastal region. These results are compared to related
analytical results and field observations.

Further improvements of the model for a truly representative surfzone morphology
requires the utilization of a sediment transport equation which can represent wave-dominated
cross-shore processes as well. The improvements and the problems associated with the
inclusion of such a formulation are all discussed along with some preliminary results. The
applicability of the current coupled model is discussed considering the sediment transport
equation used and also numerical issues which are related to the stability of the code and
the computational power required.
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Chapter 1

INTRODUCTION

Morphodynamics in any flow environment depends on complex, mostly nonlinear processes
including currents, waves in the coastal region, and sediment transport all interacting with
each other. This interaction results in the change of the bottom topography. Flow field
patterns both in the coastal region and river environment are generally associated with
rhythmic topographic features. There exists a constant feedback between the flow field and
bottom. Considering basic steady conditions, it is not possible to describe these patterns
observed in nature. Some perturbation in the flow field, or in the topography causes the
onset of irregularities not found for basic equilibrium cases. A small gap dividing two bars
in the surf zone may act as a perturbation causing the formation of rip currents commonly
observed in the field. The meandering of alongshore or along river currents can be associated
with transverse/oblique bar formations, cresendic bars, or ridge and runnel systems.

Analytical studies on the interaction between the flow and the bed are generally based
on stability analysis type of investigations. The momentum and mass conservation equa-
tions are used to describe the flow in a two-dimensional-horizontal domain. The analysis of
instabilities of only the flow field over a nonerodible bed can be extended by the inclusion of
the interaction between the flow and the bottom through a sediment transport and a sedi-
ment conservation equation. Due to the complex physics involved, the sediment transport
equations used are fairly simple. They usually relate the volumetric sediment transport rate
to the current velocity raised to some power. Although useful in investigating the initial
growth stages of the perturbations, a stability analysis is only valid in the small amplitude
limit and may not reveal details about the geometric form of features which have reached
large amplitude. More complicated flow and sediment transport patterns require a more
complete treatment of the problem. This, in turn, requires a direct numerical approach of
solving the combined governing equations.

The mechanisms behind hydrodynamic processes are fairly well understood. Numer-
ical modeling of these processes using the depth and time averaged momentum and mass
conservation equations are very common both in research areas and engineering practice.
The physical understanding of sediment transport and it’s relation to hydrodynamics, how-
ever are still not that well established. Although based on physical grounds, many sediment
transport formulations involve some empirically adjusted factors due to the fact that the



whole process is physically very complicated. Hence, as stated in the previous paragraph,
sediment trasnport equations are mostly simple relations between the flow velocity and the
sediment transport rate.

1.1 Instabilities of the flow field

Alongshore or along river currents can be considered as a two dimensional horizontal flow
since they are generally weakly dependent on depth. It is known that these flows can show
unstable features such as meandering. The meandering of longshore currents with very high
periods, showing behavior beyond the gravity wave limit, was first observed by Oltman-
Shay et al. (1989) during the SUPERDUCK field experiment. Several studies analyzing this
unstable behaviour followed, and different features of this instability were investigated.

The analytic study by Bowen and Holman (1989) showed that the shear instability of
the mean longshore current can reproduce the meandering nature of the observed motions,
referred to as shear waves. This analysis was carried out for a simplified current profile
applied over a constant depth.

In a numerical study by Putrevu and Svendsen (1992) a similar analysis was done for
a more realistic current profile and bottom topography. The results show that the topog-
raphy is an important factor, and that the presence of a bar enhances the strength of the
instability. The dispersion relationship found for the shear waves is almost linear and it is
rather unaffected by the topography.

Falqués and Iranzo (1994) performed another numerical study for vorticity waves aris-
ing from the same shear instability of the mean current. Their method allowed for an
arbitrary current profile and bathymetry, but remaining constant alongshore. Their results
agreed with the ones by Bowen and Holman (1989) for the simplified case, but the details in
the flow profile and bathymetry were found to significantly affect the instability process. The
eddy viscosity and friction factor were also found to be affecting the wavenumber span and
growth rate of the instabilities. Certain constant eddy viscosity values and realistic values
of the Chezy coefficient were able to remove the entire instability.

A similar more recent analysis by Allen et al. (1996) revealed properties of the prop-
agating finite-amplitude shear waves that are not directly related to linear theory. Their
results depend on a dimensionless parameter () which is the ratio of an advective to a fric-
tional time scale. For certain small values of @) corresponding to a higher frictional time scale
the disturbances equilibriated with constant amplitude. For larger values corresponding to
a lower frictional time scale the disturbances equilibriated with time-varying amplitude.

Ozkan-Haller and Kirby (1999) performed a series of numerical simulations of shear
waves, with the main goal of studying the long-time nonlinear behavior of shear instabilities
of the longshore current over a plane and barred beach (see also Ozkan-Haller, 1997). The
nonlinear shallow water equations including bottom friction and lateral mixing were used.

Their results for a plane beach show that the initial development of the instabilities
is dominated by vortex collision and pairing events. The flow structure exhibits offshore
directed velocity vectors with an alongshore propagation at a fraction of the longshore peak



current, which suggests the presence of migrating rip currents. Similar vortex collisions were
found in the barred beach results. The vortices are frequently shed offshore in this case,
suggesting transient rip current motions.

Although the alongshore length scales of the fluctuations were unaffected by the value
of the friction factor, more energetic fluctuations were associated with a lower value. The
mixing coefficient had almost no effect on the propagation speed of the shear waves, but
caused longer alongshore length scales together with weaker vorticies. They found that in
general, lateral mixing caused by shear waves is of comparable magnitude to mixing caused
by turbulence or Taylor dispersion.

For alluvial channels, stability analysis studies are generally directly in conjunction
with the resulting channel geometry. Although there are studies solely on the general flow
instability; the main concern is it’s relation to sediment transport and the resulting bed
forms in the channel.

1.2 Instabilities of the bed

The extension of the general hydrodynamic stability problem with a sediment transport and
sediment conservation equation provides information on the behavior of the resulting bed
perturbations and their interaction with the flow. This approach is the most general form
of stability analysis performed considering morphodynamic processes.

The mechanics of dunes and antidunes in channels for potential flow was addressed by
Kennedy (1963). Considering a two-dimensional-vertical channel he used an analytic model
of free-surface flow over an erodible bed. His results show that the type, wavelength and
propagation velocity of bed forms depend on the Froude number, the flow depth, and the
phase lag between the local sediment transport and local velocity, as well as the sediment
transport rate itself.

River environments provide examples of large amplitude bed features, such as alter-
nating bar configurations. Flume experiments by Chang et al. (1971) show that alternating
sand bars often observed in nature can be reproduced experimentally in straight laboratory
flumes. They also point out the significant relation between alternate bar formation and
river meandering. They observed that the width-depth ratio of the channel is an important
factor for the formation of bars.

The stability theory developed by Fredsge (1978) identifies if the river meanders, braids
or remains straight depending on the channel width-to-depth ratio, without putting much
emphasis on the resulting channel geometry. The study done by Parker (1976) stresses the
existence of sediment transport and friction for the occurrence of flow and bed instabilities.

The development of alternate bars in straight channels was investigated analytically by
Colombini et al. (1987) based on a standard linear and weakly nonlinear stability analysis.
Their model shows that nonlinear effects inhibit indefinite growth leading perturbations to
reach an equilibrium amplitude, and also that the development of higher harmonics tends to
cause diagonal fronts with high downstream steepness. A critical channel width is identified
below which no bars form, and quantitatively satisfactory predictions of the maximum bar
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height for a wide range of channel width values were presented. The analysis carried out by
Schielen et al. (1993) follows closely the work of Colombini et al. and extends the weakly
nonlinear part. Schielen et al. derived a Ginzburg-Landau equation which describes the
nonlinear evolution of the envelope amplitude of the group of unstable alternate bars by
allowing for spatial modulations due to wave packet dispersion. They demonstrated that the
periodic bar pattern can become unstable, exhibiting quasi-periodic behavior for realistic
physical parameters and a dune covered channel bed.

A more recent numerical study on the formation of alternate bars by Takebayashi
et al. (1999) focuses on the effect of sediment sorting on the resulting sand bars. They found
that sediment sorting suppresses bar height formed on non-uniform sediment and also that
wavelength and migration velocity can be significantly affected by uniform and non-uniform
sediment.

Similar instabilities are also found in the coastal region. Field observations done by
Sonu (1972) demonstrated that undulations of the surf-zone bed were an essential condition
to the formation of circulation and meander. Sonu (1973) also presented a series of field ob-
servations in which he studied three dimensional beach changes. He concluded that rythmic
topography exhibit periodic variations parallel to the coastline and that these undulations
have characteristics analogous to those of sand waves found in alluvial channels. Sonu also
stressed that an erodible bed coupled with a current can develop an instability in which any
disturbance of the bed modifies the longitudinal distribution of sediment transport, caus-
ing the growth and propagation of the bed deformation. A two year dataset of daily sand
bar morphology estimates from Duck, N.C., presented by Lippmann and Holman (1990)
resulted in an eight-bar-type classification scheme representing the morphologic variability
of nearshore sand bars observed at the site. The most common form was unstable longshore-
periodic bars. The most stable form was shore attached cresentic bars, and non-rythmic
three-dimensional bars were very transient.

Deigaard et al. (1994) presented a numerical simulation study of shear waves and
the corresponding sediment transport, using the hydrodynamic model MIKE-21. Rather
than the resulting bed formations, this study addressed the effectiveness of shear waves in
the cross-shore momentum exchange, how they reduce the longshore sediment transport,
and cause cross-shore transport. A similar study by Christensen et al. (1994) focused on
the stability of large scale periodic bottom topographies on a straight and uniform beach.
Emphasis was made on the description of sediment transport and the effect of the bed slope
on bed load transport. A standard perturbation analysis was performed. Results show
that the bed slope affects the kind of topography that emerges and the spacing of the rips
that form. The inclusion of suspended load was found to decrease these spacings for large
incident wave angles, and the phase lag of suspended load gives smaller growth rates. The
stabilizing effects were found to be the bed slope, large grain size and the phase lag of
suspended transport load; whereas the destabilizing effects were the longshore current and
the modification of the wave field due to the perturbed bed. A more recent study by Deigaard
et al. (1999) considered the morphological instability for a long straight barred beach. This
analysis can be considered as an extension to the previous two studies. Deigaard et al. found
that the instability is closely related to the cross-shore flow at the bar crest where a tendency
of deposition occurs. The instabilites concentrated around the bar form rip channels, and
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the alongshore spacing of the rip channels is affected by the flow resistance and horizontal
momentum exchange.

Similar to the study by Schielen et al., a more standard linear stability analysis for the
coastal region was presented by Falqués et al. (1996a). An initially uniform longshore current
on a plane erodible beach was considered. The growth rates and dominant unstable mode of
the bed perturbations mainly depend on the parameter R which is the ratio of bottom friction
to beach slope. Instability increases for higher values of R forming a simple transverse bar
pattern; higher values produce a more complicated pattern consisting of bumps and holes,
and downcurrent oriented oblique bars. The growth rates depend on R, the beach slope
and the maximum Froude number. Results show that the most complex behavior occurs for
mildly sloped beaches. In this analysis Falqués et al. considered bed-flow instability only,
in which the perturbations were not affecting the wave field, or more specifically the forcing
terms in the momentum equations. In another study, Falqués et al. (1996b) considered
also bed-surf instability in which the wave field is perturbed as well. Depending on the
incoming wave angle and wave height the results with bed-flow instability are generally more
complex and show a more complicated pattern, whereas for bed-surf instability a smoother
and simpler pattern evolves. Although causing a smoother bar pattern, they conclude that
bed-surf instability has the most de-stabilizing effect. Clearly, more research is needed to
clarify all these mechanisms in a more conclusive way. A recent and similar study on the
mechanism for the generation of wave-driven rhythmic surf zone patterns can be found in
Falqués et al. (2000). Using the same instability analysis Falqués et al. (1998) also performed
a study on the morphodynamic evolution of shoreface-connected ridges by considering large
scale behaviour of the proces.

Most of the analytical studies trying to describe features of these formations are gen-
erally addressing one particular configuration within the finite amplitude limit and do not
really describe the change from one configuration to another, as observed by Lippmann and
Holman (1990) for example. Even weakly nonlinear stability analyses are valid for basic
flow conditions and bathymetry. This is due to the complexity of the whole process, and a
description of such a configuration change would require a numerical treatment of the whole
problem.

Similar to the analysis by Kennedy (1963), but without the potential flow assumption,
there are also other recent studies considering a two-dimensional-vertical system for large-
scale bed forms in tidal seas. These are also based on a standard stability analysis. The model
by Hulscher (1996) shows how tidal currents form wave-like bottom patterns. According to
Hulscher the inclusion of vertical flow structure is the most crucial part for the formation of
all known large-scale bed features. A nonlinear analysis of the same problem is presented
by Komarova and Hulscher (2000), where linear instability and nonlinear coupling between
long sand banks and sand waves are shown to be the two mechanisms responsible for the
growth of these bed forms.

A recent extensive review on the mechanics of offshore and nearshore rhythmic bed-
forms based on a standard stability theory can be found in the study by Blondeaux (2001).
This review includes some of the above cited studies as well as other closely related work.
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1.3 Present Study

The main goal is to develop a morphology model which can be used to study bedform
changes on time scales up to several days. Focus is on the interaction between the flow and
the bed instabilities and the resulting topography. A basic movable bed model is coupled
with the hydrodynamic code of Ozkan-Haller and Kirby (1997). The approach is to carry
out numerical simulations using the coupled model, using also information obtained from a
stability analysis related to the specific cases. This approach is similar to the one by Ozkan-
Haller and Kirby, the only difference is that the problem is now extended with sediment
transport and a changing bottom.

A discussion of the related linear stability analysis follows in the next chapter. The
analyses by Schielen et al. (1993) and Falqués et al. (1996a) are briefly discussed. Results of
some cases are also presented.

A detailed derivation of the linear dispersion relation for an one-dimensional and two-
dimensional channel is presented in Chapter 3, as part of the stability analysis of the present
work. Results are presented in the form of dispersion curves for different parameters involved
in the derivation.

In Chapter 4 a review of the hydrodynamic code used in this study is presented. The
governing equations, the inclusion of sediment transport and the numerical method used in
the model are discussed with emphasis on the capabilities of the coupled model.

Numerical results and comparisons for a rectangular channel case and plane beach are
discussed in Chapter 5 and 6, respectively. The inclusion of an extended sediment transport
model and preliminary results are presneted in Chapter 7. Conclusions of this study with
suggestions for improvements of the model for future work are summarized in Chapter 8.
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Chapter 2

INSTABILITY OF FLOW
COMBINED WITH AN
ERODIBLE BOTTOM

A two-dimensional flow is considered stable if it does not change drastically with small
disturbances that are always present in the natural environment. If the flow field undergoes
a transition from laminar to turbulent flow this is associated with an instability mechanism.
In this case, the mean flow changes and shows variations in time as the small disturbances
grow. Considering the strong relation between the flow and the bottom, it is obvious that
any instability of the flow can also affect the bottom change in a similar way, and vice versa.

In order to study this instability, the equations describing the flow and the sediment
transport process are combined. The equations for the flow are the standard depth- and
wave-averaged momentum equations, and the mass conservation equation. These are com-
bined with a sediment transport equation, usually relating sediment transport flux to the
flow velocity; and a sediment conservation equation with which the actual bottom change
can be computed. If the basic flow state consisting of a stable longshore or along channel
flow becomes unstable to wave like perturbations in the flow itself or in the bottom topog-
raphy, the perturbations grow and can be observed as finite amplitude undulations of the
flow and the topography. A linear stability analysis reveals this phenomena, but once the
perturbations have reached finite amplitude a nonlinear stability analysis is required.

In this chapter we present an overview of a standard linear and weakly nonlinear
stability analysis. The theory by Schielen et al. (1993) is presented. This is followed by the
stability analysis Falqués et al. (1996a, 1996b) performed for a plane beach.

2.1 Instability Theory for a Straight Channel

Schielen et al. (1993) consider a simple morphological model describing the interaction be-
tween an unidirectional flow and an erodible bed in an infinitely long straight channel with
a mild along channel slope. A standard coordinate system is chosen, where the z coordinate
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points along channel, the y coordinate across channel and the z coordinate in the vertical
direction. The channel width and undisturbed water depth are y, and h,, respectively. The
situation is depicted in Figure 2.1.

The channel width is assumed to be much larger than the undisturbed water depth
and bar amplitudes developing in the bottom are considered to be much smaller than the
characteristic horizontal length scales. With these assumptions any boundary layer devel-
opment along the sidewalls or at the bottom, as well as flow separation due to the resulting
bed forms can be neglected. Therefore a depth-averaged model is considered.

The momentum and mass conservation equations then become

aa—ltl—l-(u-V)u—i-gVn:F,

od

— +V(ud) =0 2.1
~ + V(ud) (21)
As shown in Figure 2.1, u = (u + U, v) is the depth-averaged velocity, with u and v being
the perturbed velocities and U being the basic, steady along channel flow velocity; 7 is the
perturbed free surface, z; is the disturbed bed level, and d = n + hy — z;, is the total depth.
F represents the forcing and friction terms, defined as

+ ioga -C

d

F= (_C(U+U)((U+U)2+v2)1/2 i

o((u+U)? +u2)1/2> 22)

where C = g/ C']% is the drag coefficient, g is the gravitational acceleration, and Cy is the
Chezy coefficient. Note that the terms including the drag coefficient are frictional terms and
the other term is the actual forcing. i, is the along channel slope.
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Figure 2.1: Sketch of the physical layout: rectangular channel.
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Sediment transport is assumed to occur only as bed load transport which is a function
of the local flow parameters. The volumetric transport rate q is modeled as

a=vifu (2 ~+Va) (2.3
|ul

Here b > 0, and 7'V 2z, accounts for the tendency of downslope sand movement, where 7/ is

usually of order 1. Values of b range between 2 and 7. The coefficient v, depends on the

sediment characteristics and can only be determined empirically. It is important to note that

the porosity effect is included in this coefficient and therefore it is not necessary to include

it in the conservation equation described next.

The model is closed with a sediment transport conservation equation (2.4) and appro-
priate boundary conditions (2.5)

0z
1— b _Vv. 2.4
1-m%-v.q 2.0)
v=0, ¢g=0 on y=0, y, (2.5)

where the subscript y denotes the transport component in the that direction. The coefficient
n is the bed porosity. When this equation is divided by (1 — n) the bed porosity can be
absorbed in the coefficient v,. From here on v, is replaced by v which includes bed porosity.

With these boundary conditions the sidebanks are assumed to be impermeable and non-
erodible.

After scaling equations (2.1)-(2.5), this system can be simplified with a ’quasi-steady’
flow and a ’rigid-lid’ assumption. According to the quasi-steady flow assumption, the flow
instantaneously adjusts itself with the evolving bed. This means that the hydrodynamic time
scale y,/U is much smaller than the morphological time scale 31/*[?,;*, so any flow instability
with a smaller time scale which may evolve due to some other mechanism is not resolved
in this system. The flow instabilities are majorly due to only the bed perturbation. The
rigid-lid assumption neglects terms containing small Froude number values, U/ (ghs)'/?. Low
Froude numbers are generally associated with river flows. With these two assumptions all
time derivatives except for the sediment transport continuity equation; and terms which
contain the Froude number can be dropped. The details of this derivation are presented in
the next chapter.

The basic state of the linearized system is given as follows
(Uo,’ananzbo) = (U70a070) (26)

where the subscripts denote terms at the basic state. This situation is also shown in Figure
2.1 where only the perturbed terms and the steady flow U are included. The steady along
channel flow depends on the along channel slope i,, the unperturbed channel depth h, and
on the friction factor C. Schielen et al. consider a fixed U value of 1 m/s. The channel
geometry allows for along channel travelling wave solutions with some lateral structure, as
given in the following form

¢ = fly)erTt 4 ce. (2.7
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where f(y) stands for the perturbation amplitudes of the unknown terms; u(y), v(y), 7(y),
zp(y). Here, k is a real valued wavenumber, w is a complex frequency and c.c denotes the
complex conjugate.

After using (2.7) in the linearized equations, it is possible to reduce the system of
equations to a fourth-order differential equation for the bottom perturbation z; by a standard
Gauss elimination procedure. This leads to equation (2.8), which has solutions of the form
given in (2.9).
d4zb dQZb

ot + (wag + by)—— + (wa1 + b))z, = 0, (2.8)

by 7

zp(y) = Acospry (2.9)

The terms aq, ag, by, by are combinations of k, 4/, b, R (width-to-depth ratio of the channel),
and C. These are shown in Chapter 3. A is an arbitrary amplitude, and p specifies the
different modes of the solution. p = 1 is the first mode to become unstable (the situation of
alternate bars).

This solution provides a dispersion relation for £ and w, where the real part w, de-
termines the stability of this basic state. If w, is greater than zero for a certain range of k&
values, an unstable state occurs; for values smaller than zero the system is stable. This also
leads to a critical value of the channel width-to-depth ratio R. beyond which all perturba-
tions are unstable. The imaginary part of w describes the phase speed of the resulting bars.
The derivation of this relation and examples of dispersion curves are presented in the next
chapter.

Schielen et al. performed a perturbation analysis to obtain asymptotic expressions for
R,; the critical wavenumber k. and corresponding frequency w,

Rc — (71")”/,8)5_0'5[1+250'5+45+O((51'5)],
k. = \/§w5°-25[1+%+0(51-5)],

we = —ike[l+ B6%5 =585 4+ O(619)] (2.10)
where § = yTC,ﬂ:b—l.

According to Schielen et al., for realistic values of morphological parameters the R,
values range between 20 and 30, the k. values between 5 and 15 channel widths, and wave
periods range between 5 and 15 morphological time scales. An extensive study by Anderson
et al. (1975) reports that for channels where braiding and meandering occurs R values can
range from 3333 to 2.5, and the meander length which can be associated with k ranges
from 1m to 30m. The morphological time scale is a function of the flow, channel geometry
and sediment parameters. Although the basic flow velocity and channel geometry can be
measured, predicting the fricition factor, the coefficient v and b is very difficult. For a 5m
deep, 220m wide channel with a basic flow of 1m/s, a friction factor of c¢; = 0.003, and
with fixed values of v = 3.7 x 10~* and b = 6 the morphological time scale is slightly longer
than a month, 7" = 35 days. In a laboratory experiment done by Schumm and Khan (1972),
depending on the channel slope and flow characteristics this time scale can range from one
hour to 24 hours.
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The linear analysis describes features in the initial growth stages, where the wave am-
plitudes are small. The description of nonlinear dynamic behavior requires the consideration
of interactions between various wave components. This analysis investigates behavior for
wavenumbers (or width-to-depth ratios) which are slightly larger than the critical value.
Therefore, this analysis is referred to as ’weakly’ nonlinear and it only slightly extends the
finite amplitude range.

Following a multiple scales analysis, a slow temporal and slow spatial scale is introduced
allowing the amplitude A to vary slowly in time and space. This leads to an evolution
equation for the amplitude, at third order. Since the whole procedure is mathematically
very tedious, only the resulting evolution equation will be shown here

2
G = (o i) A= (4 i) g + (e + )| APA (2.11)
This equation is referred to as the Ginzburg-Landau equation. Here, A is the amplitude, 7 is
the slow temporal scale, £ is the slow spatial scale. r is a value of order R, and ensures that
the analysis is within the weakly nonlinear limit (for values only slightly larger than R.).
The terms 7, and v, measure the growth rate and the frequency shift of the perturbations,
respectively. 7.2, 142, ¢;, and ¢, are lengthy terms depending on b, 3, §, and =.

Further analysis of the Ginzburg-Landau equation indicates that a fully periodic or
quasi-periodic bed profile can evolve from an initially perturbed flat bed.

The same analysis can also be done by taking the amplitude as a constant, or only
allowing for a slow temporal scale (Colombini et al., 1987) and extending the linear theory
to higher orders. An example of the resulting topography for the former case is shown in
Figure 2.2. Note the steeper wave fronts caused by the superposition of the linear and the
O(e?) approximations.

2.2 Instability Theory for a Planar Beach

Using the same procedure, a similar analysis can be carried out for the coastal region by
changing certain features, like the bottom geometry or velocity profile. Falqués et al. (1996a)
applied a linear stability analysis to a planar beach.

The governing equations are the same, except for the forcing terms in the momentum
equations and an improvement made in the sediment transport equation

d¢ B &
Fy = dz Fy = cd?a (2.12)
u .
q = v(ju| — v,)° (m — 'Vzb) ) if |u|l > v, (2.13)

Accordingly, sediment transport is initiated only when the critical velocity, v. is exceeded.
¢q in equation (2.13) is the drag coefficient, and d is the undisturbed total depth. Note
that the bottom shear stress is in the basic flow direction and the forcing in the x-direction
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Figure 2.2: Bed profiles for b =6, C = 0.003, ' =1, A =1, e = 0.35. (a) O(¢) approxima-
tion, (b) O(e?) approximation, (c) superposition of O(e) and O(e?) approximations. Profiles
based on equations by Schielen et al. (1993).

(cross-shore direction) is directly balanced by the set-up/set-down, { = (d — h). Due to this
balance ignoring set-up/set-down, the forcing in the z-direction can be directly set to zero,
F, =0.

The longshore velocity profile is given by the following
V(z) = aze™ (2.14)

This corresponds to a velocity profile which has a maximum of U = a/(ne') at an offshore
distance of L = 1/n. For this case an approximate surfzone width would be z; = 2L. Falqués
et al. assumed a = e', n = 1 for the dimensionless flow field, and a plane beach topography
of the form h(z) = mz, where m is the bottom slope. The schematic for this case is shown
in Figure 2.3.

Another important point to note is that no perturbations are allowed in the forcing
terms. The forcing terms are steady and any instability in the flow field or bottom does not
affect the forcing terms. Falqués et al. referres to this as 'bed-flow instability’. The opposite
case where instabilities affect the forcing terms is referred to as ’bed-surf instability’.

In summary, the only differences from the channel case are: the domain geometry
which is now a plane sloping beach with an open boundary at the offshore end, a basic flow
profile with a transverse gradient, and a threshold velocity for the initiation of sediment

19



Figure 2.3: Sketch of the physical layout: plane beach

transport.

Scaling and perturbing the governing equations just as in the previous case, the re-
sulting system again allows for alongshore travelling wave solutions

(u,v,m, 2) = [it(x), 8(x), (), ()]’ ¥~ (2.15)

Note that with this form, the imaginary part of the frequency governs growth or decay of
the instabilities.

The morphodynamic time scale mL?/(vU®) is again larger than the hydrodynamic
time scale L/U and in this case the rigid-lid assumption is not made; therefore, the time
derivatives can be dropped whereas terms that include the Froude number can be kept this
time. For L = 100m, U = 0.8m/s, m = 0.01, v = 0.1 and b = 2, the hydrodynamic scale is
100s while the morphodynamic time scale is 1562.5s. Shear waves or edge waves are filtered
out of the system since motions with time scales smaller than the morphodynamic time scale
are not included.

From the momentum equations it is possible to obtain equations for u, the longshore
current velocity and v, the cross-shore current velocity as

1 on
(ikV + RV/d) 0z’
1 av

= —u— 2V2?/d? — ik)n — RV?/d? 2.1
v 2RV | Yag T BV k)= RVE 4, (2.16)

The hats in the terms are dropped for convenience. Here, f = U/y/gmL is the Froude
number, and R = ¢4/m is the controlling parameter of the instabilities. Using equations
(2.17) with appropriate boundary conditions in the conservation equations an eigenvalue
problem can be obtained

A(n, zp) = iwB(n, zp) (2.17)
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where w is the eigenvalue and (7, 2,) is the eigenfunction. Here, A and B are linear oper-
ators including 9/0z. Due to the solution form (2.15) for this case, growth of instabilities
corresponds to w; > 0. The appropriate boundary conditions are given by

n(c0) =0, 2p(00) = 0,
on(0)/0x = 0, z(0) =0 (2.18)

Here, oo corresponds to the offshore end of the domain where the perturbations vanish.
The second boundary condition corresponds to the shoreline and can be shown by fluid and
sediment conservation.

The system is solved numerically, therefore no explicit equation for the dispersion
relationship is available. The numerical method is based on Chebyshev expansions and a
collocation procedure. Details about this method can be found in Falqués et al. (1996a,
1996b).

Dispersion curves representing propagation and growth of the instabilities can be ob-
tained for different modes, and different combinations of parameters. The general approach
is to fix the maximum Froude number F' = \/e!/2f, b, v and v, in the equations and obtain
results for a range of realistic R = ¢4/m values. Typical values of R range between 0.1 and
1, and for F' between 0.0 and 0.5. The power b of the velocity in the sediment transport
equation is usually taken as 2, and the threshold velocity for transport v, is set to 0.05U.
Different combinations of these values cause changes in the resulting dispersion relations
(Figure 2.4). The resulting bed forms show increasing spatial complexity in the cross-shore
with increasing mode number. This can be observed in Figure 2.5 where contour lines of the
bed perturbations are shown. In this figure the most unstable wavenumbers kj; and cor-
responding imaginary frequencies ojs are also shown. Examples of the resulting bed forms
which consist of the basic slope plus the topographic instability, are shown in Figure 2.6.
Note the alongshore periodic sand waves and the oblique orientation of the crests towards
the offshore.
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Figure 2.4: Dispersion curves, for different modes. F = 0.3, m = 0.01, (a) R

R = 0.35 (from Falqueés et al., 1996a).
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Figure 2.5: Contour lines of bed perturbation for modes 1,2,3 and 4. R = 1, m = 0.01,
F = 0.3 (from Falques et al., 1996a).
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Figure 2.6: Bottom topography for modes 1 and 2. R =1, m = 0.01, F = 0.3 (from Falqués
et al., 1996a).
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Falqués et al. (1996b) also performed the same analysis considering bed-surf instabil-
ities. For this case the forcing terms in the momentum equations are replaced with more
realistic radiation stress terms following the solution by Longuet-Higgins and Stewart (1964).
Lateral mixing terms are also included.

The momentum equation then becomes

Ju Tb 1
— -V Vn—— —1=—VS 2.19
8t+u u+gVn od Te od (2.19)

where, S is the radiation stress tensor and,

2
_ 1 0 ou; B’U,j .
TZZ_E;G—{L‘][th(a{EJ_'_axZ)]’ Z—1,2

4 2
Thy = —;pcjvuou, Thy = —;pcjvuov (2.20)

Here, £1 = x and x9 = y; also v; = Nx+/gd is the eddy viscosity, where N is a coefficient.
The bottom friction terms are based on the weak current and small wave angle assumptions.
In these terms, u, is the maximum orbital velocity associated with the waves, which can be
specified according to the wave theory used. For wave breaking a simple criteria relating
wave height to total depth is assumed, H = y,d.

The continuity and the sediment transport equations are the same as before. The same
perturbation analysis is performed on these equations.

For this case Falqués et al. refer to the perturbations in the radiation stress terms as
bed-surf terms. Perturbations in the wave refraction have not been included in this study.
Bed-flow terms are the rest of the terms when the bed-surf terms are neglected. In these
studies the general definition of bed-surf instability and its difference from bed-flow instability
is somewhat ambigious. Details on how the wave field and the corresponding radiation stress
terms are computed, and how the instabilities enter these terms are not given.

Results point to an enhanced instability when bed-surf terms are considered. The
dispersion curves do not show much change in the overall shape, but the growth rates increase
significantly with bed-surf instabilities. The real part of w is negative and of order one. This
means that the bedforms are travelling against the current, showing an anti-dune regime. In
the previous analysis where only bed-flow instabilites are considered (Falqués et al., 1996a),
all w, values are positive (Figure 2.4). In both these studies this difference is not addressed.

Two different types of bedforms can be identified from the results. These are referred
to as current and wave dominated bedforms. In the first case the bars are upcurrent rotated
and very oblique. They occur for relatively high Froude numbers, corresponding to a small R
and a large incident wave angle at breaking, «p. Including also bed-surf instabilites does not
seem to cause significant changes in the resulting bottom perturbations. Figure 2.7 shows
the evolved bottom topography for this case.

For wave dominated bedforms the effect of including bed-surf instabilities is more
evident. With only bed-flow, the bedforms look very similar to transverse bars slightly
upcurrent rotated (Figure 2.8), just like in the previous results shown in Figure 2.5 and 2.6.
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contours are shown. Comparing Figures 2.5 and 2.9, bed-surf instability seems to cause a
jump to a higher mode. Wave dominated bedforms occur for lower Froude numbers when R

The effect of bed-flow instabilities can be seen in Figure 2.9, where bottom perturbation
is larger and qp is smaller.
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Figure 2.7: Current dominated bottom topography for R = 0.1, o

t al., 1996b).
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Figure 2.8: Wave dominated bottom topography for R = 0.5, oy
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Figure 2.9: Contour lines of bed perturbation for R = 0.5, ap = 12.3°, N = 0.005, v, = 0.4,
F =0.16, k£ = 3.5. Right: only bed-flow, left: bed-flow and bed-surf (from Falqués et al.,
1996b).

Falques et al. have shown in these studies that a plane beach topography can be
unstable due to interactions between the longshore current, incoming waves and the bed.
The alongshore spacing of the resulting sand waves changes according to R, a3, and N.
The direct effect of N, namely the lateral friction mechanism has not been addressed in
detail in these studies. The effect of the growing bedforms on the flow field is in the form
of a meandering longshore current with an offshore deflection over the shoals. Considering
rip currents, this may be in contrast with many observations. Since these results are for
initial growth stages, after the perturbations have reached finite amplitude other nonlinear
interactions may cause a different current behaviour.
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Chapter 3

LINEAR DISPERSION
RELATIONSHIPS FOR
RECTANGULAR CHANNELS

This chapter contains a detailed derivation of the dispersion relationships discribing the
growth and propagation of bottom instabilities in rectangular channels. Results which consist
of dispersion and growth lines are also presented, and the effects of different parameters
involved in the analysis are discussed. The theory outlined in the previous chapter is closely
followed. The same equations for an arbitrary basic flow are used with a slightly improved
transport equation.

First, the derivation for a one-dimensional channel is presented. This is followed by
the derivation for a two-dimensional rectangular channel.

3.1 One-dimensional Channel

Ignoring any cross channel variation in a 2D (two-dimensional) channel, a 1D (one-dimensional)
channel can be considered (Figure 3.1). For this case the momentum equation only for the
x-direction is necessary, and the conservation equations reduce to 1D. Here, the transport
equation is improved by including a threshold velocity, v, for the initiation of transport; and
the whole derivation is done for an arbitrary basic flow velocity, U. The equations are shown
in the following

2
Ut + Uy + gNg = _Cf%+ioga dt+(Ud).’E :01
()i + @z =0,  g=v(u—v)"1 =7 (2)z); u>uv (3.1)

where d = n — 2, + h,. Subscripts  and y denote derivatives in the corresponding directions.
Note that the porosity effect is included in the coefficient v as discussed in Chapter 2. The
transport rate is zero for u < v,.
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The next step is to nondimensionalize the equations with appropriate physical scales:
N N R 2 . ~ N
u=Ud, 2p = hsZp, T = 2, &, N = %n,t:%t:Tt

Here the dimensionless parameters are presented with a hat sign 7; and z, and T
represent a characteristic channel length which is associated with the wavelength of the
bedforms, and the morphological time scale, respectively. From the basic unperturbed case,
U? = ioghs/cy.

z A

/\n/|\/\
= V.

u+U

h* -

N\ ST\ N\ -
e ~—~ g )

| |
X

Figure 3.1: Sketch of the physical layout: 1D channel
The scaled equations are shown in the following with the hats dropped for convenience

KUt + Uy =

_ — F_Q-T*
) ~ F (e~ 1) e = F2u(a) — (T ) Gl =0,

(e + (a0 (1- ﬂ(zb)m)]z 0 (32)

T«

where k = {7 is the ratio of the hydrodynamic time scale to the morphological time scale.

This ratio is assumed to be much smaller than one, since the morphological changes take
place slower than the hydrodynamic changes (the quasi-steady assumption). F = U/+/gh.
is the Froude number, which is also assumed to be much smaller than one (the rigid-lid
assumption).

The basic flow consisting of a steady along channel flow U is perturbed such that

u(z,t) = U+a(z,t),
nz,t) = 0+1(z,1),
zp(z,t) = 0+ 2Zp(z,t) (3.3)

With the above assumptions, terms including « and F' can be neglected. Assuming small
perturbations (4/U < 1) and further linearizing the equations we obtain

Uty = —np — gv;ﬁlﬁ [QUU + sz2] ,

*
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U(zb)x — Uy = 0,

(U =00 () = DU = 00)? Mg + (1) =0 (3.4

*

Here the tildes are all dropped. This system allows for travelling wave solutions with constant
amplitudes, wavenumber k and frequency w

[u, 1, 2] = [um"?o;zo]ei(kwim) (3.5)

Plugging this form into the equations we can rewrite them in matrix form

Qf, = 0 (3.6)
where
ihU + (52L) 20 ik (5e) v "
Q= “1 0 U o= (3.7)
kb(U — vt~ 0 —iw+ (U — ;) (%) k2 Zo

For this form to hold the determinant of the matrix, Q should be equal to zero, det(Q) = 0.
Carrying out this calculation leads to a dispersion relationship for w and k

w = w, +iw; = [Ub(U — v,)" Yk + i[— (U — v.)° hy [z, ]k (3.8)

where w; > 0 corresponds to growth of the instabilities. Since it is not possible for w; to
become a positive term (the term in front of k2 is always greater than zero for transport to
happen), a 1D channel is stable under these circumstances. One way for bed instabilities to
grow (w; > 0) is when a phase difference between 71 (or u) and z, is introduced (Kennedy,
1963). For a 1D channel w is independent of the bottom friction factor. It is necessary to
consider a 2D channel for bottom friction to enter the dispersion relation, as will be shown
in the next section.

An example dispersion curve is shown in the Figure 3.2 for arbitrarily chosen param-
eters. Note that the dispersion curve (Figure 3.2(a))representing propagation of the bed
perturbations is always linear and positive which means that the bed features propagate
along with the stream at constant speed. The main controlling parameter of the decay rate
magnitude is h,/z,; the general shape of the curve remains the same (Figure 3.2 (b)).

Following the same procedure it is possible to obtain a more complicated dispersion
relation without considering the previous assumptions, which means that more terms are
retained in the equations.

The above matrix, Q then becomes

—iwk + kU + 520 ik — U Zcr 2
Q= —ik 2 —iwk + kU ik iwh[};?;}g (3.9)
ikb(U — v,)~ 1 0 —iw+ (U — vc)b%kQ
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Figure 3.2: Dispersion curves for a 1D channel, with parameters: U = 1m/s, b = 6, v, =
0.1m/s, v = 1, hy = bm, z, = 4000m.

Again, setting det(Q) = 0 a cubic equation relating w with k£ can be found
Aw® + Bw? +Cw+D =0 (3.10)
where,
A = iK%
B = —(U—0.)"Yhe/z,6*k* — i2ksU — ;2,20 hyk,

C = 2K3%kUU — vo)"y'ha/ms + ik*U? — ic,2UK(U — ve)*y'k? — ikPgh, /U?
+gh*Cf:v*U4/(UQghz) + Cfx*ZUzk/h* —ib(U — vc)b_lh*x*g/(TU3),

D = —(U — z..)"hy 2. [U*k* +ic;2.2U/h UK + igh. /UK + gh. JU%k*
+igh /U cz,U* [ (gh?)k?)
Two of the roots of this equation are spurious results which do not represent correct dis-

persion relations for this case. The third root should be the correct one representing the
solution, for this case without the rigid-lid and quasi-steady assumptions.

A comparison is shown in Figure 3.3. The parameters are the same as in the previous
figure, with an addition of ¢; = 0.001. The first four lines are from the spurious roots and
the last two are from the third correct root.

The real w values show a reasonable match for smaller wavenumbers, whereas for larger
values of k the difference is evident. The shape of the curve for the imaginary w values is more
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Figure 3.3: A comparison between dispersion curves for a 1D channel with parameters:
U=1m/s, b= 6, v. = 0.1m/s, v =1, hy = bm, z, = 4000m, c¢; = 0.001. (—) results
without assumptions,(- -) results with assumptions.

or less the same with a difference in magnitudes, which decreases with a decreasing friction
factor c; as shown in Figure 3.4. As a conclusion, the difference between the dispersion
relationships obtained from the analysis with and without the assumptions show no great
difference. The overall shape of the curves is not affected, but the magnitudes of the w values
change as the wavenumbers increase.

For a 1D channel this analysis does not reveal more detailed results, since the bed
instabilities show no growth.

3.2 Two-dimensional Channel

For a 2D channel, equations (2.1)-(2.4) are considered. The only differences are that the
sediment transport equation includes a threshold velocity v., and that the analysis is done
for an arbitrary basic flow U. Rewriting them

Ut + Uty + vy = —gng — cp(u? + v?)2u/d - ctU? [ hs,
vt + wvg +vv, = —gn, — cf(u? + %) 20 /d,
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Figure 3.4: A comparison between dispersion curves for a 1D channel with parameters:
U=1m/s,b=6,v.=0.1m/s, v =1, hy = 5m, z, = 4000m, c¢; = 0.0. (—) results without
assumptions, (- -) results with assumptions.

Here d is the total depth and g, and g, are the volumetric sediment transport rates along
channel and across channel, respectively. Once again, the porosity effect is included in the
transport equation through v.

The nondimensional terms are the same as before, except for the horizontal scales:
(z,y) = y«(Z,9), where y, is the channel width.

Perturbing the scaled equations with the same form as in equation (3.3), but also
allowing for a cross channel variation and carrying out the same linearization as before, the
matrices Q and f, become

ikU + c; R2U 0 ik ¢;RU?
0 ikU + ResU - () 0
Q = ik Oy 0 —ikU ’
. — —Ue b . —
ikb(U —vo)t (), 0 —iw + (U = 0e) LRY[R? — ()
Uo
v,
£,=1"° 3.12
. (3.12)
Zo

where, R = vy, /hs,.

As discussed in Chapter 2, this matrix can be reduced by a standard Gauss elimination
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procedure to lead to a fourth-order equation for z, (see equation (2.8)). Substituting the
solution form given in (2.9) gives the following dispersion relationship,

Y ba(pm)® — ba(pr)* — by (3.13)

a1 — az(pm)?

where

a1 = (—ik® — k’*Re;)U*(U - v.)?,
az = (2Rcy +ik)U*(U — v.)?,

by = k(¢ /R)U{fvc k4 (_m'cf U[i)c + ibU[igu) + k*bRcy (isvc,
by = _2k3(7'/R)U[iQUC + k2 <_¢U2 +13y'¢cs U[iQ C)
+kRcy (—3U2 + bUIiC) ,
by = —(//R) (nch ]_%Uc - kU[i;c) (3.14)

The first mode of the bed forms representing alternate bars is for p = 1.

For this dispersion relation, it is possible to obtain certain ranges of k¥ where w is greater
than zero (Figure 3.5). Different dispersion curves result for different ranges of parameters
R, cf, b. These effects can be seen in the following figures. The most unstable wavenumbers
are shown with a small black dot on every growth curve.

In Figure 3.6, the effect of increasing R is shown. While for the curves represent-
ing propagation speed the effect is not very significant, for the growth curves the unstable
wavenumber range and the maximum unstable wavenumber are increasing with increasing
R. The dash-dotted curve for R, is obtained from equation(2.10). For fixed values of b and
¢y, R seems to be an important parameter controlling bed instabilities. Fixing R and cy
and changing b has a very similar effect on the dispersion curves. For the range of b values
given in Figure 3.7, the effect on both set of curves is in the form of an increase; the propa-
gation speed is increasing as well as the unstable wavenumber range and the most unstable
wavenumber. This is also the case for R values below R., the critical width-to-depth ratio.
The most significant changes occur for higher values of the friction factor ¢y, which is shown
in Figure 3.8. For b = 6 and R = 44, even a slghtly larger c; value causes significantly higher
values of k. A rudimentary explanation for this can be the increase of flow resistance that
has to be overcome by an instability with a higher wavenumber. The propagation curves are
very little affected by increasing cy values.
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Figure 3.5: An example of dispersion curves for a 2D channel where growth of bed instabilities
happens for a certain range of wavenumbers. Parameters: U = 1m/s, b=6, v, = 0, v = 1,
R =44, c; = 0.003.
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Different values for U and v, do not have a surprisingly different effect on the dispersion
curves which is also evident from the dispersion relationship (3.13). This is shown in Figure
3.9. Changing these values changes only the magnitudes of w, and the imaginary part w;
is inversely proportional to the values of U and v, for a fixed wavenumber k. The unstable
wavenumber intervals and the most unstable wavenumbers are not affected.
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Figure 3.6: 2D channel dispersion curves for R = 20 — 80 with parameters: U = 1m/s, b = 6,
ve=0,7 =1, ¢y =0.003. (--)R, = 26.9692.
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Figure 3.7: 2D channel dispersion curves for b = 2 — 7 with parameters: U = 1m/s, R = 44,
ve=0,7" =1, ¢; =0.003.

37



50

-10
0

15

Figure 3.8: 2D channel dispersion curves for ¢y = 0.0 — 0.009 with parameters: U = 1m/s,

R=44,b6=6,v.=0,v = 1.
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Figure 3.9: 2D channel dispersion curves for different ranges of U and v, values, with pa-
rameters: R =44, b=6,v" =1, ¢; = 0.003, (a) v, =0, (b) U = 1Im/s.

As stated before, these dispersion curves provide information only on the propagation
and growth of the bed instabilites for the linear problem. This information can be used to
study instabilities in more detail including nonlinear effects and the actual geometry of the
resulting bed forms. Detailed results using this information will be shown in Chapter 5.
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Chapter 4

THE HYDRODYNAMIC MODEL
EXTENDED WITH SEDIMENT
TRANSPORT CAPABILITY

In order to account for the coupling between the evolving bed and flow field, equations gov-
erning sediment transport and sediment continuity are necessary in addition to the equations
governing the hydrodynamic processes. The standard equations of fluid motion consist of
the momentum and the mass conservation equations. The momentum equations used are
in the form of the horizontal shallow water equations including terms for short wave and
turbulent motions of shorter time scales, and terms for dissipation due to bottom friction.
The sediment transport equation relates the current velocity to the volumetric sediment
transport rates. This equation can be of different forms depending on the theory it is based
on. Generally based on energetics concepts it is assumed that the current velocity raised to
some power is related to the transport flux by some coefficient. Considering transport due
to waves and currents separately, this equation can become more complicated. Other factors
like the bed slope, threshold velocity, or type of sediment transport (suspension, bedload)
can be considered, too. The sediment continuity equation is very similar to the mass conser-
vation equation for fluid motion; it is based on the same physical reasoning. This equation
relates the change of the bed in time to the spatial gradient of the sediment transport rates,
thereby allowing for the computation of the bed evolution.

In this chapter, a review of the governing equations of the hydrodynamic model de-
veloped by Ozkan-Haller and Kirby (1997, 1999), as well as the numerical method used to
solve these equations are presented. A short description of the sediment transport and con-
servation equations, and their incorporation into the hydrodynamic model are also included.

4.1 Generation of the Flow Field

The governing equations are the depth- and wave-averaged shallow water equations with
additional short wave forcing and frictional damping terms, and the mass conservation equa-
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Here, 7 is the short-wave averaged water surface elevation above still water level, h is the still
water depth, d = (h + 1) is the total water depth which also may include different bedforms
in the form of instabilities, v and v are the depth-averaged current velocities in the z and
y directions, respectively, where = points offshore and y points alongshore. F, and F), are
the short wave forcing terms, 74, and 74, represent the turbulent lateral mixing effects. The
bottom friction terms are 7, and 7p,.

The short wave forcing terms are based on the radiation stress concept by Longuet-
Higgins and Stewart (1964). A release of momentum occurs in the surf zone when waves
break as they apporoach the shore. This excess momentum is referred to as radiation stress
which actually forces current motions. These forcing terms can be modeled as

_ 1 95ap
pd Oxg

Fo= (4.3)

where «, 3 represent x,y directions. The radiation stress components S,g are defined in
terms of orbital wave velocities using linear water wave theory.

[c 1
See = E|Z(cos?0+1)— =
. _c(COS +1) 2],
Sey = fopd sinf cos 0,
c
[cqg, . o 1
Sy = E ?(sm 0+1)— 2 (4.4)
where F is the wave energy given by
1
E = gng2 (4.5)

In these equations, H is the wave height, 6 is the angle of wave incidence, and ¢ = (27 f)/k
is the short wave celerity, where f is the frequency and k is the wavenumber given by the
linear dispersion relationship

(2nf)? = gk tanh(kh) (4.6)

The group velocity is defined as ¢, = nc where
1 2kh
2 sinh 2kh
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Considering random waves, the above equations for the radiation stress terms can be
defined by the directional spectrum made up of discrete wave height H;, frequency f; and
angle of incidence 6; components. The total energy spectrum is the sum of each component
E;, and can be computed from (4.5) by replacing H with H,,,s, the root-mean-square wave
height. Further details about the case of random waves can be found in Ozkan-Haller (1997).
In this study random waves are not considered.

Provided that the wave height H, the wavenumber k and the angle of incidence 6 are
known as a function of space, the radiation stress terms can be computed externally and hence
the forcing terms F, and Fj. If not known for the whole domain, given the offshore values
of the above parameters and using short wave transformation due to shoaling, refraction,
diffraction and breaking, the radiation stress terms can be obtained.

The parameters representing the effect due to lateral momentum mixing are, 74, and
Tgy- This mixing effect in the surf zone majorly arises due to the gradients of turbulence-
induced momentum fluxes, which can be represented by the depth-integrated Reynolds’
stresses S, 3 The Reynolds’ stresses are a function of the turbulent velocity components and
since these are generally not known, the Reynolds’ stresses can be directly associated with
the mean current.

ou BUg
1 @, 2P 4.
ap = —prid < Ty + 3xa> (4.8)

The parameter v; is the turbulent eddy viscosity.

Another source reinforcing lateral mixing is a dispersion process due to additional
terms arising in the depth-averaged momentum equations when depth nonuniformity of the
velocity profiles is considered (Svendsen and Putrevu, 1994; Putrevu and Svendsen, 1999).
Rederiving the equations, Putrevu and Svendsen (1999) represented the most dominant
additional terms as the ones premultiplied by the coefficient D,g. This coefficient is a
function of the depth variation of the current velocities and is assumed to be proportional to
the wave-induced volume fluxes in the horizontal directions. For small incident wave angles
the volume flux in the z direction will be the most pronounced one, therefore terms with
D, can be retained as a first approximation. Svendsen and Putrevu (1994) also showed
that D, can be orders of magnitude larger than v;. Following this theory the lateral mixing
terms can be expressed as

20 (, 0u 10 (,,0v 10 (, 0v
e (Vi) tamy (V%) o (Vi 4

where v/ = vy + Dy, is the effective eddy viscosity.
Following Battjes (1975), the cross-shore variation of v can be formulated as

o\ /3
V' = Md (—”) (4.10)
p

where M is a mixing coefficient and ¢, is the ensemble-averaged wave energy dissipation due
to breaking.

A more detailed discussion about these equations can be found in the study by Ozkan-
Haller (1997), or in the above mentioned references.
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The bottom friction terms can be written in the general form as
I
Tow = Ecﬂu\(u + a),
1T -
Thy = 30f|u\('u + ) (4.11)

where c; is a friction coefficient and |u| = [(u + @)? + (v + #)?]*/2. @ and © are the short
wave orbital velocity components, and w and v are the current velocity components. The
overbar denotes time averaging over the short wave time scale. Assuming small incident
wave angles and that the maximum orbital wave velocity u, is much larger than the mean
current a simple formulation for the bottom stress terms can be obtained after linearizing
with respect to u,

Tox = %ua Toy = %'U (4'12)
where p = 2/7csu,.

Using linear wave theory the maximum orbital velocity is given by u, = % Equation
(4.12) is the mathematically most simplest formulation of the bottom stress. Improvements
can be made by incorporating a higher order wave theory or lifting the weak current assump-
tion.

Substituting the expressions for the forcing and damping terms into (4.1) the final
form of the momentum equations can be obtained.

ou ou ou on 1 [0Sz  OSzy 7
ot "or oy ‘ga—w‘a(ax a—y>_3“
20 ou 10 ov
+E% (Vda_:z;) + ddy (Vdﬁ_x) ,
Oov Ov ov on 1 [0Sy = 0Sy 1
5 ua e = o (e o)
—i—%% (l/d?—;) (4.13)

4.2 Sediment Transport and Evolving Bottom

The sediment transport equation used in this study is a simple relationship between the
current velocities and the transport rates. It assumes that only bedload transport occurs;
suspendend sediment load is neglected. This assumption rules out sediment transport due
to waves, which may become important in the surfzone where cross-shore proccesses are
dominant as well. There are more complete equations in the literature which consider bedload
and suspended transport (Bagnold, 1966; Bailard, 1981; Bailard and Inman, 1981).

The sediment transport rate in one direction is related to the current velocity in the
same direction raised to some power and multiplied by a coefficient which is a function of
sediment parameters.

u :
q=v(ju| —v.)° (m + 'y'Vh) , if |u| > (4.14)
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where q is the volumetric sediment transport rate vector, v is the coefficient representing
sediment and bed characteristics, v, is a critical velocity for initiation of transport, u is the
current velocity vector, and +'Vh takes care of the tendency of sediments moving downslope.
Note the plus sign in front of this term, this is because this equation has been modified to fit
the coordinate system of the model (see also equation (4.15)). The coefficient 7' represents
the inverse of the dynamic coefficient of Coulomb friction (Schielen et al, 1993). This
coefficient has been taken as a constant value of 1, except where stated different. Note also
that this equation is different than (2.13) and (2.3) in that it includes the actual bed gradient
rather than the gradient of the bed perturbation. It is more accurate to include the actual
bed slope although Falqués et al. (1996a) consider the bed gradient as its equilibrium state.
Here we prefer to let the bed profile including the perturbations reach its equlibrium state
in time. Accurate values for b are in fact not well established, typical values range between
2 and 7. Many transport equations are in a similar form. A review of several transport
equations can be found in van Rijn (1989).

The sediment conservation equation

oh
-V.q=0 4.15
5 q (4.15)
is very similar to the fluid mass conservation equation. This equation closes the system, and

enables one to compute the bed evolution in time.

4.3 Solution Method

The model domain starts from the shoreline and extends to some offshore distance L; and it
has a longshore width of L,, where z points to the offshore and y to the longshore direction.
It is possible to specify a moving shoreline boundary at the shore, where ( is the shoreline
position as a function of longshore location and time (Figure 4.1). Alternatively, a wall
boundary can be specified at each end of the domain, too. It also is able to handle an open
offshore boundary by an absorbing-generating boundary condition. This model is set-up
to specifically deal with motions that are periodic in the longshore direction, therefore a
periodic lateral boundary condition is used. Although never tested in detail, one can also
specify lateral wall boundaries in the model.

4.3.1 Governing Equations

The numerical method is based on spectral collacation schemes which handle the spatial
derivatives, and an explicit time integration of high order. The most suitable approach
for spectral collacation methods is to work with the characteristic forms of the governing
equations in order to properly specify boundary conditions.

The equations governing the hydrodynamics can be rewritten in matrix form as
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Figure 4.1: Sketch of the model domain.

where
d u d 0 v 0 d 0
q=|u |, A=|g v 0|, B=|0 v 0|, C=| ghy+F (4.17)
v 0 0 u g 0 v ghy + G

Here, G and F' are functions representing the forcing and dissipation terms.

Multiplying (4.16) with the inverse of the eigenvector matrix of A, the following ex-
pression can be obtained after some manipulations

w;+ A'wy, + B'w, =C' (4.18)
where
u — +/gd 0 0 v 0 —v/gd
A = 0 u++/gd 0 |, B' = 0 v vagd |,
0 0 U —% gd %\/gd v

ghgy + F

c = gh, + F (4.19)
ghy +G

The vector w includes the unknowns for which the model solves for

u—2+/gd ] B~
w=|u+2y/gd | = | BT (4.20)
v Y

The governing equations can now be rewritten as

By +(u—c)By +vB, —cyy = 2¢oCop + F (4.21)
B + (u+ )3 + 'uﬂ;' —cYy = 2¢oCop + F (4.22)
Nturetovy = —gny+G (4.23)

In these equations, ¢ = v/gd is the nonlinear shallow water wave speed, and ¢, = v/gh is the
linear one. Equation (4.22) carries information in the +z direction (specified with the '+’
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superscript), therefore it is valid within the domain and only on the right boundary points.
For (4.21) the opposite is true, it carries information in the —z direction and is valid inside
the domain and only on the left boundary. Equation (4.23), on the other hand is valid
everywhere in the domain including the boundaries.

The sediment transport and bed evolution equations are kept in their original forms.
At every time step the sediment transport rates are computed using the corresponding cur-
rent velocities obtained from the hydrodynamic part. The time integration applied to the
sediment conservation equation (4.15) leads the new bed configuration with which the new
flow field is calculated at the next time step.

4.3.2 Numerical Scheme

Recently, spectral and pseudospectral methods have become popular in numerical modeling
due to enhanced accuracy of spatial derivatives when compared to finite difference approxi-
mations. Depending on the motion of interest, it is possible to chose basis functions of the
spectral derivatives that naturally satisfy the boundary conditions, with variable grid spac-
ings in order to achieve higher accuracy where needed. Schielen et al. (1993) used a spectral
method in their stability analysis when solving the Ginzburg-Landau equation in order to
obtain the bedform amplitudes. Falqués and Iranzo (1994) used a Chebyshev collacation
method in the treatment of an eigenvalue problem resulting from their study on nearshore
vorticity waves as a stability problem. In addition, Falqués et al. (1996a, 1996b) used the
same procedure in their study about morphodynamic and longshore current instabilities. A
more detailed review on spectral methods can be found in Canuto et al. (1987).

Considering the enhanced accuracy along with less computational time involved, a
pseudospectral collocation method has been used in this model.

Given the initial conditions for the water surface 7, the velocity components u and v,
and the bottom topography represented by the water depth h, the equations are integrated
in time using an explicit third-order Adams-Bashforth scheme. This integration method
proves to be an accurate scheme often used with collocation methods (Canuto et al., 1987).

Equations (4.21)-(4.23) and (4.15) can be rewritten as

B = Fi(n,u,v),
B = Fan,u,v),
v = F3(n,u,v),
hy = Fy(h,u,v) (4.24)

The functions Fi, F, F3 and F contain spatial derivatives of their arguments. Fj is related
to its arguments through the sediment transport equation (4.14). The functions can be
obtained by comparing these equations with (4.21)-(4.23) and (4.14)-(4.15).

Let @ represent one of the variables 3=, 871, 7, or h and F one of the above functions
given in (4.24), then the Adams-Bashforth scheme is written as

QM = Qn + % [23F™ — 16F™ + 5F"?] (4.25)
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The superscripts denote the time level at which the terms are evaluated with n being the
present time level.

In order to account for the moving shoreline at the onshore boundary of the domain and
also due to the collocation method used, two coordinate transformations are incorporated
(Figure 4.2). The first one is a transformation of the physical coordinate system (z,y) to an
intermediate stationary system (¢, 1)) given as

z=¢+C(y,t)e ", y=1 (4.26)

The movement of the grid is damped out in the offshore direction, so that the grid becomes
stationary at a certain distance which is dictated by the parameter . As a result of this
transformation the derivatives in the equations now become

(elz = O)elg + (gt
(Jz = ()pdba
(Jy = g+ )edy (4.27)

where ( )¢|z and ( )¢|¢ denote time derivatives at a fixed = and ¢, respectively.

The next transformation is from the stationary (¢, 1) coordinate system to a stationary
computational grid (s, r) (Figure 4.2). The domain is discretized into an (NX+1) x (NY +1)
point mesh. The collocation points in the offshore direction s are chosen as the reversed
Gauss-Lobatto points given by s; = —cos(ni/NX), (i = 0,..., NX). The grid points are
concentrated close to the shoreline with this choice. The collocation points in the longshore
direction r are chosen to be equally spaced so that r; = jAy,(j =0,..., NY).

The derivatives of the equations are further modified due to the this transformation,

( )t|w = ( )t|s+( )53¢¢t
() = ( )ss¢¢z
Jy = (e +( )ssedy (4.28)

where ( )]s denotes time derivatives at fixed s values.

Depending on the grid distribution desired within the (¢, 1) domain, different coordi-
nate transformations are available. Three essential transformations will be mentioned here.
The first one is a linear transformation which preserves the grid distribution of the physical
domain.

¢:§(1+s), Y=r (4.29)

The coordinate transformation

1+s

?
So— 8

b=1L H=r (4.30)

has the effect of concentrating the grid points towards the shoreline in the physical domain.
This is suitable for modeling shoreline runup. The parameter s, controls the offshore extend
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of the domain, a value of 1 corresponds to an offshore boundary located at infinity. For a
finite offshore length, s, > 1. In this study s, = 2 has been used.

A grid of nearly uniformly spaced collocation points in the cross-shore direction s is
obtained by the transformation

arccos(—ps) — arccos(p)

¢ arccos(—p) — arccos(p) ’ v=r (4:31)
with p = 0.999.
y W r
A A A
Ly ( Ly
\
T~

> X O L ;CD _1 O +l ;S

0 I‘x X
Figure 4.2: Transformation from the physical to the intermediate domain, and from the
intermediate to the computational domain.

At this point it is important to test the actual accuracy of these transformations.
Depending on the motions modeled, the accuracy of the results plays an important factor
especially when analysing physical and numercial features of the results. Two sets of results
will be presented here, in order to serve as a simple test (Figure 4.3 and Figure 4.4).

The test procedure is directly testing the accuracy of the three transformations for some
specified function. First, a function f(z) is chosen. Using (4.26) and the reversed Gauss-
Lobatto points, this function is transformed from the physical domain to the computational
domain (f(xz) — f(s)). This is used as input for the numerical differentiation. Then, since
the actual function f(z) is known, its derivative is obtained in the physical domain, and using
(4.27) and (4.28) it is transformed to the computational domain (f; = fsS¢¢s). Finally, the
results obtained from the last step are compared to the numerical results.

In the two test cases the domain length L = 5, the grid point number NX = 32, and
as test functions f(z) = sin(z) and f(z) = e® have been used. It is evident from the results
that the last transformation does not perform well enough at the domain ends (Figure 4.3(c)
and Figure 4.4(c)). The others show a much better performance throughout the whole length
L (Figure 4.3(a)-(b) and Figure 4.4(a)-(b)). The performance of the three transformations
does not change for different L and NX values. For the last transformation the results do
not improve for a different p value, p = 0.999 is essentially the best value that can be used
for this transformation. In the light of these tests, the last transformation will not be used
in this study.
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As a result of the two transformations, the governing equations now read

/375_ + [St + sz(u - C) + sy")]ﬁs_ + 'U/Br_ —CYr — SyCYs = 2Ssccocos + F,
ﬂ;— + [st + sz(u +c) + Syv]ﬂj + U,8r+ — CYr — SyCYs = 285CoCo, + F,
Ve 4 [8¢ + 85U + 8yV]Ys + vy, = —gnr — gsyns + G,

U v
hy + hgsy = [z/(|u| — vc)b (— + v hsse + — +7'(hr + hssy)>] S

|u| |u| s

+ [1/(|u| —u)? (I%I 9 (hy + hssy))] (4.32)

T

where |u| = (u24v2)'/? and v, is the critical velocity. Note that at the shoreline ¢ = v/gd = 0.

For the s direction the derivatives are computed using Chebyshev collocation, as stated
earlier. These calculations can be carried out using a Fast Fourier Transform routine. Due
to the form of this method no special boundary treatment is necessary in this direction.
A Fourier collocation is used in the r direction. Since Fourier basis functions used in this
method naturally satisfy periodicity, no additional condition is needed for the longshore r
direction.
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4.3.3 Boundary Treatments

The treatment of the moving shoreline is based on an Eulerian approach with deforming
grid. Such models usually involve moving grids where one boundary of the grid tracks the
shoreline position. Since at the shoreline z = ((y, t), a kinematic condition at that boundary
can be written

G=u’—v°Gy (4.33)

where d = h + n = 0 on this boundary.

Returning to the momentum equations, the velocity of the shoreline can be determined
using the x-momentum equation

ui + [s¢ + szpu’ + syv®lug + vuy = —gsgn; + F° (4.34)

where the superscript s denotes variables at the shoreline. After using the grid transforma-
tions, the kinetic condition becomes

G =u’ —v°¢ (4.35)

where d = h+1n = 0 on s = —1. The position of the shoreline is tracked by including
equations (4.34) and (4.35) in the time stepping scheme. Results of this model using a
moving shoreline can be found in Ozkan-Haller and Kirby (1997) and Ozkan-Haller (1997).

As mentioned before, it is also possible to replace the moving shoreline with a fixed wall
of some specified depth. In that case the essential condition of 'no flow’ through the boundary
is imposed. The same condition can be applied to the offshore boundary. Considering the
no flow condition, the sediment transport rates perpendicular to the walls are also set to
zero automatically. For the moving shoreline case it is difficult to specify a condition for the
transport rates. Since the water depths closer to the shoreline are significantly small any
change of batymetry at those points would most probably cause problems at the shoreline,
like drastic changes of the shoreline or bed features sticking out of the water. This model is
currently not able to handle any island type of formations which could arise due to changing
bottom. One preliminary solution could be treating the shoreline as a wall and specifying
a zero sediment transport rate. Although not necessarily preventing islands to form, this
would prevent at least excessive cross-shore transport at those points thus taking care of
some of the problems that might arise at the shoreline, while still including the effects of a
moving shoreline.

At the offshore boundary an absorbing-generating boundary condition allowing waves
to enter and exit the domain can be specified. This method is based on the study by Van
Dongeren and Svendsen (1997), and details of the formulation can be found in Ozkan-Haller
(1997).
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Chapter 5

EVOLUTION OF BED
INSTABILITIES IN A FLOWING
STREAM

This chapter discusses numerical results for bed evolution and flow field simulations in a
rectangular channel. The dispersion relationship obtained in Chapter 3 is used in the model
runs in order to compare results based on a stability analysis theory. The analysis outlined in
Chapter 2 along with field and laboratory observations serve as guidelines in interpreting the
numerical results. The rectangular channel consists of two impermeable, rigid walls located
at both ends of the domain; at the shoreline and at the offshore boundary in this model.
The basic flow consists of a constant velocity profile streaming along-channel. There are no
waves within the domain and no lateral mixing processes. This basic case has been chosen
in order to evaluate the performance of the coupled model in reproducing the bed and flow
field instabilities, and to identify the results in the simplest possible mathematical setting.

First, a brief outline of the model implementation for this case is presented. This is
followed by a test case consisting of an unperturbed regular channel with a cross-channel
bed slope. The next section presents results for the most unstable wave number of the bed
perturbation based on the linear dispersion relationship. Parameters for this case have been
chosen based on Chapter 2. Results for different channel lengths are also included in this
section. Next, the cases for wave numbers slightly larger and smaller than the most unstable
one follow. In these simulations, the effect of different channel lengths has been addressed
as well. Different model parameters that may have a significant impact on the bottom
evolution are discussed in the next section, which is followed by results obtained for different
initial bottom perturbations and the resulting bed evolution. After this section comparisons
to laboratory measurements and observations are presented, followed by a summary of the
results.
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5.1 Model Implementation

Based on the equations outlined in Chapter 2 and 3, forcing and friction terms which describe
flow in a rectangular channel are used in the momentum equations outlined in Chapter 4. In
order to obtain an along-channel flow a mild slope of 7, is introduced. The forcing and friction
terms are the same as in equation (2.2). The sediment transport equation was described in
Chapter 4.

A rectangular channel is defined by introducing walls at the shoreline and at the
offshore boundary. Periodicity in the along-channel direction is imposed. With this format
the y-direction points along-channel and the z-direction points across-channel in the model.
Due to the two walls there is no moving shoreline. The coordinate transformation which
concentrates grid points towards the walls is chosen.

Values of the parameters like the channel width and depth, or the friction factor
involved in this problem are specified in each section. A channel width-to-depth ratio R of
44, and a basic flow velocity of 1m/s has been used in most of the runs. The parameter v
in the transport equation is usually taken as 0.1 which corresponds to a morphological time
scale of approximately 3 hours for U = 1m/s, R = 44, and b = 6.

In some of the following cases the model starts with initial conditions of zero flow
u,v = 0, and no water surface elevation n = 0. In most of the cases the sediment transport
process is activated after the flow field has developed. The flow field can develop in a very
short period. In order to minimize the simulation time, in some cases the basic along-channel
flow velocity has been defined as the initial condition. No critical velocity v. has been used
in these runs.

5.2 Test Case: Straight Channel with Cross-channel Bed Slope

In this simulation a rectangular channel, uniform in the along-channel direction, with a cross-
channel bed slope of 1/1000 is used. The channel width is 220m and it has a depth of 5m on
one end reaching to 5.22m on the other. The channel length L, has been arbitrarily chosen
to be 1402.5m. In order to achieve a uniform flow of 1m/s, i, = 6.11 x 10~° has been used.
The parameters v, b and 4 are 0.1, 6 and 1, respectively. The friction factor is ¢; = 0.003.
The domain consists of (NX = 32, NY = 4) grid points. Due to the uniform channel the
whole process taking place within the channel can be considered as one-dimensional, so only
the cross-channel profiles are considered. That is also the main reason for the choice of a
lower number of grid points in the along-channel direction.

The channel profile adjusts itself towards equilibrium. This can be seen in Figure 5.1.
The initial channel profile is shown as the dash-dotted line and the evolving profiles are
shown as solid lines. The eroded sediment from the upper portion of the profile is deposited
to the lower portion. This is mainly due to the slope effect since no significant cross-channel
velocities develop and everything is periodic along-channel. Higher along-channel transport
rates correspond to deeper water depths, and the maximum cross-channel transport rate is
in the mid-section of the channel. All this can be seen in Figure 5.2, where the cross-channel
and along-channel sediment transport rates, and the corresponding depth change at four
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different time levels are shown. As equilibrium is achieved the magnitude of the transport
rates and the amount of depth change decreases significantly. Note also the symmetric shape
of these curves which proves that the same amount of sediment transported from the upper
portion of the channel is deposited to the lower portion. The volume of sediment transported
matches the sediment transport rates.

In 40 hours the profile has almost reached equilibrium, the amount of depth change
decreases in time and changes are not visually detectable from the profiles. This is more
evident in the time series plot in Figure 5.3. In this figure time series of u, v and h at the
deeper wall section of the channel are shown. Note that u values are negligibly small and that
the along-channel velocity v reaches its value of 1m/s corresponding to the specified i, and
cs. Note also how the channel depth at that point slowly moves towards equilibrium. For
this plot the channel depth values are shown as positive values, so decrease in h corresponds
to deposition.

5.02 ~N . . . . . . -

5.04 =5 hrs ~ n

5.06

5.08

t=30 hrs

= t=40 hrs

52 ~ -

5.22 i i i i i i i i i i
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Figure 5.1: Test case: Cross-channel profile reaching equilibrium in time. (—) evolving
profiles, (—-—) initial profile.

This test simulation proves that the sediment transport part is implemented correctly
into the hydrodynamic model. The basic features of profile evolution corresponding to the
given geometry and flow conditions have been simulated.
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Figure 5.2: Cross-channel profiles of (a) cross-channel sediment transport rate, (b) along-
channel sediment transport rate and (c) depth change at different time levels.
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Figure 5.3: Time series of u, v and h at (z,y) = (219m,0.5L,) for test case.
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5.3 Simulations for the most Unstable Wavenumber, k,,,,

Using the dispersion relationship for a 2D channel derived in Chapter 3, it is possible to
obtain the most unstable wavenumber and corresponding frequency of bed perturbations for
a specified channel and flow. In this section we are interested in the long time evolution of
the bedforms coupled to the flow field, when initially wave like disturbances of the bottom
are included. For this purpose the dispersion curves for a case where growth of instabilities
occurs are used. In Figure 5.4, the dispersion curves for a channel with the same parameters
as in the previous simulation are shown, except in this case there is no cross-channel slope.
Note that the values are nondimensional. These values are used to determine the initial bed
perturbation.

50

40

30

Figure 5.4: Dispersion curves for a 2D channel. Parameters: U = 1m/s, b = 6, v, = 0,
v =1, R =44, ¢y = 0.003. Note the most unstable, the slightly larger and slightly smaller
wavenumbers shown with different symbols on the curves.

Based on the stability analysis reviewed in Chapter 2, the first mode of the bed per-
turbations is in the form of a sinusoidal function in the y-direction (see equation (2.9)), as
well as in the z-direction. Using this form and imposing a first mode sinusoidal form in the
z-direction, the following initial bed perturbation can be used

2p(Z,y,t = 0) = 2zccos(de1z)cos(deay) (5.1)

where z. is the amplitude, d.; and d.o are factors controlling the wavenumbers of the bed
perturbations in both directions. Depending on these values, the perturbation wavelengths
are \; and A\, in the cross-channel and along-channel directions, respectively.

5.3.1 Results for L, = ),

For this case an amplitude of z. = 1 has been used. The channel bottom can be considered
as covered with small sand waves. The values for d.y = 7/L; and de = k, where k is the
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wavenumber of the sand waves have been chosen such that one perturbation wavelength A,
fits into the domain in the along-channel direction and one half fits in the cross-channel
direction. This corresponds to a wavelength of A\, ~ 1316.5m in the y-direction. A three-
dimensional figure of the perturbed bed is shown in Figure 5.5. In order to maintain spatial
accuracy collocation points of (NX = 32, NY = 64) have been used. This grid uses 64
points per wavelength which, based on the study by Ozkan-Haller (1997), should maintain
a high accuracy.

Depth (m)

Figure 5.5: Initially perturbed bed configuration for Ly = Ay, kpez = 1.05.

The simulation is carried out for 40 hours. Results of the bed evolution are shown in
Figure 5.6. Significant changes occur after the first three hours, which roughly corresponds to
the previously calculated morphological time scale. The bedforms start to change orientation
and attain an oblique structure. This structure becomes more evident in the following three
hours. The increasing amount of erosion and deposition happening after approximately six
hours which can be seen in the depth contour changes, results in the growth of the sand
waves. Also note how the 6.5m and 7m contours representing eroded points and the 3.5m
contours representing points of deposition become even more evident after 7 hours.

Fluctuations around the steep wave front form after 14 hours. At this point a shock
wave type of structure has already developed. The steep slope of the sand wave fronts may
be causing the fluctuations. This can be seen in Figure 5.7 where the three-dimensional view
of the evolving bed is shown. The correct aspect ratio of the channel in this figure has been
altered in order to obtain a clear plot of the bedforms. The fluctuations are in the form
of depth contour separations. Although hard to notice, the 3m contours first separate at
17 hours and more significantly after 31 hours. We are not exactly sure if this is caused
numerically or if it has some physical significance. It is noted that the steep slope may be
physically unrealistic. This slope reaches approximate values of 0.0667 — 0.0875. Such steep
sand waves can be expected to collapse. Since the model is not able to handle such motions
the depth contours may have started to fluctuate. The parameter +' in the transport equation
governs the degree of the slope effect on sediment transport. This parameter is chosen as a
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constant value and depends on the angle of repose of the bed material. Considering that in
the process of transport the sand grain distribution of the bedforms may change, it can be
expected that the angle of repose will also change accordingly. Depending on the changing
angle of repose, a varying 7' could produce a more realistic wave front. This would require a
more sophisticated transport equation which includes the effect of changing sediment grain
distribution and its relation to the angle of repose and «'. The effect of changing 4" has not
been investigated in this study.

The sediment transported from the lower points towards the higher points of the
bedforms increases in time, so deposition spreads over a larger area in the domain (note
the red areas in the pseudocolor contour plots). After 20 hours the initial sand waves have
developed into a considerable shock wave form with a significant bar front. The highest point
of sand waves reaches a value of about 45.6% of the unperturbed channel depth (a depth
contour of 2.7176m) in 40 hours. The deepest point is about 8% larger than the unperturbed
channel depth (a depth contour of 10.3963m).

This type of pattern forming in alluvial channels is referred to as alternate bars. The
results are comparable to the first stages of the development of free meandering from a
straight channel or to similar bedforms frequently observed in laboratory flume experiments
(Chang et al., 1971; Schumm and Khan, 1972; Parker, 1976; and Uchijima, 1990). The
channel topography and two channel cross-sections along with an idealized schematic of this
motion taken from the study by Chang et al. (1971) are shown in Figure 5.8. Note how the
shape of the bar front and the cross-sections are similar.
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Figure 5.6: Simulated bed evolution for L
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Figure 5.7: Snapshots of simulated bed evolution in 3D for L, = Ay, ke = 1.05.
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Figure 5.8: Top panel: Simulated topography at ¢ = 40hrs. Mid panel: Channel cross-
sections taken at two along-channel locations. Bottom panel: Idealized alternate bar pattern
in alluvial channels (after Chang et al., 1971).
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Time series of u, v and h taken at the mid-section of the channel also show that the
initial perturbations periodically grow in time (Figure 5.9). The flow instantenously responds
to the bed evolution. It is noted that the cross-channel velocity u continues to grow along
with the channel depth h. Upon reaching its basic value of 1m/s the along-channel velocity v
starts to fluctuate around this value. The fluctuations seem to have reached finite amplitude
as growth cannot be detected within visual resolution. From the time series of h, an average
estimate of the characteristic period of the bed motion can be computed. This is a very
rough estimate and is obtained by determining the time lag between each peak of the h
fluctuations. It is important to note that these time series are taken at the mid-section of
the channel and therefore the period obtained will be twice the period corresponding to the
time series at a point closer to the walls. Due to the bedform propagation pattern at the
middle of the channel, as two peaks pass through one point only one passes through at a
point closer to the sides of the channel where in fact propagation of the alternate bars can
be better observed. This is also the reason for the difference in the periods of the u, v and
h fluctuations in the time series plot.

The average period value is given as Ty, = 15hrs. This corresponds to a frequency of
Wap = 1.17x 10 *rad /s. The nondimensional frequencies obtained from the linear dispersion
relationship are w, = 1.4299 and w; = 0.3687. Nondimensionalizing the frequency from the
simulation with the morphological time scale gives a value of w!, = 1.287. This value is close
to w, and it represents the propagation of the bedforms considering that the time series of
h represents the topographic waves passing through one point.

u (m/s)

1.05

| | | | | | |
0 5 10 15 20 25 30 35 40
t (hrs)

Figure 5.9: Time series of u, v and h at (z,y) = (110m,0.5Ly) for L, = X,.

62



The propagation speed of the bed forms changes from 0.0116m/s to 0.0232m/s in
the evolution process. These speed values have been estimated using a two-dimensional
lag-correlation applied over the entire channel topography for every hour. Again, using
the information from the dispersion relationship the propagation speed can be computed as
Cteq = 0.02072m/s. A speed estimate can also be obtained by using the wavenumber of the
bedforms and the frequency computed above, which gives Cpeq = 0.0245m/s. The last two
values are surprisingly close. The results obtained from the lag-correlation show changing
values rather than a constant value as predicted by the linear stability analysis. This is
due to nonlinear interactions in the evolution process, which are not predicted by the linear
dispersion relationship.

The flow field adjusts itself according to the evolving bottom. The meandering of
the along-channel flow gains more strength in time, as bed features grow and the bar front
forms. Plots of the velocity field on top of the corresponding vorticity and bottom contours
are shown in Figure 5.10 . The velocities are plotted every fourth collocation point in each
direction in order to maintain a better visual resolution. Negative vorticity shown in blue
color represents clock-wise rotation of the flow. Positive vorticity shown in red is the opposite.
As the bed evolves the vorticity increases together with the velocities, especially along the
bar front. Due to the relation between the flow velocities and sediment transport rates, the
general flow structure matches the propagation and growth of the bedforms.

5.3.2 Results for L, = 2},

In order to investigate the effect of channel length on the bed evolution, another simulation
has been run where all parameters are kept the same as before and the channel length L,
is doubled so that two wavelengths of the bed perturbation fit into the domain, so now
L, = 2633m. Another difference is the initial condition on the flow field. In order to speed
up the development of the flow field the basic along-channel flow velocity is defined as the
initial condition. The same number of grid points is used in this simulation.

Comparison of the time series for this case and the previous case show no large dif-
ference magnitude-wise (Figure 5.11). The same structure is attained, the only difference
being the lag between the fluctuations. As will be shown in the next case the reason for this
lag is neither the number of collocation points which for this case is 32 per wavelength in
the along-channel direction, nor the initial condition imposed on the along-channel velocity.
The same difference in the period happens for the next case where a longer channel and
higher number of grid points are used. The general trend of these fluctuations is that their
frequency decreases as the channel gets longer.

The frequency information from the dispersion relationship is essentially the same
for this case, since the bed perturbation has the same wavenumber. The nondimensional
average frequency of the bedforms obtained from the time series is wq, = 1.216. Compared
to the previous frequency obtained, they are close values and they both mainly represent
propagation of the bedforms. The propagation speed range obtained by lag-correlation is
Cheq = 0.0116 — 0.0232m/s. The speed obtained using the wavenumber and frequency is
0.02317m/s.

The bedform evolution is shown in Figure 5.12. The bedforms in this simulation evolve
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Figure 5.10: Snapshots of the velocity field, corresponding vorticity (top panel) and depth
contours (bottom panel) for L, = Ay, k = 1.05.
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Figure 5.11: Time series of u, v and h at (z,y) = (110m,0.5Ly) for (—)L, = 2\, and
(—)Ly = Ay

to an alternate bar pattern very similar to the previous case. Although very similar at a
glance, there are some differences in the form of contour separations. Similar fluctuations
form around the same time step as before. It is also possible to observe contour pairing in
these simulations. Note at 16 hours the 3m contour forming at the lower right hand side of
the domain starts moving towards the next 3m contour. As it reaches the next contour it
also spreads over a larger area and it pairs with it at 25 hours. At 35 hours the contours
separate again. Similar behaviour occurs for the rest of the 3m contours within the domain.
Most probably, we would have been able to observe pairing of contours for the previous
case as well, if the domain length was longer. From these two simulations it is obvious that
separation and pairing of contours is more likely to happen at higher sand wave amplitudes,
which would correspond to lower water depths. At these points the discharge increases due
to lower flow depths and this pushes the higher points of the bedforms forcing the observed
behaviour. The amount of erosion and deposition is slightly larger in this case. After 40
hours the deepest contour is 10.5154m and the lowest contour is 2.2896m.

The flow field shows a similar behaviour to the previous simulation. In Figure 5.13
the velocity vectors are plotted on top of the vorticity at three different time levels. Here
again, vectors every fourth grid point are shown for a better resolution. Since the channel
length is doubled now, the number of meanders is also doubled. With the initial along-
channel velocity the flow field develops faster than before causing more transport to happen
in a shorter duration. Considering also that the bedforms have more freedom in developing
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due to the longer channel, this result is not unexpected. The magnitude of the maximum
vorticity shows almost no change. Neither the flow field, nor the bed evolution have been
significantly affected by doubling the channel length.

5.3.3 Results for L, = 4},

As a last simulation using the most unstable wavenumber, a channel length of four times
the most unstable wavelength has been used in this section. This gives a channel length
of Ly = 5266m. All other parameters are still the same. For this case, the number of
grid points in the along-channel direction is taken as 128 in order to keep 32 points per
wavelength. Based on the previous results the bed evolution does not show any significant
differences in terms of long time behaviour, therefore only 20 hours of simulation time has
been considered.
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The time series do not show any significant difference from the previous simulations,
except for a small lag and a slightly faster growth of the bedforms (Figure 5.14). The
nondimensional average frequency and the propagation speed obtained from the results are
wh, = 1.48 and Cheq = 0.0282m/s, respectively. As in the previous simulations their mag-
nitude is close to the values obtained from the linear dispersion relationship. The range for

the propagation speed obtained by lag-correlation is 0.0115m/s — 0.023m/s.
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Figure 5.14: Time series of u, v and h at (z,y) = (110m,0.5L,) for (—)L, = 4\, and
(—)Ly = 2.

The bed evolution also shows no significant difference. Snapshots of the topography
are shown in Figure 5.15. The same alternate bar pattern forms with a higher number
of meanders since the channel is longer. One thing to note is the timing and form of the
separation and pairing of the 3m depth contour. These emerge as fluctuations of the steep
wave front. Since a longer channel contains more meanders it is possible that they affect
each other such that they cause different pairing and separation events with different timings.
This is also evident from the lag between the time series. Due to this lag crest and troughs
of the bedforms at a point occur at different time levels.

A comparison of the vorticity and bathymetry of the previous two cases with the
present case is shown in Figure 5.15. The first two plots are for the cases where L, = 4\,
and L, = 2)y, respectively. In order to be able to make a more accurate comparison only
one wavelength is shown in these figures. The last one is from the first simulation where
Ly = )\y. Obviously the differences are insignificant. Looking at the intensities and general
shapes of the vorticity and depth contours, the same type of motion has been formed. The

69



maximum vorticity magnitudes are the same in each case. Considering both magnitudes of
the flow field, bedforms and the alternate bar pattern, longer channel lengths do not affect
the results in a significant way. The initial condition on the flow field does not seem to cause
any changes either.

5.4 Simulations for a Larger Wavenumber, k£ > k,,,,;

In this section a wavenumber larger then the most unstable one is used. The main focus is on
how the bed evolution is affected by a larger wavenumber. A nondimensional wavenumber of
k = 1.35 is chosen from the linear dispersion relationship (Figure 5.4). The same parameters
previously defined and the same simulation time of 40 hours are utilized. The collocation
points are chosen such that the number of points per wavelength is not less than 32, which
maintains spatial accuracy.
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Figure 5.15: Simulated bed evolution for L, = 4\, k = 1.05.
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Figure 5.16: Snapshots of the vorticity and topography at ¢t = 20hrs for (a)L, = 4\,
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The same form of initial bottom perturbation is used, this time with ¥ = 1.35. The
initial flow field is set to zero. Two simulations have been carried out. In the first simulation
one perturbation wavelength fits into the channel length, in the second the channel length
is doubled so that two perturbation wavelengths fit into the domain.

5.4.1 Results for L, = ),

For k = 1.35 the perturbation wavelength is A, = 1000m, and the length of the channel is
also L, = 1000m. According to the dispersion relationship, the bedforms travel faster in this
case since a higher wavenumber corresponds to a higher real frequency, w, (see Figure 5.4).
Their growth rate on the other hand corresponds to a slightly lower value. A comparison of
time series is shown in Figure 5.17. Note that the number of fluctuations is almost doubled
and that the growth is indeed lower compared to the previous time series.

The dispersion relationship gives nondimensional frequencies of w, = 2.2897 and
w; = 0.358. Using the time series of h, an average nondimensional frequency of w,, = 2.29 is
obtained. The crude propagation speed obtained using this frequency and the perturbation
wavenumber is around Cpeq = 0.0368m/s. The propagation speed obtained from the dis-
persion relation is Cj,;, = 0.0339m/s. The propagation speeds obtained by lag-correlation
range from values as low as 0.009m/s to 0.0353m/s. For this case speed values are more
fluctuating than the previous results.
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Figure 5.17: Time series of u, v and h at (z,y) = (110m,0.5L,) for L, = \,. (—)k = 1.35,
(—)k = 1.0
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The bed evolves into an alternate bar pattern once again. This time the bedforms are
more organized and no pairing or separation of contours occurs. The previous fluctuations
around the wave front do not form this time, probably due to a less steep wave front slope.
The maximum depth contour is 7.28m (lowest point) and the minumum value is 3.77m
(highest point). Snapshots of the simulated bed evolution are shown in Figure 5.18. It is
evident that the bar front is shorter.

The flow structure is also less meandering in this case. This can be seen in the vorticity
plots (Figure 5.19). The maximum magnitude of vorticity is approximately 8 x 10~* 51
in this case, whereas it was around 2.5 x 1072 s7! in the previous simulations. The flow
field starts out with a more significant meandering pattern and looses some of its magnitude
in the later stages. Note how the intensities of the red and blue colored areas at 6 hours
are stronger compared to the ones at 13 and 40 hours. For the previous simulations the
opposite occured, the flow field attained a more meandering nature (see Figures 5.10 and
5.13). Associated with a lower growth rate and a higher propagation speed, the evolution of
the bed and the flow field reaches a smoother configuration in the present case.
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Figure 5.19: Snapshots of the velocity field on top of the vorticity for L, = A,, k = 1.35.
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5.4.2 Results for L, = 2},

Similar to the previous simulations, here also a channel length twice as long as the unstable
wavelength is used in order to investigate the effect on the bed evolution. The channel length
becomes 2000m. The other parameters are again kept the same.

The time series of u, v and h are shown in Figure 5.20. There is a lag which increases
in time between the previous and present case, but the general shape of the fluctuations
is almost the same. The final bar amplitude is slightly larger overall. An important point
to note is that the growth becomes non-periodic. Looking at the time series of h, a lower
peak passes by, around 27 hours. After that the bedforms start to grow again. This does not
happen in the previous cases. Schielen et al. (1993) identified quasi-periodic behaviour of the
bed in time and space for long-term simulations. In this behaviour a non-periodic motion can
be observed in which different independent fundemantal frequencies of the bedforms exist.
Although not as obvious as in the case of Schielen et al., the present non-periodic behaviour
of h resembles a similar feature in time. This kind of behaviour is easier to detect for smaller
time and spatial scales as noted by Schielen et al.. For a longer simulation this behaviour
could become more evident.
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Figure 5.20: Time series of u, v and h at (z,y) = (110m,0.5Ly) for k = 1.35. (—=)L, = 2,
(—)Ly =Xy

The average nondimensional frequency is w), = 2.15, and the bedform propagation
speed is Cpeq = 0.0318m/s. The propagation speed from the dispersion relationship is Cj, =
0.0339m/s. Using lag-correlation the speed ranges between 0.0176m/s and 0.0353m/s.
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The simulated bed evolution is shown in Figure 5.21. The highest point within the
channel after 40 hours is 2.7424m and the lowest is 7.6709m. Compared to the previous case
it is obvious that more erosion and deposition occured for this case. Details of the resulting
topography can be seen in the next figure.

The meandering flow structure for this case is more pronounced. The maximum vortic-
ity reaches a value of 1.1 x 1072 s~ ! in 40 hours, whereas in the previous case the maximum
value is significantly smaller and the vorticity is also decreasing in time. A comparison is
given in Figure 5.22, where snapshots of the flow field on top of the vorticity and the depth
contours are included. Note the difference in the vorticities. The meandering nature of the
flow is obviously more pronounced for this case, which is shown in Figure 5.22(b). The re-
sulting depth contours are also different, and the contours are more fluctuating in this case.
It is also evident that the propagation of the instabilities is different in each case.

It is clear from the time series, the flow field and the resulting topography that as
the channel length increases the propagation of the instabilities increases too. The opposite
occurs when the most unstable wavenumber is used in the first three simulations. Comparing
the last two simulations with k.., the propagation speed decreases as the channel length
increases. The initial condition on the flow field and the bottom perturbation are also
important, but from the simulations at hand, the growth rate and propagation speed of the
instabilities are obviously effected and they change in time, although the overall alternate
bar pattern is preserved.

5.5 Simulation for a Smaller Wavenumber, k < k,,,;

Similar simulations have been obtained using a smaller wavenumber of k = 0.67 for the
initial bed perturbation (see Figure 5.4). This corresponds to a wavelength of A\, = 2000m.
For this case a channel length of L, = 2000m has been used, so one perturbation wavelength
fits into the domain. The rest of the parameters are the same.

The nondimensional frequencies from the dispersion relationship are w, = 0.5947 and
w; = 0.339. From the real frequency a dimensional propagation speed of C} , = 0.0177m/s
can be obtained. The approximate average period of Ty, = 31hrs which corresponds to
a nondimensional frequency of w/), = 0.623 is computed from the time series of h. Using
this frequency and the perturbation wavenumber, the propagation speed of the bedforms is
around Cpeqg = 0.0186m/s. Lag-correlation gives speeds from 0.009m/s to 0.0186m/s.

The comparison of the time series of h for this case and the previous cases is shown
in Figure 5.23. According to the linear dispersion relationship, a smaller wavenumber cor-
responds to a smaller propagation speed. This is evident in the time series plot, where the
least amount of fluctuations is found for k£ = 0.67. Although the general trend of growth is
present in each case, the form of the fluctuations for £ = 0.67 is different than the others. A
similar form is present for the time series of v and v.
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Figure 5.22: Snapshots of the flow field, corrsponding vorticity and topography at ¢ = 40hrs
for k = 1.35. (a)Ly, = Ay, (b)Ly = 2),. Top panel: flow field and vorticity, bottom panel:
depth contours.

The bed evolution in general is again in the same form, although at later stages the
flactuating wave fronts are more pronounced (Figure 5.24). The alternating bar pattern
evolves within the first 10 hours, but at points around the wave front the shape starts
changing at 16 hours. The fluctuations are very strong compared to the other cases. This
becomes especially evident after 30 hours, and at 40 hours a spit-like feature has developed
along the wave front (Note the red areas in the pseudocolor plots). Looking at the three-
dimensional picture of the topography shown in Figure 5.25, these features can be seen more
clearly. At an earlier stage the sand waves attain a steeper front slope as before, but at
40 hours the fluctuations around the wave front alter the smooth shape of the waves. Note
especially the second smaller wave that has formed right in front of the larger wave. An
additional 8 hour simulation shows that the overall growth of the sand waves continues. The
smaller wave shows a fluctuating nature; as it evolves it does not exceed its height developed
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Figure 5.23: Time series of h at (z,y) = (110m,0.5Ly) for (a)k = 1.05, (b)k = 1.35,
(c)k = 0.67.

at 40 hours and it does not fall below a certain height. Additional fluctuations over the
higher sections at the back of the larger wave start forming at 41 hours, but they smooth
out at 48 hours. Since no significant changes occur, the bed evolution beyond 40 hours has
not been shown.

The evolution of the flow field shown in Figure 5.26 is very similar to the flow fields
of the other cases; a meandering pattern is present. The magnitude of the vorticity shows
a larger growth over time than before. Note how the vorticity at 6 hours compared to the
one at 40 hours is extremely weak. The largest vorticity values are confined to a very thin
section of the channel, very close to the walls. Those sections correspond to the points where
separation of contours emerge and the spit-like wave front occurs. The maximum vorticity
is 0.0287 s~! which is considerably higher than the values from the previous simulations.

5.6 Effects of Different Parameters

The equations governing the evolution of the combined flow-bed system incorporate certain
parameters which can be considered as fudge factors’. Most of them are only determinable
through laboratory measurements and for some cases only through observations. In the
present problem the friction factor ¢; and the velocity power b in the sediment transport
equation are considered. Other factors that could affect the bed evolution are the width-to-
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depth ratio R of the channel, the parameter 7' or the coefficient v in the transport equation.

From the stability analysis point of view, it is obvious that the growth rate and prop-
agation of the bedforms will be affected by changing these parameters. The morphological
time scale for example, includes v, b, the channel width y, and the channel depth h,. The
morphological time scale directly governs the magnitudes of the growth rate and propaga-
tion speed. Colombini et al. (1987) and Schielen et al. (1993) obtained differential equations
which govern the bedform amplitudes (The Landau and Ginzburg-Landau equation). These
equations include c¢f, v, b and 7'; so depending on these parameters the resulting beforms
could change.
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Figure 5.24: Simulated bed evolution for L, = Ay, k = 0.67.
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Figure 5.26: Snapshots of the flow field and corrsponding vorticity for L, = A\, k = 0.67.
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Looking at the transport equation (4.14), the parameter v changes only the magnitude
of the resulting transport rate. Tests with different v values confirm this fact, and the
resulting bedforms were not affected significantly. Given the same initial conditions, its
effect on the bed evolution is in the form of either faster or slower growth/decay depending
on the instability and the morphological time scale. The parameter b governs the relative
magnitude of the transport rate since it is the power of the velocity. There exists a critical
velocity value which produces the same transport rate regardless of what b is. For a simplified
version of the transport equation g = u®, that velocity value is 1. For larger b values a velocity
value smaller than the critical one corresponds to lower transport rates and a velocity larger
than the critical corresponds to higher transport rates. This affects the morphological time
scale, too. Considering also that the flow may develop complicated patterns depending on
the friction factor and other interaction machanisms in the system which were neglected in
the stability analysis, it may be important to investigate the actual effects of changing these
parameters.

5.6.1 Different Values of the Friction Factor ¢;

Simulations have been run for two different c; values, one smaller and one larger than
¢y = 0.003. The most unstable wavenumber for the bed perturbation obtained in section
5.3, the same channel geometry and sediment transport parameters are retained. The channel
length is chosen such that one perturbation wavelength fits into the domain.

First a value of ¢; = 0.001 corresponding to an along-channel basic flow velocity
of V.= 1.7312m/s with a channel slope of i, = 6.11 x 107> has been considered. The
dispersion relationship for £ = 1.05 and c¢; = 0.001 predicts that the bedforms are stable
(Figure 5.27(a)). The time series show that this is true to a certain extend. The bedforms
start out with some growth, but reach equilibrium in approximately 5.55 hours (Figure 5.28).
It is also obvious that the bedforms propagate a lot faster. The dispersion relationship gives
frequency values of w, = 42.0042 and w; = —0.8873. The dimensional propagation speed
can be computed as C},; = 21.5386m/s which is extremely large. The numerical results do
not show such a high propagation speed. The resulting bar pattern is the same as before,
therefore the bed evolution results are not shown here. The amount of erosion and deposition
is smaller than all the previous results. The overall structure of the bar pattern is slightly
smoother and the flow field, too. The maximum value of vorticity for this case is 8.18 x 10™*
s~ which is again smaller than before. This means that the meanders are not as pronounced
as before.

In the second run a friction factor of ¢y = 0.03 has been used. This corresponds to
a basic along-channel velocity of V' = 0.3161m/s. Although the dispersion relation predicts
that growth happens for ¥ = 1.05 (Figure 5.27(b)), the numerical results do not show any
growth or propagation.

Another case where ¢; = 0.03 and the corresponding most unstable wavenumber has
been used to determine the bed perturbations shows that the bedforms can evolve into
somewhat different shapes. The nondimensional most unstable wavenumber obtained from
the linear stability analysis is k¥ = 3.1 and the frequencies are w, = 8.477 and w; = 3.095.
The basic along-channel flow now corresponds to V' = 1m/s, and the channel length is
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Figure 5.28: Time series of h at (z,y) = (110m,0.5L,) for k = 1.05 and c; = 0.001.
approximately 446m. The general pattern of alternate bars is preserved but the fluctuating
wave fronts cause significant contour separations, which can be seen as deep scour holes in

Figure 5.29. The bar front is not as significant as in the other simulations. Although the
most unstable wavenumber is used to determine the bed perturbation, growth only happens
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to a certain extend. The bedforms seem to have reached equilibrium by 10 hours. The
bedforms start out with some growth which is followed by some decay. This is evident from
the time series (Figure 5.30) where also the general form of fluctuations is different from the
previous cases.

The flow field directly responds to the bed change as before and no significant difference
was observed. The meandering nature of the flow is much stronger since higher values of
vorticity are attained. The maximum is around 0.064s~! at 5 hours, but than drops to
0.044s ! by the end of 10 hours.
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Figure 5.29: Snapshots of the bed evolution for L, = Ay, kK = 3.1 and ¢; = 0.03.

5.6.2 Different Values of b

A parameter governing the sediment transport rate is the power b of the velocity in the
transport equation. In order to investigate its effect we carried out two simulations with two
different values of b. For b = 2 and k = 1.05 the stability analysis predicts decay of bed
features. This is also confirmed by the numerical results. The bed change at the mid-section
of the channel starts out with a certain amount of decay the first 4.44 hours which turns
into growth until equlibrium is reached at approximately 13 hours (Figure 5.31(b)). After
this point the bedforms are stationary, they neither propagate nor show growth. Looking
at the whole channel, the bedforms experience an overall decay while reaching equilibrium.
The nondimensional frequencies are w, = 0.7381 and w; = —0.11931. The resulting bed
pattern is also not the same as before, for this case the meanders are not visually detectable.
The steep wave fronts are still present, but the shape of the bar front across the channel
is different; it does not resemble the idealized alternate bar formation in alluvial channels.
The results are shown in Figure 5.32, note that the bedforms do not show any change or
propagation after 14 hours.
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Figure 5.32: Snapshots of the bed evolution for £ = 1.05 and b = 2.

The deepest point in the domain is 5.4576m and the lowest is 4.5893m after 40 hours.
The amount of erosion and deposition is obviously lower for this case and the bedforms

travel with a much slower speed. The speed obtained from the dispersion relation is C},; =
0.0141m/s.

The corresponding flow field and vorticity shown in Figure 5.33 obviously do not show
any signs of meandering. Although hard to notice, a slight convergence of velocity vectors
over the orange colored sections and a divergence over the deep blue colored sections are
present. These are divided in two portions towards the middle of the channel. This flow field
structure explains the sharp and peaky forms of the 5m contour towards the mid-section,
and also why the alternate bar pattern does not form.

For a value of b = 4 the most unstable wavenumber is ¥ = 4.36 x 10~3. The nondi-
mensional frequencies are w, = 1.192 and w; = 0.1224. The time series of h for this case is
similar to the case where b = 6 (Figure 5.31(a)-(c)). The resulting alternate bar pattern is
smoother and the overall sediment transport amount is smaller accompanied with a slower
propagation speed of the sand waves. Using the stability analysis, the propagation speed of
the forms is around C}_, = 0.0231m/s, and from the frequency obtained from the time series
and the wavenumber Chpey = 0.0245m/s. The speeds obtained from lag-correlation range
from 0.0062m/s to 0.0310m/s. Since the resulting bar pattern and flow field are essentially
very similar to the previous results, they are not shown here.
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Figure 5.33: Snapshots of the flow field and vorticity for £ = 1.05 and b = 2.
5.7 Effects of Different Initial Bed Perturbations

In order to investigate the effect of initial conditions we obtained results with two different
initial bed perturbations. The channel is long enough to include two perturbation wave-
lengths corresponding to & = 1.05. The first bed perturbation includes its lower harmonics
as well, and the second perturbation includes one wavelength plus half a wavelength

zp(z,y,t = 0) = zccos(dez)[cos(deay) + cos(Kdeay)] (5.2)

where K = 2 for the first perturbation and K = 1/2 for the second one. The rest of the
parameters are the same for the case with the first perturbation. For the second one, in order
to be able to simulate the bed evolution for a considerably long period, a lower perturbation
amplitude of z./10, and a lower transport coefficient of v = 0.07 have been used.

Results for the first case are shown in Figures 5.34 and 5.35. The bed starts to show
changes after the first 40 minutes which is more significant at 60 minutes. The 5m contour
has separated to form the spit-like part reaching to the 5.5m contour. Two significant scour
holes are formed at 190 minutes (note the 6m and 7m depth contours, or the deep blue
colored areas), and the 4.5m contour on one side of the channel is pairing with the one on
the other side, which is more evident at 290 minutes. At 250 and 290 minutes the higher
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harmonics of the perturbation have almost diminished. Obviously, the second harmonics
of the perturbation are smoothed out, and the contours are rearranging such that the bed
pattern reaches the same alternate bar configuration. From 360 to 390 minutes, the bed
configuration becomes more organized, especially by the separation and paring of the 5m
contours. The pattern is well organized by 500 minutes, no significant contour pairing and
separation occurs beyond this time. In 10 hours the bed configuration has again developed
into an alternate bar pattern.

Compared to the results in section 5.3.2 where higher harmonics are not included, the
resulting pattern in this case is very similar. It is in general smoother and the amount of
erosion and deposition in 10 hours is about the same for both simulations.
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Figure 5.34: Snapshots of the bed evolution for £ = 1.05 with K = 2 in the bed perturbation.
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Figure 5.35: Snapshots of the bed evolution for k¥ = 1.05 with K = 2 in the bed perturbation
(continued).

The flow field once again adjusts itself instantaneously to the bed evolution and the
general form of meandering flow is attained at 10 hours. Overall the flow field does not
show an evolution significantly different than the previous results. The magnitude of the
vorticity reaches a maximum of 0.0013 s~!, which is smaller than the maximum vorticity at
10 hours in section 5.3.2. This matches the bed configuration where less meandering and a
less energetic flow cause a more smoother bed pattern.

For the second case the initial perturbation evolves into a pattern similar to an alternate
bar form, but now with a bigger sand wave followed by a smaller one (Figure 5.36). This
configuration is preseved through the whole simulation time which is 2 days. The steep
wave fronts and the fluctuations around them form once again. At 36 hours the 3m contour
separates followed by the 4m contour at 40 hours. The smaller wave significantly deformes
as it propagates behind the bigger one. The bigger sand wave is very similar to the sand
waves forming in the previous examples.
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Figure 5.36: Snapshots of the bed evolution for £ = 1.05 with K = 1/2 in the bed perturba-
tion.

5.8 Alternate Bars in a Flume Experiment

Uchijima (1990) performed a series of experiments in a laboratory flume to study the defor-
mation of alternate bars. A straight flume with 0.3m width, 0.4m height and 14m length
is used. The experiment consists of three sets. First, two patterns of single-row alternate
bars, stable and developing ones are formed for the initial bed. In the second set, tests on
the deformation of the bars at low stage are conducted. These are continued until the local
scour stabilized. In the third set the discharge used in the first set is used on the resulting
bed from the second set in order to examine the hysterisis effect. We are concerned with the
first two sets of the experiment. The discharge used in the first set is Q = 2.12 [/s and the
flume slope is i, = 1/70.

There were two major difficulties involved in the simulations. The first one is choosing
the correct friction factor c; and the transport coefficient v. The second problem is com-
puting an appropriate flow depth which is not given in the data. Since the discharge, the
channel width and slope are known we picked a friction factor and tried to calculate a flow
depth. Considering the basic flow state in a rectangular channel, i.e. i,9 = CfU2 /d, a very
large friction factor of ¢y = 0.09 gives a flow depth of d = 3.17mm. Looking at the exper-
imental results the flow depth should be larger than the resulting bedforms (Figure 5.37).
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In the results only the eroded sections are shown. Considering an alternate bar pattern, the
maximum height of accretion should match the maximum scour depth. Since the deepest
point measures —15mm, our choice of 31.7mm flow depth seems to be appropriate. Note
that the bedforms are measured taking the unperturbed bed level as reference where the 0
contour corresponds to the flume bed. Unfortunately due to the extremely small flow depths
and small bed features involved, the numerical model was not able to compute results in a
practically feasible simulation time and again due to the same reasons numerical stability
problems occured (i.e. violation of the Courant condition). Therefore in order to still use
this data and investigate the same patterns we used one of the previous simulations.

The simulations carried out for different channel lengths showed that the resulting
bed features do not change significantly, therefore we decided to use the same simulation
in section 5.3.2. First, a simulation has been run long enough to obtain the same ratio of
maximum scour depth-to-flow depth ratio as in the experiment. With the computed flow
depth, this ratio is about 1/2. Starting out with an unperturbed channel depth of 5m, a
close ratio is obtained after 7 hours of simulation, when the maximum scour depth reaches
about 2.47m (taking the channel bed as reference). Similar alternate bars are obtained. In
the second run, the flow has been reduced the same amount as in the experiments. In the
experiments, the discharge of 2.12 [/s is reduced to 0.6 [/s. In our simulations the first
basic flow velocity of 1 m/s is reduced to 0.283 m/s. This has been achieved by setting the
along-channel slope to i, = 4.898 x 107 and keeping the rest of the parameters the same.
The channel bed obtained from the first 7 hours run is used as input for the second run with
reduced flow velocity.

Results for 104 hours ( 4 days) have been obtained. These are shown in Figure 5.38 and
5.39. The alternate bar pattern forming in the channel is very similar to the experimental
result (first panel in Figure 5.37). The general shape of the bars at 7 hours starts changing
right away and looking at the flume results, within 16 hours a more similar alternate bar
pattern is formed. This pattern is stable and the bar deformation seen in the flume does
not happen the same way. The deformation is only happening as contour separations of
higher sections in the channel, whereas in the flume the separated higher sections are moved
to the middle of the flume. Another difference is that in the experimental results the bars
show a small amount of propagation. In the simulations the propagation of the bars is very
significant.

The deformation of the bars at 10 and 50 minutes shown in Figure 5.37 is similar to the
bed evolution in the case where higher harmonics were included in the bed perturbation (see
Figure 5.34 and 5.35). The two scour regions are connected with a channel-like feature (note
the —5m contour), which is destroyed at 80 minutes with the formation of higher bed forms.
A similar channel forms also in Figure 5.35 at ¢ = 390min for the scour and higher regions
(the blue and red areas). It is not as pronounced as in the flume case and its orientation is
reversed. This only acts as a transition after which the same alternate bar pattern is formed.
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Figure 5.37: Alternate bar deformation in a laboratory flume (Uchijima, 1990). Hatched
sections: scour, smudged sections: high bed level. The dashed line represents the barfront.
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Figure 5.38: Simulated bed evolution with lower flow velocity for k
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Figure 5.39: Simulated bed evolution with lower flow velocity for £ = 1.05 (continued).

It is clear that in our results the bedforms attain a very stable form. The deformation
of the bars is not triggered in the simulations. Although a similar flow condition was tried to
be imposed in the runs, it may be that additional perturbations are necessary in the system
which are obviously not present or not strong enough in our runs. One approach could be
introducing a random and small perturbation to the flow field after reducing the flow. A
bed perturbation with higher harmonics could have been used as well, but in the light of the
previous results most probably this also would have been evolved to the same alternate bars.

Another uncertainty involved is the determination of a correct friction factor c; and
transport coefficient v. Fixing the friction factor using an appropriate flow depth and ad-
justing v accordingly seems to be the most suitable approach. It has to be kept in mind that
the transport equation used in these simulations is fairly simple and effects like the grain size
distribution or suspended sediment load are not included. Despite all of these uncertainties,
it is striking that alternate bar patterns very similar to actual laboratory results can be
predicted with such a simple sediment transport formulation.
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5.9 Summary

In this chapter the evolution of bed instabilities in a rectangular channel are investigated.
A standard stability analysis has been used to identify the most unstable wavenumber, the
propagation and growth of the bed forms. With this information the bed is initially perturbed
and the whole system is solved numerically including nonlinearities which are neglected in
the stability analysis.

The coupled model first was tested for a channel case where a cross-channel slope
was introduced as initial bed configuration. Results show that the model can predict the
expected profile equilibriation.

In almost all of the simulations where initial bed perturbations were included, an
obvious alternate bar pattern is formed in the channel. This pattern consists of sand waves
with a steep wave front which was also predicted by Colombini et al. (1987) and Schielen
et al. (1993).

Different effects on the bed evolution have been investigated, as well. Longer channels
seem to have very slight effects on the bed evolution and resulting flow field. The most
evident consequence of longer channels is that the bed forms evolve more freely and can
propagate with higher speeds than predicted by the stability anlaysis. Contour pairing and
separation also happens more frequently and faster in longer channels. Fluctuations around
the steep wave front form in each case independent of the channel length. The corresponding
flow field consists of a meandering along-channel stream. For longer channels the meandering
nature may gain more strength.

Simulations for wavenumbers larger and smaller than the most unstable one show
that the general alternate bar pattern is formed in each case. The growth and propagation
predicted by the stability analysis matches the numerical results within acceptable limits,
although we were only able to determine crude and approximate values from the simulations.
For a larger wavenumber the resulting bar pattern was smoother than the ones for the most
unstable wavenumber. The same case with a longer channel resulted in more fluctuating
contours. For a smaller wavenumber spit-like features developed at high sections of the bars
which were due to separating contours.

For two different friction factor values although the stability analysis predicts growth
of the bed perturbations, the numerical results tend to show the opposite. In the simulations
obtained for very small and very large c; values growth only happens for a certain period,
or not at all. The general characteristics of the flow field for smaller c; values is that it is
less energetic, so the stream is less meandering. This is also evident from the vorticity values
obtained. For larger c; values the meandering flow field is more pronounced. For a larger
value of cf, although the stability anlaysis predicts growth the bed forms reach equilibrium
within a period of 10 hours and do not resemble the alternate bar pattern as before. Ob-
viously for very small and very large values of the friction factor, the bed instabilities may
evolve into different patterns and the linear stability analysis may be applicable only to a
certain extend.

The velocity power b in the transport equation seems to be critical in the formation
of alternate bars. As shown in the dispersion curves in Chapter 3, for b = 2 and k& = 1.05
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growth of bed instabilities does not happen. The numerical results also show that alternate
bars do not form, but the bedforms decay as predicted by the stability analysis. For b = 4
the resulting patterns are very similar to the previous results.

The effect of including higher harmonics in the initial bed perturbation is in the form
of significant deformations of the bar structure until the final configuration consisting of the
same alternate bar pattern is attained. For a second perturbation which had one wavelength
plus a half wavelength along-channel, no significant changes occured. A pattern similar to
an alternate bar form developed, only with a larger wave followed by a smaller one this time.

The present model is able to predict alternate bar patterns very close to the pattern
observed in the experimental study carried out by Uchijima (1990). The bar deformation
observed at low flow was not predicted by the model. It is possible to obtain bed pat-
terns qualitatively similar to observations and experimental results, but the bar deformation
obviously involves other mechanisms which are not strong enough or not present in our sim-
ulations. Different perturbations can be introduced into the simulations which may act as
mechanisms triggering the observed bar deformation. More accurate comparisons require
the appropriate determination of v and c;, or a more sophisticated transport model which
considers effects like suspended sediment load or grain size distribution. Another important
point is that the model is not able to handle very low flow depths and small bed features due
to numerical problems and extended simulation periods which in the practical sense may not
be feasible.
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Chapter 6

EVOLUTION OF
MORPHODYNAMIC
INSTABILITIES ON A PLANE
BEACH

In this chapter preliminary results of bed evolution for a plane beach with initial bed per-
turbations are presented. The main focus is on the coupled evolution of seabed and flow
instabilities. The sediment transport equation is the same used in the channel simulations.

A wall boundary condition is imposed at the shoreline in order to decrease computa-
tional time. The effect of a moving shoreline has not been addressed in this study.

The initial plane beach is perturbed with a small wave-like disturbance. The momen-
tum forcing terms are computed using wave information specified at the offshore end of the
domain. T'wo different wave and beach conditions are considered. The first one is for a mild
sloping beach with low wave height and incident angle. The second case is for a steeper
beach with larger wave height and incident angle. For each simulation two different insta-
bility types are imposed, bed-surf and bed-flow instability as described in Chapter 2. The
effect of a different position of the initial bed perturbation is also investigated.

The results are mostly presented as snapshots of bed change contours, three-dimensional
view of the resulting topography, flow field and corresponding vorticity. The following section
contains a short description of the model formulation. The results are presented in section
6.2 and a summary is included in section 6.3.

6.1 Model Implementation

In order to obtain a plane beach topography, a bottom slope and an offshore open boundary
are specified in the model. At the shoreline a wall boundary condition is specified. The
condition of periodic lateral boundaries is retained. In this case x points in the offshore
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direction and y in the longshore direction.

In accordance with the simulations for the rectangular channel case, in order to main-
tain spatial accuracy a minimum of 32 collocation points per perturbation wavelength in the
y-direction and 32 points in the z-direction are utilized in the simulations.

The initial bottom perturbation is in the form of longshore periodic waves. This form
has been obtained by including a sinusoidal change in the y-direction to the barred beach
topography formula used by Deigaard et al. (1994). The resulting equation of the bed
topography is as follows

h(z,y,t = 0) = ho(x,y) — z5(@, y) (ho(z,y) — de) (6.1)
where h,(x,y) is the unperturbed plane beach profile and

(5, 1) = 20 €Xp (M) cos(doy)

Ly
The parameters z. and d. determine the still water depth over the perturbation and its
location. The width of the perturbation is determined by d;, and the amplitude can be
adjusted with z,. The alongshore wavenumber of the perturbation is governed by ds.

In order to compute the flow field, the time-varying short wave field is determined by
solving the energy equation including effects of shoaling and breaking. The linearized form
of the energy equation including the effects of currents derived by Phillips (1977) can be
expressed as

oFE 0 0 ) ou
5 + %[E(u + ¢4 cos )] + a—y[E(U + ¢4 sin@)] + SM_B:E
ov  Ou ov
+S$y (% + 8_y> + Syya_y = €p (6'2)

where F is the short wave energy density, ¢, is the group velocity, ¢ is the angle of incidence,
€p is the energy dissipation due to wave breaking, and Sg;, Szy and Sy, represent the radiation
stress tensor. The energy density, group velocity and the radiation stress components were
described in Chapter 4.

The energy dissipation due to breaking ¢, is defined by Thornton and Guza (1983)

VT fpB®
€ = ng 74}7,5 Hrms

(6.3)

In this expression, H,,,s is the root-mean-squared wave height and f, is the peak frequency
of the spectrum. The intensity of wave breaking is determined by the coefficient B which
accounts for the different breaker types and can be considered as a function of the proportion
of the foam region on the breaker face. The coefficient v can be considered as a breaking
index roughly relating water depth to wave height. Values of B = 0.78 and v = 0.45 have
been used.

The energy equation is integrated along with the other governing equations in the
numerical scheme of the model. Initial values of the wave height, frequency and angle of
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incidence are specified at the offshore end of the domain. For a smooth start-up, the offshore
wave height is introduced using a ramping function in time.

The refraction of the waves is governed by the irrotationality of the wavenumber

0 —(k cos 0) (6.4)

0 — (ksinf) = By

ox

This expression reduces to Snell’s law for straight and parallel bottom contours. The disper-
sion relationship for the waves including currents is given by

(w — kucos @ — kv sinf)? = gk tanh(kh) (6.5)

Here w = 27 f is the absolute frequency with f being the short wave frequency. At every
time step after the current velocities are computed the dispersion relationship is solved for
k using a Newton-Raphson iteration method. Given the offshore values of k and 6, equation
(6.5) is solved to determine the wave direction 6 in the modeling domain.

The rest of the terms in the momentum equations were described in Chapter 4.

The parameters in the transport equation are chosen as b = 2 and 4/ = 1. An arbitrary
and small threshold velocity v, is defined in the simulations. The rest of the parameters are
described in each section.

6.2 Bedform Evolution Under Two Different Wave and Bed
Conditions

A wave-driven flow field is considered over a specified topography. The wave field is resolved
and thereby radiation stress components are computed as forcing terms in the momentum
equations. Wave-current interaction and mixing processes are not included in the simula-
tions. Refraction is included up to the level where the wave height is fully developed within
the domain (due to the ramping function mentioned previously), so the bed change does not
affect wave refraction. Sediment transport is activated after 1 hour of simulation time.

We consider two types of wave and beach conditions. In the first case the beach slope
is mild. The offshore wave height and incident angle are low. This case can be considered
similar to the situation referred to as 'wave-dominated’ by Falqués et al. (1996b). The
second case has a steeper beach slope with a larger offshore wave height and incident angle.
This case is referred to as ’current-dominated’. The main aim is to observe how the bed
evolution is affected by a strong current over a steeper beach, and a weaker current over
a milder beach. The simulations for each wave and beach condition are also divided into
'bed-surf’ and ’'bed-flow’ instability cases (Falqués et al., 1996a, 1996b). In the case for
bed-flow instability the bed instabilities do not affect the forcing terms in the momentum
equations. This situation has been created by first running the model for a certain time in
which the flow field developed over the specified topography. Then the numerical values of
the forcing terms in both directions are used as input for the rest of the simulation when
sediment transport is activated after 1 hour. Obviously, for this case the forcing is constant
throughout the whole simulation. For bed-surf instability where the instabilities affect the
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forcing terms, the simulation has been run without interruption and without using constant
forcing terms as input.

Nondimensional wavenumber values for the initial bed perturbation have been chosen
from cases presented by Falqués et al. (1996b). In these results values of R = cy/m, the
incident wave angle at breaking and the Froude number F = U/\/gL, are given. Here
L, = mLy is a vertical length scale, Ly is a horizontal length scale corresponding to the
offshore distance of the breaking point, and U is a velocity scale (see Chapter 2). In order
to dimensionalize the wavenumber, the length scales are computed using the above given
relations and the numerical results obtained from simulations for a planar beach with slope
m and a chosen friction factor c;. From the breaking wave angle the offshore incident
wave angle is obtained through Snell’s law. The offshore wave height has been determined
considering only shoaling and also the simple relationship between the breaking wave height
and water depth at the breaking point used in Falqués et al.’s study, so the breaking depth
from the simulations approximately matches the one obtained by Falqués et al.. The length
scales Ly and L, then can be computed using the definition for the Froude number F' and the
velocity scale U. The cross-shore length of the domain and the wave period have been chosen
arbitrarily. Since in this study we did not have direct access to the wavenumber-frequency
curves for planar beaches, with this approximate approach we tried to obtain simulations
close to the instability condition for given beach and wave conditions.

6.2.1 Deformation of Longshore Rhythmic Bedforms

For the first case, the nondimensional longshore perturbation wavenumber is k = 3.5. In
computing these wavenumbers, lateral momentum mixing was also incorporated in the sys-
tem (Falqués et al., 1996b) whereas in our cases mixing is not considered. Lateral mixing
may significantly affect the bed evolution, but in terms of growth of the bed instabilities
the computed k values should not change significantly. Therefore, as the results confirm,
excluding lateral mixing may not hinder the growth of the bed perturbation. Also, with
the above mentioned approach in obtaining dimensional wavenumber values, lateral mixing
effects can not be directly included.

The beach slope is m = 0.006 and the friction factor is chosen as ¢y = 0.003. The
offshore wave height and angle of incidence are H, = 0.3727m and 6, = 6.9°, respectively.
For a plane sloping beach this wave breaks around an offshore distance of 175m and the
maximum longshore current occurs at 75m. Using this length the dimensional wavenumber
for this case is 0.0459rad/m. An arbitrary peak period of T' = 7.7s and cross-shore domain
length of L, = 350m have been used. The shoreline wall is 0.35m deep.

The bed perturbation is around the region of wave breaking with its highest point right
at the breaking point. The parameters for the bed perturbation are z, = 0.2, d; = —15,
2. = 75, and d, = 0.2. The longshore length of the domain is chosen long enough to include
two perturbation wavelengths. This corresponds to a length of approximately L, = 270m.
The spatial accuracy is again maintained by specifying 32 grid points per wavelength in the
longshore direction and 32 grid points in the cross-shore.

The morphological time scale is chosen to be around 45 minutes. Using this time scale
and the definitions for U, F' = 0.16 and the length scales, a value of v = 0.1107 can be
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obtained to be used in the transport equation. The critical velocity is v. = 0.0055m/s.

Bed-surf Instability Results

The results are shown as bed change and depth contours in Figures 6.1 and 6.2. The
initial bed perturbation starts to change within half an hour after the sediment trasnport
is activated. The bed change contours at 1.5 hours are very similar in shape to the results
shown by Falqués et al. (1996a) (see Figure 2.5). Compared to their results this bottom
change corresponds to the second mode. In the next 30 minutes, the first row of bed change
around 75m offshore moves slightly in the flow direction as the second row which is closer to
the shore moves in the opposite direction and connects with the first row. This corresponds
to a spreading of the perturbation over the surf zone. Small oblique channels oriented in
the flow direction are formed. In the next two hours the perturbation spreads further to
the offshore as it grows. The topography changes to a complicated pattern in which still
longshore periodicity can be identified. A three-dimensional view of the resulting topography
is shown in Figure 6.3. The periodicity can be better observed in the contour plots.
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Figure 6.1: Simulated bed evolution for ¥ = 3.5, m = 0.006, H, = 0.3727m, 6, = 6.9,
f = 0.13rad/s, ¢y = 0.003. Top panel: bed change contours (dashed lines: erosion, solid

lines: deposition). Bottom panel: topography.
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Figure 6.2: Simulated bed evolution for ¥ = 3.5, m = 0.006, H, = 0.3727m, 6, = 6.9°,
T =17.7s, ¢y = 0.003 (continued). Top panel: bed change contours (dashed lines: erosion,
solid lines: deposition). Bottom panel: topography.
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Utilizing the same cross-correlation method used for the channel simulations in order to
determine the longshore speed of the bedforms, an approximate interval of 0.005 — 0.014m/s
can be obtained. The average value is Cyeq = 7.7m/hr.

The resulting topography is comparable to laboratory observations of skewed rhythmic
bedform development under oblique waves (Sonu, 1973). According to these observations
the offshore located bed feature (a bar or, as in this case, a bed perturbation) spreads over
the surf zone as it gets skewed and finally attaches to the shore forming small spit-like
features (Figure 6.4). In our simulation a directly shore-attached feature may not be so
easy to develop since islands forming at the shoreline would cause the model to stop, which
in fact happens in this simulation. After 5 hours the sand waves forming at the shoreline
wall exceeded the wall depth. It is still possible to see the formation of the spit-like forms,
especially at 4 hours (note the smaller 0.4m contour towards the shoreline). Although the
smaller one is destroyed by the formation of the oblique channel, a second similar form grows
as it starts propagating in the flow direction (the larger 0.4m contour).

Snapshots of the flow field, the vorticity and the corresponding depth contours are
shown in Figure 6.5. Velocity vectors every second grid point in the longshore direction are
plotted to maintain a better visual resolution. Although the wavy structure of the longshore
current is evident, vorticity only starts to gain more strength as the topography becomes
more complicated. There are strong vorticities very close to the shore moving alongshore
and some are shed offshore. The maximum absolute velocity values (|V,,| = Vu? + v?) are
included in the title of each snapshot. Note how the depth contours match the flow field,
especially at the points of high vorticity.

The Effect of a Different Initial Bed Perturbation Location

The effect of moving the bed perturbation slightly offshore has been investigated in the
next simulation. Using the same parameters the bed perturbation is moved to around 100m
offshore. With this length scale the dimensional perturbation wavenumber becomes k =
0.0345rad/m. This gives a longer beach where L, ~ 360m. The wall at the shoreline is
smaller for this case, h, = 0.1m.

The resulting bed evolution is very similar to the previous case (Figure 6.6). Due to the
location of the perturbation the bottom change spreads to a longer offshore distance, and the
shoreline is affected after 7.5 hours when the bed starts forming shoals at the shoreline wall.
The bottom attains a complicated though visually more periodic pattern. Similar patterns of
shoals and channel-like structures evolve (Figure 6.7). The longshore bedform speed values
range between 0.0031m/s and 0.0062mn/s. The average value is Cpeq = 3.42m/hr.

The flow field with alongshore moving and offshore shedding vorticities is also very
similar to the previous results (Figure 6.8). The only difference being that the vorticity
field looses some of its strength in time, although the velocity magnitudes are very close.
This means that the flow field is not as energetic as in the previous results in terms of its
meandering and vortex structure, probably due to the smoother bed evolution and slower
bedform propagation.

In both these cases, the initial bed perturbation evolves into a rather complicated

109



Immediately after the start of waves

)

e

After 30—60 minutes

})}JJJ

5

After about 5 hours

1-wave front; 2—bar; 3—shoreling|

Figure 6.4: Laboratory observation of the development of a skewed rhythmic topography
under oblique waves (after Sonu (1973)).
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Figure 6.5: Upper panel: snapshots of the flow field and corresponding vorticity for k£ = 3.5.
Lower panel: snapshots of the corresponding depth contours for & = 3.5.

pattern where still some periodicity remains. Instead of growth of only the initially perturbed
area, the topography changes to a series of longshore periodic bump and channel-like scour
regions and their growth continues as they spread over the profile, especially at the shoreline.
The overall propagation is small and happens significantly only at the offshore and shoreline
regions. Growth continues until shoals form at the shoreline. Considering that the bottom
evolution is taking place in a considerably short duration, a larger morphological time scale
and therefore a smaller transport coefficient v can be chosen in order to let the bed evolve
over a longer period. The determination of a realistic v value depends on many factors, and
as a rather uncertain coefficient it is still possible that such significant bed evolution can
happen in such a short time with the corresponding v value used in these simulations.

For both cases the bed evolution resembles the patterns observed in the sequence of
rhythmic shoal formation under oblique wave action at Seagrove, Florida shown by Sonu
(1973). The alongshore length scales of the bedforms more-or-less match the numerical
results and the channel-like formations are significantly similar, although in the observations

this evolution happens over a period of several days and the incident wave angle changes
from oblique to shore normal.

Bed-flow Instability Results
In the next results constant forcing terms are used in the momentum equations. The rest of

all the parameters are kept the same as in the first simulation. The initial bed perturbation
is located at an offshore distance of z = 75m.
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Figure 6.6: Simulated bed evolution for ¥ = 3.5, m = 0.006, H, = 0.3727m, 6, = 6.9,
T =7.7s, ¢y = 0.003. Initial bed perturbation located around z = 100m. Top panel: bed
change contours (dashed lines: erosion, solid lines: deposition). Bottom panel: topography.

It was possible to carry out the simulation for a whole day. Unlike in the first re-
sults, shoals did not grow out of the water at the shoreline in this case. The bed evolution
is smoother and more organized compared to the first two examples. Periodicity of the
bedforms is easily recognizable. The depth change and resulting topography are shown as
contour plots in Figures 6.9 and 6.10. Compared to the previous results, the bed starts
changing in a very similar way within the first 2 hours. Following that, channel-like scour
regions form, but this time they are not as obliquely oriented as before although the depth
contours have almost the same values. At 4.5 hours two sand waves at the shoreline (the
0.4m contour) and two wavy regions skewed in opposite directions have significantly evolved
further offshore (the 0.5 — 0.6m and 0.8 — 0.9m contours). This becomes even more evident
in the next 3 hours. The overall longshore propagation of the bedforms is very small and the
lag-correlation method used in Chapter 5 to determine their speed reveals that at certain
intervals they do not propagate at all. The average propagation speed is Cyeq = 4.278m/hr.
In the later stages the bedforms at the shoreline go through a series of pairing and sepa-
ration, forming smaller sand waves and spit-like features. This starts smoothing out after
18 hours as the two oppositely oriented sand wave regions evolve into one. At 22.5 and 24
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hours the channel-like regions are oriented in the flow direction and the sand waves at the
shoreline are also smoother. The three-dimensional view of the bed evolution sequence is
shown in Figures 6.11 and 6.12. The oblique orientation of the bars is more evident in these
figures. The longshore propagation of the bedforms closer to the shoreline is more obvious
than the ones located further offshore. The general trend of the bed evolution is in the form
of cross-shore spreading as the oblique bars and channel-like scours form.

The depth change contours look similar to the results presented by Falqués et al.
(1996a), although their shape slightly changes in time. According to Falqués et al.’s results
the simulated depth change contours correspond to a cross-shore mode number of 5 if the off-
shore contours are counted as well. The number of modes depends on the cross-shore domain
length and the offshore extend of regions where effective sediment transport is happening.
The highest number of modes shown by Falqués et al. is 4.
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Figure 6.10: Simulated bed evolution for k = 3.5, m = 0.006, H, = 0.3727m, 6, = 6.9°,
T = 17.7s, ¢y = 0.003 with constant momentum forcing terms (continued). First and third
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The flow is from left to right (continued).
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The flow field matches the resulting topography. The velocity vectors at every second
grid point in the longshore direction, the corresponding vorticity and depth contours are
shown in Figure 6.13. Note that two rows of meandering longshore current have formed, the
first between x ~ 25 — 50m and the second between x =~ 70 — 100m. The velocity vectors
converge over the holes and diverge over the bumps. Longshore propagation of the vorticity
is generally happening slightly closer to the shoreline, but overall the velocities are stable
and do not change magnitude and orientation a lot.
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Figure 6.13: Top panel: snapshots of the flow field and vorticity. Bottom panel: correspond-
ing depth contours for k = 3.25 with constant momentum forcing terms.

119



6.2.2 Formation of Cusp Pattern

In these simulations the beach has a steeper slope of m = 0.03. A higher offshore wave height
H, = 0.91m and a larger incident angle 8, = 25.33° with the same period T' = 7.7s have
been used. The nondimensional perturbation wavenumber for the bed is £ = 1.14 which
gives a longshore domain length of approximately L, = 1112.4m. The location of maximum
bed perturbation is around the breaking point which is Ly ~ 45m. The parameters for the
bed perturbation are z, = 0.1, dy = —15, z. = 45.3, and d. = 0.2. The shoreline wall is
0.05m deep.

The morphological time scale is 1 hour which corresponds to a transport coefficient of
v = 0.00447. Since the resulting velocities are expected to be much larger than the previous
case, a higher critical velocity value of v, = 0.2m/s has been used.

Bed-surf Instability Results

The trend of erosion/deposition and therefore the bed evolution are completely different
in this case. Depth change contours are shown in Figure 6.14. Here, erosion happens in
the region between the shoreline and the initial bed perturbation. The eroded material is
deposited offshore while the initial perturbation is also spread over the profile. Alongshore
propagating sand waves form at the shoreline wall as the bed slope significantly decreases
to about 0.013 for that specific region which extends to about x = 45m offshore. A slightly
wavy bar covers the profile between z ~ 50m and z ~ 200m. The sand waves towards
the shoreline are more significant. This configuration is also evident in Figure 6.15 where
cross-shore profiles of the initial and final topography are shown.

The sand waves forming towards the shoreline can be better seen in Figures 6.16 and
6.17 where the three-dimensional planform of the topography is shown for the last 8 hours of
the simulation. In accordance with the initial bed perturbation and the alongshore domain
length, two waves are forming in the alongshore direction. The sand waves continue to grow
as they propagate and as the bed slope at that portion of the profile continues to decrease.
The tendency of sand waves to form seems to be more pronounced over milder bed slopes.
Note that the amplitude of one of the waves is larger than the other one. The wavy bottom
forming offshore can also be seen, although very insignificant compared to the sand waves
towards the shoreline. The sand waves attain a steeper wave front similar to the bedforms
evolving in the channel simulations. After 22 hours the wave with smaller amplitude starts
leaving the domain as the one behind it seems to reach a higher amplitude.

The formations at the shoreline wall can be considered as large cusp formations.
Falqués et al. (2000) identified very similar bedforms in their stability analysis performed on
a plane beach under a wave-driven flow field. In their study this type of formation is associ-
ated with a constant stirring function involved in the sediment transport equation. This is
essentially the same transport equation used in the present study. The stirring function is
the coefficient v. Falqués et al. (2000) also considered cases where a cross-shore variation was
assumed for this function. For a constant function the bottom perturbation extends to the
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Figure 6.14: Depth change contours for k& = 1.14, m = 0.03, H, = 0.91m, 6, = 25.33°,
T =17.7s, ¢y = 0.003. Negative contours correspond to erosion, and positive to deposition.
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Figure 6.15: Bed profile at y =~ 88m for k = 1.14, m = 0.03, H, = 0.91m, 8, = 23°, T = 7.7s,
cy = 0.003. Solid line: profile at ¢ = 25hrs, dashed line: initial profile.
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shoreline just as in our case, although no change occurs in the profile slope. Most probably
for longer simulation periods, the profile where the cusps are located will continue to erode
until equilibrium is reached with the offshore located wavy bottom. One thing to keep in
mind is that this transport equation does not consider transport due to waves, so cross-shore
profile changes are only due to slope effects and cross-shore directed mean flows. The model
can not predict on-offshore transport depending on waves or the effect of undertow.

The resulting flow field is suprisingly different than the previous case and the results by
Falqués et al. (Figure 6.19). The flow pattern is very energetic and the longshore flow goes
through a series of deformations in the form of offshore shedding vorticies and alongshore
meandering. In general the flow field seems to be rather unaffected by the bed evolution.
The cusps forming at the shoreline have very little effect on the flow field, since no visually
detectable changes occur in the flow field. From the snapshots it is evident that the vortex
structure is propagating alongshore while gaining or losing strength. Studying the time series
of u, v and h taken over the bed perturbation, periodic movement of the flow field is not
obvious (Lower time series in Figure 6.18). The time scales associated with these fluctuations
are fairly short, less than 30 min for each series. In addition to the short scale fluctuations
an almost linear increase is associated with h, which corresponds to erosion.

This flow pattern is similar to some of the cases Ozkan-Haller and Kirby (1999) ob-
served in their simulations for plane and especially barred beaches, but in their results shear
waves are definitely present and the onset of the flow instability can not be considered due
to the topography.
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bed-flow instability, lower series: bed-surf instability.
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Figure 6.19: Upper panel: snapshots of the flow field, lower panel: corresponding bathymetry
for k = 1.14.
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Bed-flow Instability Results

The results for bed-flow instability where constant forcing terms are used in the momentum
equations are presented next. All of the parameters are the same as before.

Depth change contours are shown in Figure 6.20. The major difference from the
previous results is that for this case more erosion and deposition happens. The general
shape of the bed deformation is very similar to the previous case. The sand waves forming
towards the shoreline wall have a larger amplitude and they also travel faster, which is
evident in the three-dimensional snapshots of the topography shown in Figure 6.21. Here
again the sand waves towards the shoreline form over a milder bed slope which decreases
down to approximately 0.00625.
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Figure 6.20: Depth change contours with constant forcing terms in the momentum equations.
Negative contours correspond to erosion, and positive to deposition. The flow is from bottom
to top.

Time series of u, v and h are shown in Figure 6.18 (upper series). The fluctuations are
almost the same as in the case of bed-surf instability. The amplitudes are larger for this case,
especially after the first 10 hours of the series. The bed change also attains an additional
larger fluctuation around the same time, as it deviates from its almost linear increase.

The flow field is very similar to the previous simulations with bed-surf instability. The
same trend of longshore propagating vorticies is present with a slight increase in the velocity
magnitudes. A direct match between the velocity vectors and the bathymetry is not possible.
Due to the very similar character of the resulting flow field, the results are not shown here.
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Figure 6.21: 3D snapshots of the topography for ¥ = 1.14 with constant forcing terms in the
momentum equations. The flow is from left to right.
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6.3 Summary

In this chapter preliminary results of the evolution of coastal morphodynamic instabilites
have been presented. The results serve as a general guide for future studies while showing
the capability of the model.

Two different wave and beach conditions, and within each case two different types
of instabilities defined by Falqués et al. (1996a, 1996b) have been considered. The first
condition is for a beach with a mild slope, low wave height and incident angle. In the second
case the beach has a steeper slope and the wave and incident angle are larger. The two
types of instabilities are bed-flow instability, in which the bed evolution does not affect the
momentum forcing terms, and bed-surf instability where the bed change affects these forcing
terms.

In the first case the bed evolves into complicated patterns in which some longshore
periodicity is detectable. The growth of the bedforms is very fast and within a very short
period shoals form at the shoreline. As these formations start growing out of the water surface
the simulation stops. A similar case has been considered where the initial bed instability
is placed farther offshore. The results show no significant difference, other than that the
resulting bedforms are more organized and that it takes longer for the shoreline shoals to
form. When constant mometum forcing terms are considered the bed evolution is a lot more
organized and slower. The shoals at the shoreline do not form as fast as in the previous case.
Longshore periodic bumps and holes form. The most significant features are the oblique
channel-like scour regions extending offshore. The bed evolution in both cases is comparable
to field observations and analytical studies (Sonu, 1973; Falqués et al., 1996a).

The second case shows significantly different results. The initial bed instability is
quickly spread over the profile. As large cusp-like sand waves form towards the shoreline the
bed slope in this region decreases. The sand eroded from this region is deposited offshore
to form a slightly wavy bar region, but not as significant as the sand waves formed at the
shoreline. The flow field is surprisingly different than the previous cases and it does not
directly match the bed evolution. The flow field seems to be rather unaffected by the bed
features, although an instability caused by the bedforms is present in the longshore flow. For
the case of bed-flow instability the results show almost no difference. The only difference is
that the bedforms grow and propagate faster.

From these results it seems that the bed slope plays an important role in the formation
of longshore periodic bedforms. This is especially evident in the results for a steeper beach
and pronounced wave conditions. Significant sand waves evolve over the region where the
bed slope decreases, whereas for the cases with a milder beach slope the bed evolution
is significant almost over the entire profile. There are also other factors which were not
considered, like the effect of bottom friction or lateral mixing.

It has to be noted that this sediment transport model does not take into account
transport due to waves. Cross-shore transport effects can not be modeled accurately with
this type of a model. It is possible to study longshore rhythmic bedform evolution and it
also seems possible to predict length scales of these bedforms up to a certain accuracy.

Field data specifically focused on rhythmic bedforms is not very common. Most of the
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related studies focus more on the planform change sequences and length scales. An accurate
quantitative comparison may be therefore difficult to accomplish. Such a comparison would
involve the determination of the transport coefficient v, bottom friction coefficient c; and
also the effects of lateral mixing, which makes it even more difficult. It is possible though to
simulate the effects of changing wave conditions on the bed evolution, especially in order to
identify bedform change sequences. Considering that waves are a dominant driving force in
the coastal zone, a transport model including effects of both currents and waves is necessary.
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Chapter 7

SEDIMENT TRANSPORT
UNDER WAVES AND
CURRENTS

Considering the surf zone, it is obvious that sediment transport occurs due to waves and
currents. Besides being the driving force of the currents, waves can cause suspended sediment
transport due to their oscillatory motion. The sediment transport equation in the previous
chapters considers only the mean currents.

This chapter includes preliminary work on replacing the previous transport equation
with a more sophisticated model that considers the effects of both waves and currents as well
as bottom slope. Without addressing its accuracy or physical background, we incorporate
an energetics type sediment transport equation into the hydrodynamic code (Bailard, 1981;
Bailard and Inman, 1981). This model separates transport into bedload and suspended
load. The main point to note in using this model is that it is for instantenous near-bed
velocity values. The velocities include both mean currents and the oscillatory wave motion.
Therefore, the velocity components are divided into a mean and wave part, and the transport
equation is time averaged over one wave period. It is further assumed that depth-averaged
mean velocities computed by the hydrodynamic code can be used as near-bed velocities.

The terms resulting from the time averaged wave part of the velocities are referred to
as velocity moments. Depending on the wave theory used in the hydrodynamic code, these
moments can be either directly computed numerically (using high order wave theories), or
they can be approximated through empirical relationships and approximations.

The next section outlines the total load transport equation and how it is incorporated
into the model including the computation of the velocity moments. A crude undertow
formulation is included as well.

Preliminary results for a planar beach are also presented. The effect of the undertow on
the beach evolution is addressed. Suggested applications of this extended model are outlined
in the last section.
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7.1 The Total Load Sediment Transport Equation and Inclu-
sion of Undertow

Bailard (1981) used an energetics based total sediment transport model developed by Bagnold
(1966), as a basis for the development of a total load model of time varying sediment transport
over a plane beach. The total load transport which consists of bedload and suspended load
depends on a velocity-induced component and a downslope acting gravity component.

Separating the total transport into bedload and suspended load components, q =
b + gs, the transport equation in vectorial form can be written as

u| €s[uf®

3

q =k |uju® + —Vh] + ks [u|u\3 +
tan ¢

where the first term is qp and the second term is qs. In this equation h is the water

depth, w is the sediment fall velocity and ¢ is the angle of repose of the sediment. Also,

lu| = (u? 4+ v?)1/2, where u and v are the velocity components. The coefficients k; and k,

are given as
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Here p and p; are the densities for water and the sediment, respectively. The friction factor
is ¢y. The coefficients ¢, and €, are bedload and suspended load efficiency factors, which
govern the fraction of dissipated energy rate used in sediment transport.

The sediment conservation equation is as follows

where n is the bed porosity.

Since a wave-averaged hydrodynamic code is used, this instantaneous transport model
has to be integrated over one wave period. Therefore, first the velocity components are
divided into a mean part and a wave-induced part

u=u+u (7.4)

where @ is the mean part and @ is the wave-induced part. The mean part results from the
wave-averaging process. Note that in the transport equation direct integration of the four
terms including u is not possible since it is necessary to know how u changes in time.

One approach could be using Stokes wave theory in which the time variation of the
wave part @ is explicitly known. In order to obtain velocity skewness terms and higher
moments from the integration, a second-order or higher theory has to be used, or no terms
will survive the integration over time. With the second-order theory, only the first term u|ul?
can be analytically integrated. The other terms have to be computed numerically because the
resulting integrals can not be analytically evaluated without certain approximations. Since
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Stokes theory is not applicable for shallow water, and considering that we are specifically
interested in the surf zone it is very likely that Stokes theory will lead to incorrect velocity
moments and therefore incorrect sediment transport rates. This also has been confirmed
by preliminary trial simulations with this hydrodynamic code. These results are not shown
here.

Another approach that can be used involves approximating the wave-averaged terms
in order to separate the velocity moments and use empirical formulations to evaluate them.
An exact evaluation of the first term in the transport equation is possible without approxi-
mations.

The wave part can be written as

1 = 1,(cos 0,sin0)

where 4, is the oscillatory wave component oriented at the incident wave angle 6 to the
z-direction. Note that 4, is time and space dependent and |@i| = |i,|. Using this form and
representing wave-averaged terms in brackets the following expression can be obtained for
the first term

(uuf?) = [a(@®+ 9% + a(i,?) + (1,>) cos 6 + 2(1i,2) cos O (@ cos  + v sin )]z
+[B(a2 + %) + 6(1i,2) + (1i,>) sin 6 + 2(1i,2) sin O(@ cos § + Tsin h)]]
(7.5)

where 6 is assumed to be independent of time.

The rest of the terms can be approximated by assuming weak currents or strong
currents. A Taylor series expansion can be used as an approximation with the weak-current
assumption, |G| < || (Roelving and Stive, 1989)

([uYVh = [(1,®) + 3(10,?) (@ cos @ + 5sinb) + ...](hei + hyg)
(uluP) = [(1,*) cos O + (1i,*){@ + 3cos O(@cosf + vsinh)} + ..J
+[(1i,*) sin 6 + (10,3 {7 + 3sin@(@cos 6 + osind)} + ...]7 ,

(uf)Vh = [(d,%) + 5(iy")(@cos + sin 9)12—5@;03)(112 c0s? 0+ 5 sin? 0

+2u0 sin 6 cos 0) + Z(?L,?’(EQ +72) + ... (hat + hy)) (7.6)

where (i,) represent unit vectors in the (z,y) directions and (@,%) are the components
of the mean velocity. Note also that, (u,) = 0. For the second and last term in the
transport equation although the bed slope Vh is time varying, too it is not included in
the wave-averaging. Considering that the morphological time scale is larger than the time
scale for wave motion (or the hydrodynamic time scale), the bed slope is not affected by this
integration.
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Assuming now strong currents, || < || the following expressions can be obtained

(u)Vh = [@°+ gwf)((a c0s0)2 + (Fsin)? + a5 sin20 + ,2) + ..]
(uluf)y = [, cosb+ g(u}?){ff cos® 6 4 v? sin” 0 cos O

4240 sin 0 cos® 0 + u* cos O + G sin @ + u,° cos 0} + ...]i
+ [, sin @ + g(dOZ){EQ cos? @sin § + 5° sin® @
1247 sin” 0 cos O + 52 sin 0 + @ cos O + 17, sin O} + ...]7 ,
15
(u )Vh = [a,° + (1202){7 (@*, cos® 6 + 52 usin® @ + 21,70 sin 6 cos 6)
9 4 A
+§u_"3} + ...](hgt + hyJ) (7.7)

where 1, = v/u2 + 2. The Taylor series expansions are carried out to the second order for
both approximations.

As the next approximation velocity moments higher than 3 are neglected in equation
(7.6). For the term (1,2) we will use Stokes first order theory. This gives

(d,2) = -2, (7.8)

where u,, = % Here c is the wave phase speed, H is the wave height and h is the water
depth.

For the velocity skewness (1i,3) an empirical expression based on the study by Doering
and Bowen (1995) is used

(1i,3) = [0.8 + 0.621log,, (U,)] cos ([tanh (0U7 3) - 1] 5) (7.9)

, 2
where U, is the Ursell number given as

_§ ak
~ 4(kh)3

Uy (7.10)

Here a is the wave amplitude and % is the wavenumber.

The empirical skewness equation is based on the bispectral analysis performed on field
data taken at four different beaches. From these measurements U, = 0.03 — 10, so the
corresponding velocity skewness range is limited by these values.

In order to account for a more realistic cross-shore transport process, as a first approx-
imation an average undertow velocity has been included only in the transport equation.

Considering short waves, the volume flux due to the wave consists of a Stokes drift
part Qs and a part due to the wave roller Qy,. The wave roller is the foamy section located
at the front face of a breaking wave.
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Using linear waves the part due to Stokes drift can be represented as

— gHrms
C

Qs (cosB,sinf) (7.11)

where g is the gravitational acceleration, H,,; is the rms wave height and c is the phase
speed of the waves.

The flux due to the roller of one wave can be written as
Qw = Af(cosf,sinb) (7.12)

A is the roller area and f is the frequency associated with the wave. The expression for the
roller area given by Engelund (1981) is used

(BHp)®

A= ——— 7.13

4htan o ( )
where B was previously defined in the dissipation term due to wave breaking (equation 6.4),
Hy is the wave height at breaking and o is the angle of the wave-roller interface. In a similar
manner as it was done for the dissipation term due to wave breaking, Hj can be integrated
through the probability density distribution for random waves. Following this approach
Lippmann et al. (1996) obtained an expression for this integral

) = Vs - 1 (7.1

4(yh)? (1 R (Hy—g)Q) 5/2

The volume flux then can be written as
_ [pB*(H})

== 7 i 1
Qw pT (cos B, sin ) (7.15)

The undertow is due to this volume flux which returns from the shoreline in the cross-
shore direction and imposes additional discharge in the longshore direction. Dividing the
total flux by the local water depth gives an average undertow expression

Utow = _w = _% (716)

An accurate approach would require the inclusion of this undertow expression in the ve-

locity components within the whole model, but as a preliminary approach it is only included
in the velocities entering the transport equation.

7.2 Preliminary Results

As a preliminary simulation the model has been applied to a plane sloping beach. The main
purpose is to observe how the beach profile responds to the wave and current field when
both effects are considered in sediment transport.
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The beach slope is m = 0.05 with a h, = 0.05m deep wall located at the shoreline. The
cross-shore distance of the domain is L, = 410m. The longshore domain width is arbitrarily
set to L, = 42m. Since the process is confined to the cross-shore, no longshore changes occur
and the value of L, does not affect the results. Due to the same reason only 4 collocation
points in the longshore direction and 32 in the cross-shore direction are used. The offshore
wave height is H, = 2.4m and the wave period is T = 15s. The waves travel with a shore
normal angle. The bottom friction factor is ¢; = 0.003 and lateral momentum mixing has
been neglected.

The flow field developed in about an hour and sediment transport was activated after
that. The coefficients in the transport equation are chosen according to Bailard (1981),
Bailard and Inman (1981), and Roelvink and Stive (1989). The coefficients are as follows:
¢ = 32°, ps = 2650kg/m?>, p = 1000kg/m?, n = 0.4, w = 0.01m/s, € = 0.2 and €5 = 0.025.

The coefficients B, v and o which govern the wave energy dissipation due to breaking
and the undertow are chosen from the values given by Thornton and Guza (1983) and
Lippmann et al. (1996). These values are adjusted according to field data. For this case they
are; B =0.78, v = 0.45 and o = 10°.

The beach slope and wave conditions are chosen arbitrarily, but still they can be con-
sidered as representative of real field conditions, in particular based on the above mentioned
studies.

The wave and beach conditions produce a significant offshore transport, where a major
scour forms right at the shoreline wall and the sand transported offshore forms a bar around
the point of wave breaking. The erosion at the shoreline wall is very severe and causes
unrealistic steep slopes and water depths. This situation is shown in Figure 7.1. Within
a few hours this situation causes numerical problems in the model (i.e. Courant condition
violation). Therefore the shoreline wall boundary condition of zero cross-shore transport
rate, gz = 0 has been changed to zero cross-shore transport gradient, dq,/0x = 0. This
condition prevents the unrealistic scour to form at the shoreline, but it also means that
every time step a certain amount of sand volume is added to the system at that point. This
sand is eventually transported and deposited to the offshore.

A simulation for 25 hours has been obtained using this boundary condition. Snapshots
of the beach profile every 5.5hrs are shown in Figure 7.2. A significant amount of offshore
transport is happening where the profile is eroded towards the shoreline and all this sediment
is deposited offshore forming a bar around the point of wave breaking. After 12 hours erosion
almost stops as the growth and offshore movement of the bar continues. This is due to
the shoreline boundary condition mentioned above. The profile in fact has almost reached
equilibrium in 12 hours, but the shoreline boundary condition imposes additional sediment
volume into the domain which is causing the continuing bar growth.

In Figure 7.3, cross-shore profiles of the wave height, undertow, sediment transport rate
and the topography are shown at 25 hours. Studying this figure the offshore bar is obviously
forming around the point where wave breaking happens. The average undertow increases as
the waves reach their maximum value at breaking, and after that as the depth decreases it
continues increasing with its peak value at the shoreline. Except for the high values closer
to the shoreline, the cross-shore magnitudes of the undertow are within average undertow
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Figure 7.1: Snapshots of cross-shore beach profile with ¢, = 0 boundary condition at shore-
line. Thin dashed line: initial profile.

values observed under field conditions based on the study by Faria et al. (2000). With shore
normal approaching waves the only effective cross-shore flow is due to the offshore directed
undertow. Therefore the resulting sediment transport is also offshore directed, which can be
seen in Figure 7.3(c) as positive values. Note that positive values are directed offshore.

137



1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
x (m)

Figure 7.2: Snapshots of cross-shore beach profile with d¢,/0z = 0 boundary condition at
shoreline. Solid lines: profile at every 5.5hrs, dashed line: initial profile.
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Figure 7.3: Cross-shore profiles at ¢t = 25hrs. (a) Wave height, (b) Undertow, (c) Sediment
transport rate, (d) Topography.
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7.3 Further Applications

Obviously, the total load transport equation has to be tested for more cases. The accuracy
of the undertow formulation, the weak- and strong-current approximations and how the
bed evolution will be affected by these approximations especially when perturbations are
introduced are some of the points which need further investigation.

For the simple case presented here as a preliminary result, the improved transport
model seems promising. It is able to produce the classical bar-trough formation under
breaking wave and strong undertow conditions. The boundary condition at the shoreline can
be considered as one shortcoming of the model. The case with the more realistic condition of
zero cross-shore transport at the shoreline wall produces very high offshore transport rates
majorly due to the very high undertow values at those points. This causes severe erosion
towards the shoreline. The undertow consists of the Stokes drift and the breaking wave
roller effects. The formulation for the Stokes drift part is based on linear wave theory which
for shallow water may not be accurate enough. Since towards the shoreline the water depth
decreases significantly, the discharge computed form this formulation divided by small depths
produces extremely high values of undertow velocities. Field and laboratory measurements
specifically focused on undertow also indicate that towards the shore undertow magnitudes
usually decrease (Roelvink and Stive, 1989; Faria et al., 2000). With the present undertow
formulation it may not be possible to obtain realistic untertow values for shallow water
depths.

It should also be noted that the undertow values only affect the mean currents in
the transport equation, whereas a complete approach would require their inclusion in the
whole model. When wave-current interaction is considered as well, it can be expected that
with both these effects the resulting flow and wave fields would be significantly altered.
With wave-current interaction, besides depth-limited wave breaking current-limited breaking
would be affective, too. This causes a variation of the breaking line and in turn an additional
variation in the radiation stress terms. Considering all these effects may produce more
realistic transport rates.

The test case presented is a one-dimensional problem. No changes in the longshore
direction occur. Increasing the longshore domain length with the number of grid points can
produce different results. Preliminary simulations carried out for the same wave and beach
conditions, only with a longer longshore domain length and more collocation points show
that the same bar-trough configuration may not arise. The results which are not shown here,
show that a rather complicated bed evolution happens where a series of longshore bumps and
holes form. These form very close to the shoreline and since with normally incident waves a
significant longshore flow does not develop, they do not propagate in the longshore direction
but spread towards the offshore. It is difficult to tell how periodic these formations are in the
longshore direction. The resulting bed resembles cases where a longshore continuous bar is
destroyed by the fornmation of channel-like scours similar to rip channels. At this point we
are not certain how much of this inherent instability in the system is due to numerical reasons
and what portion of it has some physical meaning. Considering that the same conditions
are used in previous simpler simulations and that the number of grid points is large enough
to assure spatial accuracy, it may be difficult to associate this rather chaotic bed evolution

140



with numerical effects.

Many field studies focus on two- and three-dimensional bar behaviour under varying
wave conditions or specifically on the formation of certain bed features like rip channels.
Two recent studies by Brander (1999) and Ruessink et al. (2000) are of this type. One of the
important goals of such studies is to determine the associated morphodynamic variability
of beaches as a sequence. Wright and Short (1984) were able to form a sequence of beach
plan and profile configurations based on observations and measurements obtained over a
period of three years. A more recent study based on video imaging data collection by
Lippmann and Holman (1990) shows that the sequence developed by Wright and Short can
be extended with additional intermadiate beach configurations. Both of these sequences
are based on the formation of a bar, its longshore variability and cross-shore movement.
Although detailed bathymetric data is not avialable from these studies, length and time scales
of the morphodynamic processes can be used in simulations for changing wave conditions in
order to investigate if similar beach sequences can be modelled.

It is necessary to test the preformance of the present model first with certain cases
before carrying out simulations for changing wave conditions. The inclusion of wave-current
interaction is essential, especialy if wave conditions are significant. The accuracy of the
weak- and strong-current approximations has to tested. A case for obliquely incident waves
where strong alongshore currents develop can be used as a test case. It is important to keep
the longshore domain length long enough to ensure two-dimensionality. The number of grid
points has to be large enough for spatial accuracy. A similar test case can be carried out for
an initially barred beach.

In order to investigate the evolution of bed instabilities and longshore rhythmic bed-
forms under waves and currents, cases similar to the ones presented in Chapter 6 can be
used. One thing to note in this case is that the same most unstable wavenumber used previ-
ously can not be used now. Since the sediment transport equation is different the resulting
wavenumber-frequency relations most probably will be different as well. The onset of the
growth of bed instabilites and their evolution is governed by the transport equation used,
so it may be possible that an unstable condition in Chapter 6 may not be unstable with
the extended transport model. In order to follow an accurate approach based on analytical
results, a similar stability analysis perfomed by Falqués et al. with the present transport
model has to be carried out. Considering that this analysis is mathematically very involved
even with a simpler transport equation, such an analysis is obviously very difficult.
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Chapter 8

CONCLUSIONS AND FUTURE
WORK

A hydrodynamic model based on the depth- and wave-averaged shallow water equations was
extended with sediment transport capability to study the evolution of bed perturbations as
rhythmic bedforms.

Two different cases were considered. The model was first applied to a rectangular
channel geometry with impermeable and nonerodible side walls. For this case a standard
linear stability analysis was carried out for the morphodynamic instabilities based on the
study by Schielen et al. (1993).

The stability analysis was first performed for an one-dimensional channel. The results
showed that instability is not possible, therefore growth of bed instabilities can not happen.
In order for instability to happen a phase difference between the bedforms and the velocity
or the water surface is necessary (Kennedy, 1963). It was also found that lifting the rigid-lid
and quasi-steady assumptions in the analysis did not result in significant changes in terms of
the stability of the system. The same analysis was carried out for a two-dimensional channel,
resulting in unstable bed perturbations for certain wavenumber ranges and combinations of
parameters involved in the analysis. The results consist of wavenumber-frequency relations
for the bed perturbations. The effect of the parameters on the dispersion curves were inves-
tigated as well. Three parameters were investigated; the bottom friction factor, the channel
depth-to-width ratio and the velocity power in the transport equation. Increasing the mag-
nitudes of these parameters had more-or-less the same effect on the results. An increase
of the parameters was associated with an increase of the unstable wavenumber range and
values.

The sediment transport routine was first tested with a basic case where a cross-channel
slope and a constant along-channel flow were introduced. The channel cross-section was seen
to reach equilibrium in time. For the rest of the numerical simulations the unstable wavenum-
bers obtained were used to initially perturb the channel bed. For a fixed depth-to-width ratio,
friction factor, transport coefficient and velocity power the most unstable wavenumber was
used and the effect of different channel lengths was investigated. Simulations for an unstable
wavenumber slightly larger and smaller than the maximum one were also carried out.

142



It was seen that the initial bed perturbation evolved into a pattern referred to as alter-
nate bars. This type of bedforms is commonly observed in alluvial channels and laboratory
flume experiments with stabilized side walls. This corresponds to early stages of channel
meandering. As this pattern formed, the bed perturbations which can be considered as sand
waves attained a very steep wave front, similar to a shock wave form. Depending on the
propagation speed of the sand waves and the steepness of the wave front, fluctuations formed
right before and after the wave front. These were detected as separating and pairing depth
contours. We are currently uncertain on the physical significance of these fluctuations, or if
any numerical reasons are causing them to form.

Bedforms in a longer channel evolve more freely and can propagate with higher speeds
than predicted by the linear stability analysis. Contour pairing and separation also happens
more often and faster. The fluctuations around the wave front, mentioned above, form in
each case independent of the channel length. The corresponding flow field which consists
of a meandering along-channel stream can gain more strength in its meandering nature for
longer channels.

For unstable wavenumbers higher and lower than the maximum, the general alternate
bar pattern formed in each case. For the larger wavenumber the resulting bar pattern was
smoother than the previous results. More fluctuating depth contours happened for a longer
channel with the same wavenumber. Spit-like features developed at high sections of the bars
which were formed as part of separating contours when the smaller wavenumber was used.
The growth and propagation predicted by the stability analysis matched the numarical results
within acceptable limits, especially when the channel length was equal to one perturbation
wave length. The propagation speeds of the bedforms were determined by a lag-correlation
method from the simulations. Considering nonlinearities present in the system, rather than
being a constant value as predicted by the linear stability analysis, the propagation speeds
changed as the bed evolved.

For very small and very large values of the friction factor ¢y, the bed instabilities may
evolve into different patterns and the linear stability analysis may be applicable only to a
certain extend. Two different friction factor values were tested. The flow field for smaller c;
values has a less energetic nature, so the stream is less meandering. For larger c; values the
meandering flow field was more pronounced. For a larger value of ¢y, although the stability
analysis predicted growth, the bed forms reached equilibrium within a period of 10 hours
and did not resemble the alternate bar pattern as before.

The velocity power b in the transport equation seems to be critical in the formation of
alternate bars. As shown in Chapter 3, for b = 2 and k = 1.05 growth of bed instabilities did
not happen. The numerical results confirm that the bedforms decay in time, but the same
alternate bar pattern did not form for this case. For b = 4 the resulting patterns were very
similar to the previous results.

Two different initial bed perturbation forms were tested. The effect of including higher
harmonics in the initial bed perturbation was in the form of significant deformations of the
bar structure until the final configuration consisting of the same alternate bar pattern was
attained. Including one wavelength plus half of one wavelength in the initial perturbation
did not have a significant impact. A similar alternate bar pattern formed, this time with a
larger sand wave followed by a smaller one.
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It was possible to simulate alternate bar patterns very close to the pattern observed
in the experimental study carried out by Uchijima (1990). The bar deformation observed
at low flow was not predicted by the model. Bed patterns qualitatively similar to observa-
tions and experimental results were obtained, but the bar deformation obviously involves
other mechanisms which were not strong enough or not present in our simulations. More
accurate comparisons require the appropriate determination of v and cy, or a more sophis-
ticated transport model which considers effects like suspended sediment load or grain size
distribution. The present model is very sensitive to very low flow depths due to its numerical
scheme. At very low depths maintaining spatial accuracy with a sufficient number of grid
points requires a very small time step which in turn results in extended simulation periods
making long time bed evolution simulations impractical.

A further improvement for the channel cases can be made by replacing the wall bound-
ary conditions with moving boundaries. With the correct implementation of this boundary
condition the side walls can be sloped and can be allowed to erode or accrete. In this case the
model should be modified such that it can handle accretional regions where small islands or
shoals form. With a moving boundary and sediment transport happening, the channel should
eventually start to meander which means that the sides of the channel will significantly erode
and accrete.

The second geometry used in the simulations was a planar beach. For this case
wavenumber-frequency curves obtained by Falqués et al. (1996a, 1996b) were used to deter-
mine the initial bottom perturbation.

Two wave and beach conditions were considered, and within each case two different
instability types. The first case was for a mild sloping beach with low wave height and
incident wave angle. The second one was for a steep beach with higher wave height and
incident angle values. The two instability types were described in Chapter 2 according to
the definitions by Falqués et al. (1996a, 1996b). They consist of bed-flow instability where
the bed instabilities do not change the momentum forcing terms, and bed-surf instability
where the forcing terms are affected by the changing bed.

In the first case the bed evolved into a complicated pattern of bumps and channel-like
holes in which some longshore periodicity was detectable. The growth of the bedforms was
very fast and within a very short period shoals formed at the shoreline, eventually growing
out of the water surface. A similar case was considered where the initial bed instability
is placed farther offshore. The results show no significant difference, other than that the
resulting bedforms are more organized and that it takes longer for the shoreline shoals to
form. The flow field in both cases matches the bed evolution. A meandering alongshore flow
forms where strong vorticies emerge over the shoals. The meandering flow becomes more
energetic with increasing vorticity magnitudes when the initial bed perturbation is placed
closer to the shore, but it shows some decrease for the other case.

The bed pattern for these two cases is comparable to laboratory observations of the
development of skewed rhythmic topography under oblique waves as described by Sonu
(1973). The alongshore length scales of the bedforms are very close to the values observed at
Seagrove, Florida (Sonu, 1973). Although in the field this evolution happens over a period
of several days and the wave angle changes from oblique to shore normal, the simulated
channel-like scour and bump regions are similar to the observed bed evolution.
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When constant momentum forcing terms were considered (bed-flow instability) the
bed evolution was more organized and slower. The shoals at the shoreline did not form as
fast as in the previous cases. The overall trend of bed evolution was in the form of cross-shore
spreading as oblique bars and channel-like scours formed. Longshore periodicity was easily
recognizable. The flow field consisted of a longshore meandering flow where velocity vectors
converge over holes and diverge over bumps. Vorticies as in the previous examples did not
form.

The second case for a steep beach with higher waves and incident angles shows sig-
nificantly different results. The initial bed instability was again quickly spread over the
profile. Large cusp-like sand waves formed towards the shoreline. The bed slope in this
region decreased significantly due to erosion and the sand eroded from this section was ma-
jorly deposited offshore to form a slightly wavy bar region, but not as significant as the sand
waves at the shoreline. The flow field was surprisingly different than the previous cases and
it did not directly match the bed evolution. The overall flow field rather unaffected by the
bed features still included an instability in the longshore current, obviously caused by the
bedforms. For the case of bed-flow instability the results show almost no difference. The
only difference was that the bedforms grow and propagate faster.

The bed slope seemed to play an important role in the formation of longshore periodic
bedforms. This was especially evident in the results for a steeper beach and pronounced wave
conditions. Significant sand waves evolved over the region where the bed slope decreased,
whereas for the cases with a milder beach slope longshore periodic features were significant
almost over the entire profile.

The effects of the longshore domain length, the friction factor, the form of the initial
bed perturbation and lateral mixing can be investigated for future work. Similar to the chan-
nel simulations choosing a longer longshore domain and including higher or lower harmonics
in the bed perturbation may cause different patterns to evolve. In all of the previous sim-
ulations the bed was initially perturbed. Another approach can be investigating the effects
of an initially perturbed flow field on the bed evolution. In the previous simulations it is
obvious that instabilities in the flow field arose due to the bed perturbations, but whether or
not a perturbation in the flow field would have a similar effect on the bottom is not obvious.

The effects of the moving shoreline were not investigated. The condition for sediment
transport at the moving shoreline boundary is crucial since it may cause problems if bed
features eventually start growing out of the water. As mentioned in earlier chapters, as a
preliminary trial the same condition of zero transport at the moving shoreline can be imposed
to investigate its effect on the bed evolution.

It has to be noted that this sediment transport model does not take into account trans-
port due to waves, therefore cross-shore transport effects can not be modeled accurately. It is
possible to study longshore rhythmic bedform evolution and it also seems possible to predict
length scales of the bedforms up to a certain accuracy, but an accurate quantitative com-
parison with field data may be difficult to accomplish. First of all detailed data specifically
focused on rhythmic bedforms may be hard to find. Such a comparison would also involve
the determination of the transport coefficient v, bottom friction coefficient c¢; and also the
effects of lateral mixing, which makes it even more difficult. Considering that waves are
a dominant driving force in the coastal zone, a transport model including effects of both
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currents and waves is necessary to model beach changes.

An extended sediment transport model based on the total transport load consisting
of bedload and suspended load was used to improve the model (Bailard, 1981; Bailard and
Inman, 1981). This type of a transport model is more suitable for the coastal region. It may
be possible to study beach configuration changes under different wave conditions. These
may include changes from two-dimensional configurations where cross-shore equlibriation is
pronounced to more three-dimensional ones like the evolution of rhythmic bedforms, and
vice versa. Several field studies have focused specifically on beach change sequences and the
transformation of longshore uniform beaches to more complicated 3D configurations (Wright
and Short, 1984; Lippmann and Holman, 1990; Brander, 1999; and Ruessink et al.).

The incorporation of this transport equation into the model required certain approxi-
mations, like the strong- and weak-current approximations to evaluate the terms with velocity
moments arising due to the wave-averaging process. The evaluation of the second moment
and the skewness were achieved by Stokes first-order theory and an empirical equation ob-
tained by Doering and Bowen (1995), respectively. An average undertow formulation was
used, too, but only in the transport equation.

A test case of this extended model was run for a planar beach. The region between the
shoreline and point of breaking waves eroded as the sand was transported offshore to form
a bar under the wave breaking region. This bar-trough formation under breaking waves is
commonly observed in the field.

Further simulations to address the capability of the extended model are essential. With
the undertow formulation included only in the transport equation the results seem promising.
In order to account for the undertow in the whole system, this formulation has to be included
in the hydrodynamic model as well. Another point about the undertow is that the cross-shore
magnitudes increase towards the shoreline, which cause extreme offshore transport leading
to very steep scour regions at the shore. As an initial remedy for this problem the zero cross-
shore sediment transport condition was replaced by zero cross-shore transport gradient. For
further applications the basic average undertow formulation may have to be replaced with a
more accurate one, especially towards the shore where water depth decreases significantly.

The weak- and strong-current approximations as well as the equations for the velocity
moments have to be tested, too. The effect of a strong-current situation can be investigated
by allowing obliquely incident waves to approach a plane beach. Longshore periodic bed
patterns can be studied by initially perturbing the bottom, similar to the simulations in
Chapter 6.

Following the results by Lippmann and Holman (1990), beach change sequences under
changing wave conditions can be studied by first allowing a bar to form on a planar reflective
beach, similar to the preliminary test case mentioned above. This topography can then
be used as input to further simulate the bed evolution by changing the wave incidence
accordingly. According to the classification scheme by Lippmann and Holman (1990), the
longshore uniform bar eventually evolves into a non-rhythmic, attached bar and later to a
rhythmic one.

In order to accurately simulate the effects of both currents and waves, the inclusion of
wave-current interaction is essential. Presently the model considers wave-current interaction
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only up to the point when the wave height inside the domain is fully developed.

The bed instabilities and the simulated bed evolution are obviously sensitive to the
transport equation. This study focused on the evolution of coupled hydrodynamic and
bed instabilities rather than directly addressing the accuracy of the transport equations
used. For more accurate comparisons the determination of the parameters in the transport
equations is crucial. Due to the complex numerical computations involved in the model, the
simulations may become impractical considering computational time and power, especially
when the changing bottom coupled to the hydrodynamic part is computed at every time
step. For certain situations the changing bottom could be computed only at specified times
within the simulation. The bottom change can be computed at time steps matching the
morphological time scale, which can be approximated depending on the transport equation
used. Considering that complex interactions between waves, currents and the bottom can
exist in very energetic situations where the morphological time step is small, it still may be
necessary to calculate the bed level at every time step of the simulation.
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