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ABSTRACT

We investigate the role of a viscous compressible sedimentary
layer underlying sea water on the formation, propagation and at-
tenuation of hydro-acoustic waves. The analysis of low frequency
pressure waves can be used for evaluation of stratified sediment
structure. Two models based on depth-integration, for rigid and
permeable sea bed are presented. The hydro-acoustic waves mod-
eling, hereinafter presented can be used for tsunami prediction
in large scale domains, overcoming computational difficulties of
three-dimensional models and therefore enhance the promptness
and accuracy of Tsunami Early Warning Systems (TEWS).
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INTRODUCTION

Tsunamigenic fast movements of the sea-bed generate pressure
waves in weakly compressible sea water, namely hydro-acoustic
waves, which travel at the sound celerity in water (about 1500
m/s). These waves travel much faster than the counterpart long
free-surface gravity waves and contain significant information
about the source (Chierici et al., 2010). Measurement of hydro-
acoustic waves can therefore anticipate tsunami arrival and signif-
icantly improve the capability of tsunami early warning systems
(Cecioni et al., 2014b). Inherently, hydro-acoustic waves cannot
propagate upslope. Therefore, measurement should be done in the
deep sea in order to avoid depth effects on arriving signals (Ab-
dolali et al., 2014). However, applications to real cases require
detailed numerical modeling in order to clearly define the time
series at point A due to a source at point B. Three-dimensional
models (Nosov and Kolesov, 2007) are straightforward to use,
but require unrealistic computational times when applied to large-
scale geographical areas, i.e. they cannot be used for a system-
atic investigation on an oceanic scale of prediction. To overcome
computational difficulties and limits of analytical solutions, Sam-
marco et al. (2013) proposed a hyperbolic mild slope equation for

weakly compressible fluid on a rigid bottom. Subsequently, the
model has been used to simulate hydro-acoustic wave propaga-
tion in the central and eastern Mediterranean Sea, generated by
two main destructive historical earthquakes: the 365 AD Crete
event and the 1693 S icily event (Cecioni et al., 2014a; Tonini
et al., 2011). The same model has been used to reproduce the
28 October 2012 7.8 Mw earthquake occurred off the West coast
of Haida Gwaii archipelago, Canada. For this event, deep wa-
ter field measurements are available for comparison (Abdolali
et al., 2015a). The model results for the gravity wave (tsunami)
are in good agreement with observations. While the model of
hydro-acoustic wave is further complicated by the effects of com-
pressible viscous sediment layer at the sea bottom, which have
a deep influence on hydro-acoustic wave propagation over large
distances (Abdolali et al., 2015b). In this paper, we summarize re-
cent progress in the modeling of hydro-acoustic waves. We start
from describing the role of sedimentary layers in formation and
propagation of hydro-acoustic waves in the framework of 3D lin-
ear potential theory. Then the Mild-Slope Equation in Weakly
Compressible fluid (MSEWC) for a rigid sea bed is presented,
showing how its solution reduces the computational costs com-
pared to the solution of 3D problem. The MSEWC reduces the
computational problem from three to two dimensions, hence re-
ducing dramatically the computational costs. Then, we further
extend the capabilities of the model by including the effects of a
sediment layer at the bottom. On the basis of the numerical re-
sults presented herein, several conclusions on the possible use of
hydro-acoustic waves as support to Tsunami Early Warning Sys-
tems can be drawn.

HYDRO-ACOUSTIC WAVE MODEL

Three Dimensional Model

Consider the interaction of a train of hydro-acoustic waves in an
inviscid water layer of depth h(x, y, t) with the sound celerity of c
and water density ρ overlying stratified viscous sediment layers of

thickness a(i)(x, y, t), with h(i)
s = h +

i∑
n=1

a(n) where h(i)
s (x, y, t) is the



total depth. c(i)
s is celerity of sound within sediment with density

of ρ(i)
s and apparent sediment kinematic viscosity of ν(i)

s . g is the
gravitational acceleration. The vertical coordinate, z, is measured
positively upwards from the undisturbed free surface at z = 0, and
x and y denote horizontal cartesian coordinates as shown in Fig.
1. The other parameters are for sudden displacement of source
area with semi-length b and rise time τ. The transient sea bed
velocity, ζt, with a residual displacement ζ0, is a trigonometric
function expressed by

ζ(i)
s,t =

ζ0

2
[1 − cos (

2π(t − t0)
τ

)][H(t − t0) − H(t − t0 − τ)], (1)

where H(t) is the Heaviside step function. The time series of
bottom displacement and velocity are shown in Fig. 2. For the
case of two sedimentary layers, the linearized weakly compress-
ible wave equations governing the fluid potential Φ(x, y, z, t) in
the water layer and Q(i)(x, y, z, t) in the stratified viscous sediment
layers, are given by

Φtt − c2∇2Φ = 0; −h + η2 ≤ z ≤ η1

Q
(1)
tt − c(1)

s
2
∇2Q(1) − 2ν(1)

s (∇2Q
(1)
t ) = 0; −h(1)

s + η3 ≤ z ≤ −h + η2

Q
(2)
tt − c(2)

s
2
∇2Q(2) − 2ν(2)

s (∇2Q
(2)
t ) = 0; −h(2)

s ≤ z ≤ −h(1)
s + η3

(2)
where ∇2 is the Laplacian in 3D and subscripts on dependent
variables denote partial derivatives. The interfacial displacements
ηi(x, y, t); i = 1, 2, 3, represent response of the free surface and
layers interface to hydroacoustic disturbances. The apparent sed-
iment kinematic viscosity is ν(i)

s = µ(i)
s /ρ

(i)
s . The bulk viscosity µ(i)

s
ranges from 106 up to 1020 Pa s (Kimura, 2006; Van Keken et al.,
1993). The boundary conditions at free surface and at the bottom
for two sedimentary layers are given by{

Φtt + gΦz = 0 at z = 0
Q

(2)
z + ∇hh(2)

s · ∇hQ
(2) + h(2)

s,t = 0 at z = −h(2)
s

(3)

x
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Figure 1: Schematic view of fluid domain.
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Figure 2: Rising mechanism starting at t = t0 for period of τ with resid-
ual displacement of ζ0. (a) Bottom displacement time series.
(b) bottom velocity time series.

where ∇h is the horizontal gradient operator and h(2)
s,t is the

vertical bottom velocity representing displacement of the imper-
meable substrate. Matching conditions at the water-sediment
z = −h + η2 and sediment-sediment interfaces z = −h(1)

s + η3 con-
sist of continuity of pressure and kinematic constraints for each
layer. After linearizing with respect to the pressure perturbation
and small interface displacement, the resulting conditions are{

(R(1) − 1)gη2 = Φt − R(1)Q
(1)
t

Ww = W (1)
s = (−h + η2)t

at z = −h (4)

and {
(R(2) − 1)gη3 = Q

(1)
t − R(2)Q

(2)
t

W (1)
s = W (2)

s = (−h(1)
s + η3)t

at z = −h(1)
s (5)

where R(1) = ρ(1)
s /ρ and R(2) = ρ(2)

s /ρ(1)
s . The normal velocities at

the interface inside the water column, Ww, and sedimentary lay-
ers, W (i)

s , are given by:{
Ww = Φz + ∇hh · ∇hΦ

W (1)
s = Q

(1)
z + ∇hh · ∇hQ

(1) at z = −h (6)

and {
W (1)

s = Q
(1)
z + ∇hh(1)

s · ∇hQ
(1)

W (2)
s = Q

(2)
z + ∇hh(1)

s · ∇hQ
(2) at z = −h(1)

s (7)

In the absence of viscous behaviour of sea bottom, the dominant
frequency range in the wave spectrum can be expressed by a dis-
crete set of normal frequencies f (n) given by

f (n) = (2n − 1)
c

4h
, n = 1, 2, 3, · · · (8)



Table 1: Sample computation parameters

Layer Density (kg/m3) Sound Celerity (m/s) Layer Thickness (m)
Water ρ = 1028 c = 1500 h = 2200

Sediment (i = 1) ρ(1)
s = 1850 c(1)

s = 2000 a(1) = 1000
Sediment (i = 2) ρ(2)

s = 2200 c(2)
s = 2500 a(2) = 1000

Fault Length (km) Start Time (s) Duration (s) Residual Displacement (m)
b = 112 t0 = 5 τ = 2 ζ0 = 1
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Figure 3: Results for the free surface elevation time series (left column) and their relative frequency spectra (right column) at a distance of x = 96 km
from epicenter, results of a sample computation carried out using a 3D flow solver with computation parameters reported in Tab. 1. Panels
show the case of (a, b) no sedimentary layer, i = 0, compressible water model with rigid bottom; (c, d) a coupled model of compressible water
and a viscous compressible sediment, i = 1, µ(1)

s = 0; (e, f ) a coupled model of compressible water and two viscous compressible sedimentary
layers, i = 2, µ(1,2)

s = 0. The vertical dashed lines at the right column of panels represent the peak frequencies f (n) calculated by Eq. (8) at panel
(b), γ(n)

1 calculated by Eq. (9) at panel (d) and γ(n)
2 calculated by Eq. (10) at panel ( f ).

Table 2: Spectral peak frequencies for i = 0, 1, 2 sedimentary layer(s) given by Eqs. 8, 9 and 10, relative to the first three hydro-acoustic modes

Sediment Layer(s) 1st mode (Hz) 2nd mode (Hz) 3rd mode (Hz)
0 Layer f (1) = 0.17 f (2) = 0.51 f (3) = 0.85
1 Layers γ(1)

1 = 0.15 γ(2)
1 = 0.41 γ(3)

1 = 0.60
2 Layers γ(1)

2 = 0.14 γ(2)
2 = 0.32 γ(3)

2 = 0.52



Introducing a single underlying sediment layer (i = 1) act-
ing together with water column, it lowers the spectral peak fre-
quencies, which are determined from the following transcendent
equation (Nosov et al., 2007):

tan [
2πγ(n)

1 h
c

] tan [
2πγ(n)

1 a(1)

c(1)
s

] =
ρ(1)

s c(1)
s

ρc
(9)

where γ(n)
1 denotes the normal mode frequencies for the coupled

case. Note that in the case of a(1) = 0, the set of normal modes de-
scribed by Eqs. (8) and (9) coincide. Adding a second sedimen-
tary layer (i = 2), natural frequencies, γ(n)

2 toward lower values
further shifts according to

ρ(2)
s c(2)

s

ρ(1)
s c(1)

s
− tan [ 2πγ(n)

2 a(1)

c(1)
s

] tan [ 2πγ(n)
2 a(2)

c(2)
s

]

tan [ 2πγ(n)
2 a(2)

c(2)
s

] +
ρ(2)

s c(2)
s

ρ(1)
s c(1)

s
tan [ 2πγ(n)

2 a(1)

c(1)
s

]
=

ρc

ρ(1)
s c(1)

s

tan [
2πγ(n)

2 h
c

] (10)

Note that in the case of a(2) = 0, the set of normal modes de-
scribed by Eqs. (9) and (10) coincide.

Observation during Tokachi-Oki 2003 event shows that the
dominant peak frequencies are lower than values estimated by
Eq.( 8), for one single water column with rigid bottom assumption
(Nosov et al., 2007). This suggests to investigate the role of sedi-
mentary layers in formation of standing waves, develed vertically
between the sea bottom and the water surface. A sample compu-
tation is carried out using a full 3D solver for three computational
domains (rigid bottom/one sedimentary layer (i = 1)/two sedi-
mentary layers coupled with water column (i = 2)). The model
parameters are shown in Tab. 1. The results are depicted in Fig. 3,
which shows the free surface elevation time series η (left column)
and the corresponding frequency spectrum η̃ (right column) at 96
km from the epicenter. In panels (a, b) one layer of compressible
water model with impermeable sea bottom is considered. The
numerical spectrum and analytical calculation for natural modes
expressed by Eq. (8) are essentially identical. In panels (c, d) and
for the case of a sedimentary layer underlying the water column,
the dominant frequencies match the roots of Eq. (9). In panels
(e, f ) where two sedimentary layers are coupled with water layer,
the natural modes are in good agreement with values estimated
by Eq. (10). The first three peak frequencies for different mod-
els are presented in Tab. 2. The comparison shows that in order
to properly model the shifts in peak frequencies, it is essential
to consider the underlying layers. In the following section, the
effecitive sediment thickness is explored.

Damping Behaviour

In the framework of hydro-acoustic wave theory, the underlying
sedimentary layer can be treated as a “Fluid-Like” medium cou-
pled with water column at the interface (Chierici et al., 2010; Ab-
dolali et al., 2015b). In this regard, sediment intergranular friction
governs the sound propagation field leading to change in natural
frequencies and evanescence of hydro-acoustic waves. A nondi-
mensionalization of the sediment layer equation yields a parame-
ter ε = ωνs/c2

s characterizing the size of the damping term relative
to the undamped wave equation. A series of computations have

been carried out to reveal to what extent the damping term ε can
affect the damping rate and dominant peak frequencies. The wa-
ter depth, sediment thickness, densities and sound speeds within
water and sediment and source parameters are the same as Figure
3 with different bulk viscosities (106 < µ(1)

s < 1020 Pas). As an
example, the results of one simulation for µ(1)

s = 2 × 108Pas in
term of free surface elevation at x = 96 km from source is shown
in Fig. 4. The time series is normalized by the maximum free
surface elevation. As is shown in the plot, hydro-acoustic wave
amplitude decreases gradually. An exponential fitting curve (red
line) is extrapolated among the blue dots representing peak am-
plitudes

η

ηmax
= e−θωt (11)

where θ is dimensionless damping rate. In Fig. 5, the variation
of the first three peak frequencies is plotted for different damping
terms ε. It can be seen from the plot that for small ε/ω < 0.02, the
dominant frequencies are close to those estimated by Eq. (9) for
inviscid compressible sediment case. Then, the peak frequencies
increase to reach those estimated from Eq. (8) for rigid bottom
case (ε/ω > 2). The damping rate variation is plotted in Fig. 6.
Where the damping term is small (ε < 10−4), sediment acts like
an inviscid fluid. In this condition, the coupled system consists
of two fluids with different desnsities and sound speeds. As a re-
sult, the long lasting hydro-acoustic waves are not absorbed due
to internal losses at grain-to-grain contacts. The damping rate in-
creases while the damping term is rising from ε = 10−4 to 8×10−2.
Crossing the maximum damping rate θ, the permeability of under-
lying layer decreades gradually. It reaches ε > 102 where model
result is similar to one water column with rigid bottom.
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Figure 4: Time series of free surface elevation normalized by the max-
imum value (η/ηmax) for the case of h = 2200 m water col-
umn overlying a single sedimentary layer (a(1) = 1000 m). The
other parameters are c = 1500 m/s, c(1)

s = 2000 m/s, ρ = 1028
kg/m3, ρ(1)

s = 1850 kg/m3 and µ(1)
s = 2 × 108 for a unit source

area with semi-length b = 112 km and rising time τ = 2 s. Blue
dots represent temporal variation of the peak amplitudes. Red
line is the fitting curve representing an exponential function
(e−θωt ).



0.2 0.4 0.6 0.8

10
−2

10
−1

10
0

10
1

ε/
ω

f ( Hz )

γ
1
(1)

f(1) γ
1
(2)

f(2) γ
1
(3)

f(3)

Figure 5: Variation of peak frequencies for different damping term (ε).
The light gray dashed lines represent the natural modes for
rigid bottom f (n) and two layered system γ(n)

1 shown in Tab.2.

Overall, taking the damping term into account leads to tem-
poral damping of hydro-acoustic waves. In addition, depending
on the damping term magnitude, it can change the dominant peak
frequencies. From a practical point of view, the analysis of mea-
sured time series during tsunamigenic events reveals the sedimen-
tary layer characteristics and justify the mismatch between one
layer/multi-layers assumptions. It can be used to optimize the
number of sedimentary layers which should be considered for nu-
merical modeling of hydro-acoustic wave fields. The accurate
thickness, density and sound speed within stratified sedimentary
layers, taken from presented analysis, improve the accuracy of
model results.
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Figure 6: Variation of dimensionless damping rate θ as is shown in Fig.
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Depth Integrated Model for rigid bottom

Assuming a rigid bottom (a(i) = 0; hs = h), Sammarco et al.
(2013) developed a Mild-Slope Equation in Weakly Compress-
ible fluid (MSEWC), via a proper application of the averaging
technique to the problem (2), for the case of constant c and mild
sloped sea-bed (∇h � kh)

ψntt

(
Cn

c2
s

+
1
g

)
− ∇ (Cn∇ψn) +

(
ω2

g
−β2

nCn

)
ψn =htDn (12)

where ψ (x, y, t) is the fluid velocity potential at the undisturbed
free-surface. The subscript n indicates that Eq. (12) is valid
for the generic nth mode (hydro-acoustic and gravity). Super-
imposition of the solutions of Eq. (12) for each mode will
lead to complete modeling of the fluid potential, Φ (x, y, z, t) =∑∞

n=0 ψn (x, y, t) fn (z), generated by a fast sea-bed motion, where
the fn’s are the classic eigenfunctions of the constant depth ho-
mogeneous problem

fn(z) =
cosh

[
βn (h + z)

]
cosh (βnh)

. (13)

In Eq. (12) βn’s are the roots of the dispersion relation

βn =

{
n = 0 βn = β0 ω2 = gβ0 tanh (β0h)
n ≥ 1 βn = iβ̄n ω2 = −gβ̄n tan

(
β̄nh

) (14)

while the terms Cn (x, y) and Dn (x, y) are given by

Cn(x, y) =

0∫
−h

f 2
n dz =

2βnh + sinh (2βnh)

4βn cosh2 (βnh)
(15)

Dn(x, y)=
1

cosh2 (βnh)

0∫
−h

fndz

0∫
−h

f 2
ndz

=
4 tanh (βnh)

(2βnh+sinh (2βnh))
. (16)

More details on the derivation can be found in Sammarco et al.
(2013). In the time domain the MSEWC reproduces the fluid po-
tential characteristic of a narrow frequency banded wave spec-
trum, around the value of a carrier frequency, which is used for
the computation of βn, Cn and Dn. For each narrow frequency
band of the wave spectrum, Eq. (12) is solved and then the results
are superimposed.

A sample computation has been carried out to verify whether
the model equation (12) can be safely applied in place of a more
computationally expensive 3D treatment. We present results for
a vertical section in x, z through laterally uniform domains with
no y-dependence, with a constant water depth. Frequency bands
of width ∆ f = 0.02 Hz have been selected to discretize the forc-
ing spectrum. The time step is t = 0.1 s. The numerical solvers
are applied on a computational domain 200 km long; given the
symmetry of the problem about the middle of the earthquake (x =

0), computations are undertaken only for half of the physical do-
main. The Sommerfeld radiation condition is applied at the open
end of the domain, so that the waves leave the domain freely. At
x = 0, a fully reflective boundary condition is used in order to
preserve symmetry. The results are presented in the Fig. 7 in
terms of free surface elevation η (left column) and corresponding



spectrum η̃ (right column) at two virtual surface gauges at x = 50
and 100 km. Semi-fault length and water depth are b = 15 km
and h = 2200 m respectively. The maximum mesh size is 200 m,
for a total of 750 elements in the case of depth-integrated model
(12), and 25000 triangular elements for 3D one (2). The com-
putational time to reproduce 1000 s of real-time simulation was
about 10 minutes for (12) and about 2 hours for (2) on a computer
equipped with an i7 3.2 GHz CPU and 64 GB RAM. The time se-
ries of three dimensional (light gray) and depth integrated models
are identical in terms of modulation, amplitude and arrival time.
The frequency spectra are in good agreement dominant by first
cut off frequency calculated by Eq. (8).

Depth Integrated Model for water column coupling with sin-
gle sedimentary layer

Considering underlying sedimentary layer (a(2) = 0, hs = h+a(1)),
in the hypothesis of constant sound c and c(1)

s , the upper and lower
layer potentials may be expressed according to Φ (x, y, z, t) =

∑∞
n=0 ψn (x, y, t) Mn (z) and Q(1) (x, y, z, t) =

∑∞
n=0 ψn (x, y, t) Nn (z)

respectively. The eigenfunctions Mn(z) and Nn(z) for the upper
and lower layers are given by

Mn =
(1 − λnTn) cosh (βw,n(h + z)) + (λn − Tn) sinh (βw,n(h + z))

(1 − λnTn) cosh (βw,nh) + (λn − Tn) sinh (βw,nh)
(17)

Nn =

(λn − Tn) cosh βs,n(hs + z)
αn sinh (βs,na(1))[(1 − λnTn) cosh (βw,nh) + (λn − Tn) sinh (βw,nh)]

(18)
where Tn = tanh (βw,nh), λn = ω2/gβw,n and αn = βs,n/βw,n. The
separation constants βw,n and βs,n for water and sediment layers
respectively are given by

β2
w,n = k2

n −

(
ω

c

)2
; β2

s,n = k2
n −

(
ω

c(1)
s

)2

(19)
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Figure 7: Results for the free surface elevation time series (left column) and their relative frequency spectra (right column) at a distance of x = 50 km
(a, b) and x = 100 km from epicenter (c, d), results of a sample computation carried out using a 3D model (light gray) and depth integrated
(black) model (MSEWC) in a constant depth with impermeable bottom, h = 2200 m, c = 1500 m/s, ρ = 1028 kg/m3 for a unit source area
with semi-length b = 15 km and rising time τ = 2 s. The vertical dashed lines represents the frequency peaks f (n) calculated by Eqs. (8)



where kn is the wave number. The dispersion relation for βw,n

and βs,n is given by

λ2
n(R(1) + αnTnT̂n) − λnR(1)(Tn + αnT̂n) + (R(1) − 1)αnTnT̂n = 0

(20)
where T̂n = tanh (βs,na(1)). Eq. (20) is a quartic system in ω de-
scribing a doubly-infinite set of surface waves (with horizontal
displacements in phase at the layer interface) and internal waves
(with horizontal displacements 180◦ out of phase). By a proper
use of the averaging technique to the problem (2), taking the ad-
vantage of orthogonality within the spatial derivative terms, and
making use the the interfacial kinematic and dynamic boundary
conditions, Abdolali et al. (2015b) found a hyperbolic mild slope
equation for weakly compressible fluid overlying a sediment vis-
cous layer, MSEDWC in the following form

(Im
2 ψm,t)t − ∇h · [Im

1 ∇hψm] + [ω2Im
2 − k2

mIm
1 ]ψm + 2R(1)ε ω

c(1)
s

2 Knψm,t

= Dm
1 ht + Dm

2 hs,t,
(21)

Model coefficients are given by

Im
1 = Imm + R(1)Kmm (22)

Im
2 =

Imm

c2 + R(1) Kmm

c(1)
s

2 +
1
g

(23)

Dm
1 = −[Mm(−h) − R(1)Nm(−h)] (24)

Dm
2 = −R(1)Nm(−hs), (25)

where Imm(x, y, t) and Kmm(x, y, t) are given by

Imm =

0∫
−h

M2
mdz =

h
2Gm

1
[(1 − 2λmTm + λ2

m) + (1 − λ2
m)Gm

1 ] (26)

Kmm =

−h∫
−hs

N2
mdz =

h(λm − Tm)2

2α3
mTmT̂m

1 + Gm
2

Gm
1

(27)
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Figure 8: Results for the free surface elevation time series at 96 km from tsunamigenic source from 3D (light gray) and depth integrated (black) models
in a constant depth, h = 2200 m, a(1) = 1000 m, c = 1500 m/s, c(1)

s = 2000 m/s, ρ = 1028 kg/m3, ρs = 1850 kg/m3, for a unit source area with
semi-length b = 112 km and rising time τ = 1 s. (a, b) Time series and corresponding spectra of free surface elevation where µ(1)

s = 0 and (c, d)
µ(1)

s = 2 × 108 Pa s with γ(1)
1 = 0.15 and γ(2)

1 = 0.41 Hz.



with

Gm
1 =

2βw,mh
sinh (2βw,mh)

(28)

Gm
2 =

2βs,ma(1)

sinh (2βs,ma(1))
(29)

More details on the derivation can be found in Abdolali et al.
(2015b). For specific conditions the Eq. (21) gives the same so-
lution as that previously proposed by Sammarco et al. (2013), i.e.
R(1) = 1 or a = 0 or ε >> 1. To verify the depth-integrated
model, a sample computation has been done for constant depths,
solving both the 3D problem and Eq. (21). The time step and
the discretization of the spectra are the same of the (12). The
computational time to reproduce 1000 s of real-time simulation
was about 10 minutes for (21) and about 3 hours for (2), using
the same computer of the previous simulation. The results are
presented in the Fig. 8 in terms of free surface elevation η and
corresponding spectrum η̃. Results are shown for a virtual surface
gauge at x = 96 km over a 112 km semi-fault where water depth

and sediment thickness are h = 2200 and a(1) = 1000 m respec-
tively. In panel (a, b) the results are related to the case of inviscid
sediment. The 3D model (light gray) and depth integrated model
(black) are in optimal agreement. The peak frequencies are at
γ(1)

1 = 0.15 and γ(2)
1 = 0.41 Hz, corresponding to the first and

second cut off frequencies for coupled system defined by Eq. (9).
The hydro-acoustic waves remain at the same order of the gen-
erated ones until the end of computations. In lower panels (c, d),
we add the dissipation term into the equation (µ(1)

s = 2× 108 Pas)
leading to temporal absorption of hydro-acoustic waves.

In order to check the depth-integrated model performance for
varying sea bottom and large bulk viscosity of sediment against
fully 3D model, a sample computation is carried out. The do-
main’s geometry, depicted in the upper plot of Fig. 9, has a 200
km area with water depth of respectively 2 and 3.5 km in left and
right side of domain and an sloping area of 50 km in the mid-
dle. The sediment thickness is constant and equal to 1 km. The
earthquake occurs in the shallower area (2 km water depth). It
has a width of 15 km and moves vertically with a bottom velocity
shown in Fig. 2 for a total displacement of ζ0 = 1m given by (1).
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Figure 9: The case of varying sea bottom and sediment thickness with tsunamigenic source at shallower part. (a) The computational domain. Results for
the free surface elevation time series at 150 km from tsunamigenic source from 3D (light gray) and depth integrated models MSEDWC (black),
c = 1500 m/s, c(1)

s = 2000 m/s, ρ = 1028 kg/m3, ρ(1)
s = 1850 kg/m3 for a unit source area with semi-length b = 15 km and rising time τ = 1 s.

(b, c) Results for coupled model with µ(1)
s = 0 and (d, e) for µ(1)

s = 1015 Pa s.



The results are presented in Fig. 9 in terms of time series of
free surface elevation η and corresponding spectra η̃, at a distance
x = 150 km from the moving sea bed area. The two time series are
in good agreement, both in terms of amplitude and modulation of
the signal. The comparison results show that the peak frequency
shifts from γ(1)

1 = 0.162 Hz for µ(1)
s = 0 to γ(1)

1 = f (1) = 0.1875
Hz for µ(1)

s = 1015 Pa s.

CONCLUSION

Considering the stratified sedimentary layers in numerical model-
ing of hydro-acoustic waves can improve the accuracy of model
result. The permeable sea bottom causes hydro-acoustic wave at-
tenuation and leads to a shift in dominant peak frequencies. How-
ever, due to existence of uncertainties about sediment structure in
real ocean with variable-water/sediment depth, a careful analysis
is needed to optimize the number of layers required to obtain rea-
sonable results and choose appropriate density and sound speed
of each layer. In this regard, a series of computations have been
carried out to extract the range of effective sediment characteris-
tics on hydro-acoustic wave field. It can be used in the analysis of
measured time series during past tsunamigenic events and used in
future modeling.

In addition, a numerical model able to consider a weakly com-
pressible inviscid fluid coupled with a compressible viscous sed-
imentary layer in which waves are generated by a moving bot-
tom and then propagate over a mildly sloped sea bed is derived
(Mild Slope Equation for Dispersive Weakly Compressible fluids,
MSEDWC). Solution of the equation allows the description of all
the mechanics in the x, y plane, overcoming at the same time both
analytical and numerical difficulties. Indeed on the one hand, by
expanding in series of the vertical eigenfunctions, the MSEDWC
can be applied to more complex geometries other than the hori-
zontal or piecewise horizontal in the x, z vertical plane as in the
seminal work of Chierici et al. (2010) and Eyov et al. (2013). Be-
cause computational time is one order of magnitude smaller than
for a fully numerical 3D model, systematic applications support-
ing a TEWS in the Oceans and Sea of geophysical interest will be
viable.
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