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Abstract

This document reports the development of tsunami inundation maps for the re-
gion covered by the NGDC tsunami DEM for Savannah, GA. Section 1 describes
NTHMP requirements and guidelines for this work. The location of the study and the
bathymetry data utilized are described. Tsunami sources that potentially threaten the
upper East Coast of the United States are briefly discussed. Modeling inputs are de-
scribed in the Section 3, including model specifications and simulation methods such
as nesting approaches used in generating inundation maps. The process of generating
inundation maps from tsunami simulation results is described in Section 4, along with
other results such as arrival time of the tsunami. GIS data sets and organization, in-
cluding inundation maps, maximum velocity maps, maximum momentum flux maps,
are described in Appendix A. Modeling inputs for simulation are provided in Ap-
pendix B for interested modelers. In Appendix C, NTHMP guidelines for inundation

mapping are provided.
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1 Introduction

The US National Tsunami Hazard Mitigation Program (NTHMP) supports the develop-
ment of inundation maps for all US coastal areas through numerical modeling of tsunami
inundation. This includes high-resolution modeling and mapping of at-risk and highly
populated areas as well as the development of inundation estimates for non-modeled and
low hazard areas. This report describes the development of inundation maps for a region
covered by the Savannah NGDC tsunami DEM (Taylor et al, 2008).

In section 2, background information about the mapped area is provided. Possible
tsunami sources that threaten the United States East Coast (USEC), and are considered in
this analysis, are described. Modeling inputs are described in section 3. Section 4 presents
simulation results and the development of mapping products. The process of obtaining
the tsunami inundation line, which is the most significant result of this work, is explained
in this section. Three appendices provide information about GIS data storage and content
(Appendix A), modeling inputs (Appendix B), and NTHMP inundation mapping guide-

lines (Appendix C).

2 Background Information about Map Area

2.1 Location of coverage, and communities covered

The National Oceanic and Atmospheric Administration (NOAA), National Geophysical
Data Center (NGDC) have generated digital elevation models (DEM) as input for studies

focusing on hazard assessment of catastrophes like tsunamis and hurricanes at a number



of U. S. coastal areas. The NGDC DEM covers coastal communities around Savannah
River (Taylor et al., 2008), covering the southern parts of South Carolina and eastern
Georgia. Figure 1 shows the coverage area of this DEM. NGDC DEM’s are provided in
latitude/longitude coordinates with 1/3 arc-second resolution. The vertical datum is mean
high water (MHW), and vertical elevations are in meters. More information about the

bathymetry data is given in Section 3.2.

2.2 Tsunami sources

A general overview of historic and potential tsunamigenic events in the North Atlantic
Ocean is provided by Atlantic and Gulf of Mexico Tsunami Hazard Assessment Group
(2008). In this project, tsunami sources that threaten the US East Coast (USEC) were
categorized into three main categories, and have been studied separately due to their dif-
ferences in physics and location. First, two seismically active sources in the Atlantic Ocean
were used; a subduction zone earthquake in the Puerto Rico trench, and a simulation of
the historic Azores Convergence Zone earthquake of 1755. A far field subaerial landslide
due to a volcanic collapse in Canary Islands is also modeled. Finally, near-field Submarine
Mass Failures (SMF) close to the edge of USEC continental shelf are used here as well.
A brief introduction and references to detailed studies of the sources are provided in this

section.

2.2.1 Coseismic sources

2.2.1.1 Puerto Rico Trench: Previous research has confirmed the possibility of large

earthquakes in the Puerto Rico Trench (PRT) in the Caribbean Subduction Zone (CSZ)
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Figure 1: Location of the NGDC Savannah DEM (Taylor et al, 2008). Color bar shows
depth values in meters for areas inside of the DEM boundary.
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(e.g. Grilli et al., 2010). These studies implied that an extreme event with return period
of 200 to 300 years could be powerful enough (M,, = 9.0) to rupture the entire PRT and
initiate a tsunami that will influence the USEC. Grilli and Grilli (2013a) have carried out
detailed computations for that event to be used as initial conditions for tsunami inundation

mapping on the USEC.

2.2.1.2 Arzores Convergence Zone: The other coseismic source used here is located on
the Azores Gibraltar plate boundary, known as the source of the biggest historical tsunami
event in the North Atlantic Basin (Gonzalez et al., 2007). The 1755 Lisbon earthquake
(M, = 8.6—9.0) generated tsunami waves with heights between 5 to 15 meters, impacting
the coasts of Morocco, Portugal, Newfoundland, Antilles, and Brazil. The procedure for
obtaining the initial condition for tsunami propagation is quite similar to the PRT rupture

and is discussed in Grilli and Grilli (2013b).

2.2.2 Volcanic cone collapse

In recent years, a potential cone collapse of the volcanic cone Cumbre Vieja (CVV) in
the Canary Islands has received attention as a possibly catastrophic source threatening
the USEC. In this project, a multi-fluid 3D Navier-Stokes solver (THETIS) was used to
compute the volcanic collapse tsunami source (Abadie et al., 2012; Harris et al., 2012).
Detailed description of the CVV modeling for use in this project is described in Grilli
and Grilli (2013c). Here, two different slide magnitudes were studied; an 80 km? slide,
representing a plausible event in a return period window on the order of 10,000 years,
and a 450 km? source, consistent with estimates of the maximum event for the geological

feature. The magnitude of the latter event is significantly larger than all of the other cases
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studied in this project. Thus, it was decided to exclude the 450 km? source from inundation
line calculations, and illustrate its results separately as a representation of the worst case
scenario condition. This is due to the fact that this source return period is expected to be

much more than 10,000 years.

2.2.3 Submarine Mass Failure

The US East Coast is fronted by a wide continental shelf, which contributes to the dissi-
pation of far-field tsunami sources, and diminishes the damage caused by simulated waves
from these sources on the coastline. On the other hand, it has been noted in literature (e.g.
Grilli et al. 2014) that there is a potential of a Submarine Mass Failure (SMF) on or near
the continental shelf break, causing tsunamis that affect adjacent coastal areas. Consid-
ering the fact that the only tsunami event that has caused fatalities on the US East Coast
was an SMF tsunami (Grand Banks, 1929), it is necessary to study possible impacts and
consequences of such catastrophes with respect to heavily populated coastal communities
on the USEC. For this region, a slide near Cape Fear was modeled as the SMF source.
The process of obtaining the initial condition for near-shore propagation and inundation
modeling for this source is comprehensively documented in Grilli et al. (2013). The land-
slide movement is simulated with the NHWAVE model (Ma et al., 2012; Tehranirad et al.,
2012) and the results shown here are interpolated into 500 meter grids for propagation and

inundation modeling 800 seconds after slump movement is initiated (Grilli et al., 2013).



3 Modeling Inputs

3.1 Numerical model

Tsunami propagation and inundation in this study is simulated using the fully nonlinear
Boussinesq model FUNWAVE-TVD (Shi et al, 2012a). FUNWAVE-TVD is a public do-
main open-source code that has been used for modeling tsunami propagation in ocean
basins, nearshore tsunami propagation and inland inundation problems. The code solves
the Boussinesq equations of Chen (2006) in Cartesian coordinates, or of Kirby et al. (2013)
in spherical coordinates. A users manual for each version is provided by Shi et al (2011).
FUNWAVE-TVD has been successfully validated for modeling tsunami wave characteris-
tics such as shoaling, breaking and runup by Tehranirad et al. (2011) following NTHMP
requirements (see Appendix C). Additional description of modeling specifications and in-
put files is provided in Appendix B.

One key specification in the model is the choice of friction coefficient defined for
tsunami simulation. Geist et al. (2009) have performed a study on sensitivity of tsunami
elevation with respect to a range of bottom friction coefficients and demonstrated that
large coefficients will unrealistically damp tsunami wave height. A review of the existing
literature suggests that a value of C; = 0.0025 represents a reasonable friction coefficient
for tsunami simulations, as suggested by several researchers (e.g. Grilli et al., 2013), and

this value is used here.



3.2 Bathymetric Input Data

3.2.1 Savannah NGDC DEM

In this project, an integrated bathymetric-topographic digital elevation model (DEM) that
generated by National Geophysical Data Center (NGDC) is used for high-resolution inun-
dation mapping for the area around Savannah, GA (Taylor et al., 2008). This DEM covers
the coastal communities around Savannah River in southern South Carolina and north At-
lantic coasts of Georgia (Figure 1). The horizontal datum is set to be World Geodetic
System of 1984 (WGS 84), and the vertical datum is mean high water (MHW). The reso-
lution of the Savannah DEM is 1/3 arc-second, which, with respect to the study location,
means that the North-South resolution is 10.29 meters, and East-West direction grids are
8.57 meters (computed using the latitude in the middle of the domain). All of the runs
in this domain have been performed in Cartesian coordinates. Considering the coverage
area of this grid, the difference between Cartesian grid and spherical grid (Simply com-
paring the total length of domain in Cartesian grid and spherical grid) is about 1.5 meters
for the whole domain. This means that the average offset for each point is of O(1079)
meters. Therefore, because of the negligible differences between Cartesian and spherical
grids, this grid was used as Cartesian grid directly to capture fully nonlinear effects of the
tsunamis nearshore. Further information about this grid is also given in Table 1.

In the USA the period to determine MHW spans 19 years and is referred to as the
National Tidal Datum Epoch. For this project, inundation mapping processes have been
performed with MHW datum maps following NTHMP requirements (see Appendix C).

There are different approaches to relate MHW to NAVDS8S values in the literature, and



also, one can use existing datum conversion models to investigate the difference (e.g.
Vdatum generated by NOAA, Park et al., 2003). However, it should be noted that the
difference between these values is not constant for the whole domain. For example at
Hilton Head Island, SC, MHW is at NAVD88+82.2 cm. For Savannah River Inlet in the

middle of the domain MHW is at NAVD+147.7 cm.

3.2.2 NGDC Coastal Relief Model (CRM)

Bathymetry data for shelf regions lying outside the NGDC Savannah DEM are obtained
from the NGDC’s 3 arc-second U.S. Coastal Relief Model (CRM) (Divins and Metzger,
2003). This data delivers a complete view of the U.S. coastal areas, combining offshore
bathymetry with land topography into a unified representation of the coast. However, the

deeper part of the Ocean beyond the shelf break is not covered in this data.

3.23 ETOPO1

Bathymetry data for deeper parts of the ocean beyond the shelf break is taken from the
ETOPO1 DEM (Amante and Eakins, 2009). ETOPOI is a 1 arc-minute global relief
model of Earth’s surface that combines land topography and ocean bathymetry. It was
built from numerous global and regional data sets, and is available in "Ice Surface” (top of
Antarctic and Greenland ice sheets) and “Bedrock” (base of the ice sheets) versions. Here,

we use the Bedrock version in areas where the CRM data is not available.



3.3 Model Grids

Although the Savannah DEM satisfies the bathymetry data requirements for nearshore sim-
ulations, proper offshore bathymetry data is required to model the tsunamis far from the
shoreline. Accordingly, Grids A and B (Figure 2) are generated for low resolution mod-
eling over the ocean basin and continental shelf. The input data for the tsunami sources
is divided into two categories. The first category consists of Cosiesmic and CVV sources,
which were simulated in larger scale ocean-scale model runs, with results recorded on the
boundaries of Grid A. The ocean-basin simulations in which this data were recorded were
performed with a 16 arc second spherical grid. Grid A was generated in order to keep the
nesting scale 4 or less (see section 3.4), and continue the simulation with a 4 arc second
grid. The grid sizes of the Grid A are 493.0 m in the north-south direction and 406.2 m in
east-west direction (Table 1). On the other hand, the SMF sources fall within the modeled
region and are initially modeled with a Cartesian grid using NHWAVE (Ma et al., 2012)
with 500 m resolution. The input data was in the form of initial conditions, in contrast
to the first category where the data is in form of boundary conditions. Therefore, it was
required to generate another grid larger than Grid A to allow space for model sponge lay-
ers (or damping regions) on the boundaries. Also, in order to directly use input data as
generated by NHWAVE, the grid sizes for Grid B were chosen to be 500 m.

Depth values for these grids were obtained from the 1 arc-minute ETOPO-1 database,
while nearshore bathymetry and topography were obtained from the CRM. The horizontal
datum and vertical datum are set to be WGS84 and MHW, similar to Savannah NGDC

DEM. These grids are mapped from spherical coordinates into a Cartesian grid. This



means that there are some mapping errors considering the magnitude of these grids. For
example, for Grid A, the total difference between two different coordinate systems is 143
m comparing the arc length (spherical) with the straight line (Cartesian). The average
offset difference for each grid point between two coordinates is 13 cm, which is negligible
considering a grid size of about 500 m. To minimize the error around the mapping area,
the grid is lined up close to the Savannah DEM. The total difference between spherical and
Cartesian coordinates for Grid B is 483 meters. The average offset difference between two
coordinates is 32 cm for each point of this gird. To make the error as small as possible for
the western part of the domain, this grid is also lined up with the mapping area. Therefore,
larger error values shows up in the eastern and southern parts of the domain, which is not
of concern because they fall within the sponge layer region.

Figure 2 shows the location of these grids, as well as the location of the SMF source
simulated in this project. Further information about these grids are provided in Table 1.
The results of the simulations using Grids A and B were recorded on the Savannah DEM
boundaries in order to perform higher resolution modeling in nearshore regions. This

process is described in the next section of this document.

3.4 Nesting approach

In order to save computational time, an appropriate nesting approach is required to de-
crease the grid sizes from coarser grids offshore to finer grids nearshore. Accurate nesting
should insure that there would not be a loss of data on any of the boundaries on which
coupling is performed. The nesting scale represents the change in the grid size between

two levels of simulation. For example, if the 500 m grid results are used to perform a 125
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m simulation, the nesting scale is 4. Although the coupling capabilities of FUNWAVE-
TVD are such that large nesting scales could be used, a largest nesting scale of 4 has been
used in this study in order to avoid any loss of data. As described in previous sections of
this report, Grids A and B are used to generate data on Savannah DEM boundaries. Both
of these grids have grid sizes of roughly 500 meters and larger. Next, using the recorded
data on the boundaries of Savannah NGDC DEM, simulations with grid sizes of roughly
125.0 meters (about 4 arc-sec) are implemented on this grid to record proper data around
four DEMs with resolution of 1 arc-sec (extracted from 1/3 arc-sec Savannah DEM) in the
main region to resolve tsunami inundation inland (and near-shore) with 30 meter (about
one arc-sec) grid size. Grilli et al. (2014) have used the similar nesting approach and
confirmed the values chosen here. Figure 4 depicts the diagram for the nesting approach
performed in this project. In addition, characteristics of each grid are defined in Table 1.

All of the runs in this document were performed in Cartesian coordinates.

Grid Name ma ny  dx(m) dy(m)
Grid A 1810 1575 406.26 492.96
Grid B 2000 2000 500.00 500.00
SA _4arc 900 855 104.77 123.55
SA_larc.1 1080 1080 26.19 30.89
SA_larc2 1200 1080 26.19  30.89
SA_larc.3 1080 1080 26.19  30.89
SA_larc4 1080 1080 26.19 30.89
SA_larc.5 1080 1080 26.19  30.89
SA_larc.6 2000 720 26.19 30.89

Table 1: Grid specification for all of the grids used in this project

12
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4 Results

This section describes the data recorded for each inundation simulation and its organiza-
tion as ArcGIS rasters for subsequent map development. The tsunami arrival time is an
essential piece of information for evacuation planners. The results are categorized into
onshore and offshore results. The onshore results depict the characteristics of the tsunami
on the land during inundation. Onshore tsunami effects are mainly demonstrated through

three parameters,
1. Maximum inundation depth
2. Maximum velocity
3. Maximum momentum flux

Yeh (2007) reported different forces created by a tsunami on structures and concluded
that, having the three mentioned quantities, one can calculate good estimates of forces on
onshore structures resulting from tsunamis. Moreover, tsunamis can affect ship navigation;
therefore, in order to cover maritime planning and navigational issues during a tsunami,
three other parameters are recorded and depicted offshore in this project. These three

offshore parameters include,
1. Maximum vorticity
2. Maximum velocity

3. Maximum recorded water surface elevation

15



All six variables are recorded for each of the modeling domains introduced in Table 1 for
all of the tsunami sources discussed in previous sections. Appropriate rasters are generated
which are compatible with ArcGIS and other GIS software for mapping purposes. Finally,
the inundation line, which is calculated from the envelope of tsunami inundation extent

for each source, will be presented.

4.1 Arrival time
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Figure 5: Recorded surface elevation for gauges located in different locations in Savannah
DEM, Port Royal Sound (Blue), Savannah River (Red), and Sapelo Sound (Green)
Tsunami arrival time plays an important role in evacuation planning during the occur-

rence of an event. It is vital to report the arrival time of each tsunami relative to the time

of initial detection of an event. Here, the arrival time of the tsunami is based on the time

that the first tsunami bore passes the shoreline. Table 2 reports tsunami arrival times for
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several locations in the Savannah NGDC DEM. For each location, arrival times for each
modelled tsunami source have been reported. The arrival time for each city in Table 2 is a
value for that particular location with about a 5 to 10 minute error margin. Since tsunami
propagation in the ocean is constrained by bathymetry, the propagation of tsunamis toward
the Savannah area is quite similar for all of the different sources. Almost within 5 to 10
minutes all of the Atlantic shores would be affected by tsunami. Figure 5 demonstrates
the location of gauges where the recorded surface elevation was used to assess tsunami
arrival time for all of the sources (Table 2). SMF source is clearly the closest source to
the location of study, and will reach the entire domain within 2 to 3 hours. The tsunami
resulting from a Puerto Rico Trench (PRT) event will affect the Savannah area between 4
to 5.5 hours after the earthquake. The Lisbon historic event and the Cumbre Vieja Vol-
canic collapse (CVV) sources have similar transoceanic travel time, and will influence the
domain 9 to 11 hours after the incident.

Location SMF1 PR LIS CVV! (CVV?
Port Royal Sound 165 285 625 615 555
Savannah River 170 280 625 615 555
Sapelo Sound 170 280 625 620 560

Table 2: Arrival time in minutes after tsunami initiation for different locations and sources
in Savannah DEM based on the location of the gauges. CVV*! and CVV? refer to 80 km?
and 450 km? slide volumes respectively.

4.2 Raster Data

One of the most important results of this work is the inundation map corresponding to each

tsunami source. In order to facilitate the GIS work, appropriate rasters which are compat-
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ible with any GIS software such as ArcGIS are created for all of the grids mentioned in
Table 1. As an example, Figure 6 depicts the inundation depth for the CVV 80 km? slide
for the Savannah DEM grid with 4 arc-second resolution. In this figure the domains in
which 1 Arc-second resolution runs have been performed are displayed as well.

Figures 7-12 show the maximum inundation depth for the 1 Arc-second domains
shown in Figure 6. These figures provide a comparison for different sources studied in
this project. This includes the inundation map for the SMF source, and the envelope of
coseismic sources, as well as both CVV sources. The PRT event is the dominant coseismic
source by far, and its inundation pattern is similar to CVV80 source with some differences
especially behind the barriers. Since coseismic sources have larger wavelengths, they
are able to penetrate behind the barriers with less attenuation in comparison to the SMF
source. Figures 7-12 show that the CVV 450 km?® source is clearly the dominant source
for the area studied here, and represents worst case scenario by far in comparison to other
sources. However, because its return period is estimated to be beyond 10000 years, it is
excluded from inundation line calculations at this point. The 80 km? slide CVV has a
similar inundation pattern to Puerto Rico source. Except for some few locations CVV80
is the dominant source among all other sources, excluding the CVV 450 km? slide source.

The other important criteria required to be reported for inundated area, is the max-
imum momentum flux. Figure 13 is an example of the maximum momentum flux for
Fripp Island during the CVV450 tsunami. Maximum-recorded velocity is another essen-
tial quantity required to be reported for inundated areas. Maximum velocity is also an
important factor for navigational issues during a tsunami. Therefore, for better realiza-

tions of maximum velocity maps, two different maps are acquired for maximum velocity
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Figure 6: CVV 80 km? slide Inundation Map for the Savannah DEM with 4 arc-second
resolution. Red squares depicts the 1 arc-second resolution domains.
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boundaries.
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on land (basically inundated area) and maximum velocity offshore, which an example of
that is shown in Figure 14. Finally, the other important variable for navigational prob-
lems during a tsunami, which is the maximum vorticity is also reported with the similar
method as the other gridded values (Figure 15). All of the rasters in this project have the
Mean High Water (MHW) datum and have ASCII format. In each raster file, the grid size
(number of row and columns), the latitude and longitude coordinates corresponding to the
southern and western boundaries of the domain, and cell size that defines the resolution of
the simulation are included. Also, no data value for each raster is defined as well to limit
the information to the inundated areas or other areas of interest. More information about

the raster data is provided in Appendix A.

4.3 Inundation line

Tsunami inundation line is the main result of this project. The inundation line demon-
strates the envelope of the onshore maximum inundation extent of all tsunamis studied
in this work. We extracted the inundation line from inundation depth data. For each lo-
cation an envelope inundation depth map was generated from all of the tsunami sources.
Then, the zero contour of that map represents the inundation line, which is the extent
of tsunami inundation inland. As mentioned in the previous section, the 450 km3 CVV
source is excluded from the inundation line calculations, and its inundation line is sepa-
rately demonstrated as the low probability worst case scenario (shown in blue (Figure 16)).
The main inundation line is the envelope for all of the other cases studied here (shown in
red (Figure 16)). The inundation line for 4 arc-sec and 1 arc-sec domains were very close

to each other for all of the sources. For most areas, the 80 km?® CVV source was the dom-
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inant source controlling the inundation line. It must be noted again that the 450 km® CVV
source would have been the dominant source if it was not excluded from the inundation
line calculations. Also, it should be noted that the inundation lines in the overlapping areas
between different domains were almost identical for most of the cases, which is result of
a well performed nesting process. The inundation lines are saved as a shape file (.shp)
in order to simplify the inundation map generation process. More information about file

formats and names is provided in Appendix A.

5 Map Construction

The final results of this project are inundation maps that can be used for emergency plan-
ning. The inundation line shape files (.shp) provide the main resource for constructing
these maps. These shape files are mapped over USGS and ESRI topographic maps to
construct the inundation map. In addition to the inundated area and the inundation line,
information regarding the map construction is provided on each map. The tsunami sources
used to obtain these maps are mentioned in these maps. Also, the process of map construc-
tion is briefly described on the map. Figures 17-22 show the draft inundation maps for the
“Saint Elena Island, SC”, “Hilton Head Island, SC”, “Tybee Island, GA”, “Savannah, GA”,
“Ossabaw Island, GA”, and “Saint Catherines Island, GA” communities in 1:50,000 scale.
The location of these maps are shown in Figure 16. The basemaps for these figures are the

USGS topographic maps obtained from (http://basemap.nationalmap.gov/ArcGIS/rest/services/USGSTopo/M
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Figure 17: Inundation map for emergency planning for Saint Elena, SC in 1:50,000 scale.
The inundated area is covered in red, and the thick red line represents the inundation line
for this particular area.
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Figure 18: Inundation map for emergency planning for Hilton Head Island, SC in
1:50,000 scale. The inundated area is shown in red, and the thick red line represents the
inundation line for this particular area.
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Figure 19: Inundation map for emergency planning for Tybee Island, GA in 1:50,000
scale. The inundated area is shown in red, and the thick red line represents the inundation
line for this particular area.
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Figure 20: Inundation map for emergency planning for Savannah, GA in 1:50,000 scale.
The inundated area is shown in red, and the thick red line represents the inundation line
for this particular area.
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Figure 21: Inundation map for emergency planning for Ossabaw Island, GA in 1:50,000
scale. The inundated area is shown in red, and the thick red line represents the inundation
line for this particular area.
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Figure 22: Inundation map for emergency planning for Saint Catherines Island, GA at
1:50,000 scale. The inundated area is covered in red, and the thick red line represents the
inundation line for this particular area.
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Appendix A Gridded Data Information

In order to facilitate GIS work used to report tsunami inundation simulation results, the
output data is saved in ESRI Arc ASCII grid format, which is compatible with GIS soft-
ware such as ArcGIS. For each file, the grid spacing could have two different values
(25.73,30.89) m, and (102.91,123.55) m depending on the domain, and the coordinate
system is based on Geographic decimal degrees (Longitude and Latitude). Also, the ver-
tical datum of all rasters is mean high water (MHW), and the horizontal datum is World
Geodetic System of 1984 (WGS 84). The name of each file implies some information
about the file contents as well. The first part defines the type of data and could be one of
the following,

Inun . .. Onshore inundation depth

Inun_area ... Depicts the inundated area (inundation line)

Hmax. . . Maximum recorded offshore water surface elevation

Mfmx ...Maximum recorded onshore momentum flux

Uwet. .. Maximum recorded onshore velocity

Udry. .. Maximum recorded offshore velocity

vorm. . . Maximum recorded offshore vorticity

depth. .. depth

The rasters including inundation depth, maximum momentum flux, and maximum onshore
velocity (udry) are only meaningful onshore (for initially dry points, basically inundated

points), and by using the bathymetry data, nodata values have been defined for onshore



points in these rasters (nodata value=-9999). The reverse is performed for maximum vor-
ticity and maximum offshore velocity (uwet) rasters by setting the offshore values to -9999
to just consider the initially wet points in the domain. The second part of the raster name
defines the tsunami source used to obtain that data. This could be seven different sources

and are categorized as follows,

SMF. .. Submarine Mass Failure
PR...Puerto Rico Trench
LIS...Lisbon Source

CVV...Cumbre Vieja Volcanic Collapse.

In each file, the grid sizes (mx,ny), the coordinates for south west corner of the domain,
and the grid size are included in the file heading as well as a nodata value through the

following format,

ncols 9397

nrows 12853

xllcorner -75.580046296295
yllcorner 37.679953703705
cellsize 9.2592589999999¢e-005

NODATA _value -9999



Beneath the file heading, the corresponding values to each point are written in the file
with the format that starts from the southwest edge of the domain, and writes each row
from western to eastern boundaries of the domain from south to north. This format is
different from FUNWAVE-TVD output format, and it is flipped upside down. There-
fore, the FUNWAVE-TVD outputs are flipped vertically to match with ESRI Arc ASCII
grid format here. The last part of the file name represents the name of the grid that the
raster is built for. The names for each grid can be found in table 1. Therefore, the raster
“Inun_CVV80_sa_larc_l.asc” refers to the inundation depth data for the CVV80 source for
the first Savannah grid (SA_1) with the resolution of roughly 30 m ((dz,dy) = (25.73,30.89)
m (corresponding to 1 arc-sec in spherical coordinates)) described in the main document
(Table 1). Finally, the inundation lines are saved as shape files (.shp) for each domain
and have the same name format and projection with rasters. The combined inundation
line, which depicts the inundation line for the whole domain based on the finest results
available in any area, is presented as “final_inundation_line.shp” in the main folder of the
results. Figure 23 shows the way the data is organized. There exists a folder for each
domain (SA_1, SA_2 ) and each of them involve seven folders for each tsunami source
studied here. The raster data and inundation line shape file explained above are located in

these folders.



B £ sA
£ Depths
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g8 mfrmx_CVV8B0_sa_larc_1.asc
£/ udry_CVV80_sa_larc_1.asc
@ uwet_CVV80_sa_larc_l.asc
@ vorm_CVV80_sa_larc_l.asc
£ ENV
®= B3 LS
EJPR
£ SA 2
£15A3
£3 5A 4
EJ5AS5
£ SA 6
£ SA_DEM
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Figure 23: Screen shot of the results folder
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Appendix B Modeling inputs

A brief description of model inputs that were saved during the simulation process is pro-
vided here. These files provide sufficient data for researchers who are interested to model
the tsunamis on their own. In the main results folder, there exist a folder called “input”
(Figure 24). In this folder, three categories of input files exist. First, depth files for each
domain are provided. The file name represents the location of the bathymetry data, and
one could figure it out using Table 1. For example, if the file name is “SA_larc_1, it
is the bathymetry data for the SA_larc_1 domain defined previously in this report (Table
1,Figure 7). Next, the coupling file for each simulation domain is provided for five sources
studied in this work. Coupling files force the boundary conditions on the domain based on
recordings from coarser grids in order to simulate tsunamis with finer resolution. Similar
to the bathymetry files, names of coupling files show their domain, as well as their source.
For instance, the file “CVV80_mb_larc_3.txt” is the coupling file for CVV80 source for
the SA_larc_3 domain (Figure 12, Table 1). The coupling files can be easily distinguished
from bathymetry files because bathymetry files do not have a tsunami source label included
in their names.

General instructions for configuring input files for FUNWAVE-TVD may be found in
the program’s users manual (Shi et al., 2011), available at,

http://chinacat.coastal.udel.edu/papers/shi-etal-cacr-11-04-version2.1.pdf.



[Ckirby:btrad)@mills input]$ ls

ch_larc_1 CWEl_ch_larc_1.txt

L{kirby:btrad)8mills 1nput]3 l

Figure 24: Screen shot of the input folder






Appendix C Inundation Mapping Guidelines

The development of inundation maps for tsunami hazard assessment and evacuation plan-

ning is governed by three documents and a related appendix. These include:

1. NTHMP Inundation Modeling Guidelines

Available at: http://nws.weather.gov/nthmp/modeling_guidelines.html

2. Mapping Guidelines Appendix A

Available at: http://nws.weather.gov/nthmp/documents/MnM _guide_appendix-final.docx

3. NTHMP Tsunami Evacuation Mapping Guidelines
Available at:

http://nws.weather.gov/nthmp/documents/NTHMPTsunamiEvacuationMappingGuidelines.pdf

4. NTHMP Guidelines for Establishing Tsunami Areas of Inundation for Non-Modeled
or Low-Hazard Areas
Available at:
http://nws.weather.gov/nthmp/documents/Inundationareaguidelinesforlowhazardareas-

Final092611.docx



