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Abstract

This document reports the development of tsunami inundation maps for the re-
gion covered by the NGDC tsunami DEM for Atlantic City, NJ. Section 1 describes
NTHMP requirements and guidelines for this work. The location of the study and the
bathymetry data utilized are described. Tsunami sources that potentially threaten the
upper East Coast of the United States are briefly discussed. Modeling inputs are de-
scribed in the Section 3, including model specifications and simulation methods such
as nesting approaches used in generating inundation maps. The process of generating
inundation maps from tsunami simulation results is described in Section 4, along with
other results such as arrival time of the tsunami. GIS data sets and organization, in-
cluding inundation maps, maximum velocity maps, maximum momentum flux maps,
are described in Appendix A. Modeling inputs for simulation are provided in Ap-
pendix B for interested modelers. In Appendix C, NTHMP guidelines for inundation

mapping are provided.
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1 Introduction

The US National Tsunami Hazard Mitigation Program (NTHMP) supports the develop-
ment of inundation maps for all US coastal areas through numerical modeling of tsunami
inundation. This includes high-resolution modeling and mapping of at-risk and highly
populated areas as well as the development of inundation estimates for non-modeled and
low hazard areas. This report describes the development of inundation maps for a region
covered by the Atlantic City NGDC tsunami DEM (Taylor et al, 2009).

In section 2, background information about the mapped area is provided. Possible
tsunami sources that threaten the upper United States East Coast (USEC), and are consid-
ered in this analysis, are described. Modeling inputs are described in section 3. Section
4 presents simulation results and the development of mapping products. The process of
obtaining the tsunami inundation line, which is the most significant result of this work,
is explained in this section. Three appendices provide information about GIS data stor-
age and content (Appendix A), modeling inputs (Appendix B), and NTHMP inundation

mapping guidelines (Appendix C).

2 Background Information about Map Area

2.1 Location of coverage, and communities covered

The National Oceanic and Atmospheric Administration (NOAA), National Geophysical
Data Center (NGDC) have generated digital elevation models (DEM) as input for studies

focusing on hazard assessment of catastrophes like tsunamis and hurricanes at a number



of U. S. coastal areas. The Atlantic City NGDC DEM covers the southern portion of
the State of New Jersey (Taylor et al., 2009). The DEM covers several populated coastal
communities including Cape May, Avalon, Ocean City, Atlantic City and Long Beach
Island. Figure 1 shows the coverage area of the DEM. NGDC DEM’s are provided in
latitude/longitude coordinates with 1/3 arc-second resolution. The DEM vertical datum is
mean high water (MHW), and vertical elevations are in meters. More information about

the bathymetry data is given in Section 3.2.

2.2 Tsunami sources

The Atlantic City region has rarely experienced tsunami inundation. A general overview
of historic and potential tsunamigenic events in the North Atlantic Ocean is provided by
Atlantic and Gulf of Mexico Tsunami Hazard Assessment Group (2008). In this project,
tsunami sources that threaten the upper US East Coast (USEC) were categorized into three
main categories, and have been studied separately due to their differences in physics and
location. First, two seismically active sources in the Atlantic Ocean were used; a subduc-
tion zone earthquake in the Puerto Rico trench, and a simulation of the historic Azores
Convergence Zone earthquake of 1755. A far field subaerial landslide due to a volcanic
collapse in Canary Islands is also modeled. Finally, near-field Submarine Mass Failures
(SMFs) close to the edge of USEC continental shelf are used here as well. A brief intro-

duction and references to detailed studies of the sources are provided in this section.



Figure 1: Location of the NGDC Atlantic City DEM (Taylor et al, 2009). Color bar
shows depth values in meters for areas inside of the DEM boundary.
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2.2.1 Coseismic sources

2.2.1.1 Puerto Rico Trench: Previous research has confirmed the possibility of large
earthquakes in the Puerto Rico Trench (PRT) in the Caribbean Subduction Zone (CSZ)
(e.g. Grilli et al., 2010). These studies implied that an extreme event with return period
of 200 to 300 years could be powerful enough (M,, = 9.0) to rupture the entire PRT and
initiate a tsunami that will influence the USEC. Grilli and Grilli (2013a) have carried out
detailed computations for that event for use as initial conditions for tsunami inundation

modeling on the USEC.

2.2.1.2 Azores Convergence Zone: The other coseismic source used here is located on
the Azores Gibraltar plate boundary, known as the source of the biggest historical tsunami
event in the North Atlantic Basin (Gonzalez et al., 2007). The 1755 Lisbon earthquake
(M, = 8.6—9.0) generated tsunami waves with heights between 5 to 15 meters, impacting
the coasts of Morocco, Portugal, Newfoundland, Antilles, and Brazil. The procedure for
obtaining the initial condition for tsunami propagation is quite similar to the PRT rupture

and is discussed in Grilli and Grilli (2013b).

2.2.2  Volcanic cone collapse

In recent years, a potential cone collapse of the volcanic cone Cumbre Vieja (CVV) in
the Canary Islands has received attention as a possibly catastrophic source threatening
the USEC. In this project, a multi-fluid 3D Navier-Stokes solver (THETIS) was used to
compute the volcanic collapse tsunami source (Abadie et al., 2012; Harris et al., 2012).

Detailed description of the CVV modeling for use in this project is described in Grilli and



Grilli (2013c¢). Two different slide magnitudes were studied for this work; an 80 km? slide,
representing a plausible event in a return period window on the order of 10,000 years, and
a 450 km?® source, consistent with estimates of the maximum event for the geological
feature. The magnitude of the latter event is significantly larger than all of the other cases
studied in this project. Thus, it was decided to exclude the 450 km? source from inundation
line calculations, and illustrate its results separately as a representation of the worst case
scenario condition. This is due to the fact that this source return period is expected to be

much more than 10,000 years.

2.2.3 Submarine mass failure

The US East Coast is fronted by a wide continental shelf, which contributes to the dissi-
pation of far-field tsunami sources, and diminishes the damage caused by simulated waves
from these sources on the coastline. On the other hand, it has been noted in literature (e.g.
Grilli et al. 2014) that there is a potential of a Submarine Mass Failure (SMF) on or near
the continental shelf break, causing tsunamis that affect adjacent coastal areas. Consider-
ing the fact that the only tsunami event that has caused fatalities on the US East Coast was
an SMF tsunami (Grand Banks, 1929), it is necessary to study possible impacts and con-
sequences of such catastrophes with respect to heavily populated coastal communities on
the USEC. In this project, four different locations are chosen as the most probable to expe-
rience a submarine mass failure tsunami. The process of obtaining the initial condition for
near-shore propagation and inundation modeling for all of these sources are comprehen-
sively documented in Grilli et al. (2013). The landslide movement is simulated with the

NHWAVE model (Ma et al., 2012; Tehranirad et al., 2012) and the results shown here are



interpolated into 500 meter grids for propagation and inundation modeling 800 seconds

after slump movement is initiated (Grilli et al., 2013).

3 Modeling Inputs

3.1 Numerical model

Tsunami propagation and inundation in this study is simulated using the fully nonlinear
Boussinesq model FUNWAVE-TVD (Shi et al, 2012a). FUNWAVE-TVD is a public do-
main open-source code that has been used for modeling tsunami propagation in ocean
basins, nearshore tsunami propagation and inland inundation problems. The code solves
the Boussinesq equations of Chen (2006) in Cartesian coordinates, or of Kirby et al. (2013)
in spherical coordinates. A users manual for each version is provided by Shi et al (2011).
FUNWAVE-TVD has been successfully validated for modeling tsunami wave characteris-
tics such as shoaling, breaking and runup by Tehranirad et al. (2011) following NTHMP
requirements (see Appendix C). Additional description of modeling specifications and in-
put files is provided in Appendix B.

One key specification in the model is the choice of friction coefficient defined for
tsunami simulation. Geist et al. (2009) have performed a study on sensitivity of tsunami
elevation with respect to a range of bottom friction coefficients and demonstrated that
large coefficients will unrealistically damp tsunami wave height. A review of the existing
literature suggests that a value of C;; = 0.0025 represents a reasonable friction coefficient
for tsunami simulations, as suggested by several researchers (e.g. Grilli et al., 2013), and

this value is used here.



3.2 Bathymetric Input Data

3.2.1 Atlantic City NGDC DEM

In this project, an integrated bathymetric-topographic digital elevation model (DEM) that
generated by National Geophysical Data Center (NGDC) is used for high-resolution in-
undation mapping for the area around Atlantic City, NJ (Taylor et al., 2009). This DEM
covers the coastline of the southern half of the State of New Jersey, from Cape May up to
Long Beach Island in the north (Figure 1). The horizontal datum is set to be World Geode-
tic System of 1984 (WGS 84), and the vertical datum is mean high water (MHW). The
resolution of the Atlantic City DEM is 1/3 arc-second, which, with respect to the study
location, means that the North-South resolution is 10.27 meters, and East-West direction
grids are 7.99 meters (computed using the latitude in the middle of the domain). All of the
runs in this domain have been performed in Cartesian coordinates. Considering the cov-
erage area of this grid, the difference between Cartesian grid and spherical grid (Simply
comparing the total length of domain in Cartesian grid and spherical grid) is about 1.5 me-
ters for the whole domain. This means that the average offset for each point is of O(10~°)
meters. Therefore, because of the negligible differences between Cartesian and spherical
grids, this grid was used as Cartesian grid directly to capture fully nonlinear effects of the
tsunamis nearshore. Further information about this grid is also given in Table 1.

In the USA the period to determine MHW spans 19 years and is referred to as the
National Tidal Datum Epoch. For this project, inundation mapping processes have been
performed with MHW datum maps following NTHMP requirements (see Appendix C).

There are different approaches to relate MHW to NAVDS8S values in the literature, and



also, one can use existing datum conversion models to investigate the difference (e.g.
Vdatum generated by NOAA, Park et al., 2003). However, it should be noted that the
difference between these values is not constant for the whole domain. For Cape May, NJ,

MHW is at NAVD88+60.1 cm. For Atlantic City, NJ, MHW is at NAVD+47.9 cm.

3.2.2 NGDC Coastal Relief Model (CRM)

Bathymetry data for shelf regions lying outside the NGDC Atlantic City DEM are obtained
from the NGDC’s 3 arc-second U.S. Coastal Relief Model (CRM) (Divins and Metzger,
2003). This data delivers a complete view of the U.S. coastal areas, combining offshore
bathymetry with land topography into a unified representation of the coast. However, the

deeper part of the Ocean beyond the shelf break is not covered in this data.

3.23 ETOPO1

Bathymetry data for deeper parts of the ocean beyond the shelf break is taken from the
ETOPO1 DEM (Amante and Eakins, 2009). ETOPOL is a 1 arc-minute global relief
model of Earth’s surface that combines land topography and ocean bathymetry. It was
built from numerous global and regional data sets, and is available in ”Ice Surface” (top of
Antarctic and Greenland ice sheets) and ”"Bedrock” (base of the ice sheets) versions. Here,

we use the Bedrock version in areas where the CRM data is not available.

3.3 Model Grids

Although the Atlantic City DEM satisfies the bathymetry data requirements for nearshore

simulations, proper offshore bathymetry data is required to model the tsunamis far from



the shoreline. Accordingly, Grids A and B (Figure 2) are generated for low resolution mod-
eling over the ocean basin and continental shelf. The input data for the tsunami sources
is divided into two categories. The first category consists of Cosiesmic and CVV sources,
which were simulated in larger scale ocean-scale model runs, with results recorded on the
boundaries of Grid A. The ocean-basin simulations in which this data were recorded was
performed with a 16 arc second spherical grid. Grid A was generated in order to keep the
nesting scale 4 or less (see section 3.4), and continue the simulation with a 4 arc second
grid. The grid sizes of the Grid A are 503.2 m in the north-south direction and 535.0 m in
east-west direction (Table 1). On the other hand, the SMF sources fall within the modeled
region and are initially modeled with a Cartesian grid using NHWAVE (Ma et al., 2012)
with 500 m resolution. The input data was in the form of initial conditions, in contrast
to the first category where the data is in form of boundary conditions. Therefore, it was
required to generate another grid larger than Grid A to allow space for model sponge lay-
ers (or damping regions) on the boundaries. Also, in order to directly use input data as
generated by NHWAVE, the grid sizes for Grid B were chosen to be 500 m.

Depth values for these grids were obtained from the 1 arc-minute ETOPO-1 database,
while nearshore bathymetry and topography were obtained from the CRM. The horizontal
datum and vertical datum are set to be WGS84 and MHW, similar to Atlantic City NGDC
DEM. These grids are mapped from spherical coordinates into a Cartesian grid. This
means that there are some mapping errors considering the magnitude of these grids. For
example, for Grid A, the total difference between two different coordinate systems is 132
m comparing the arc length (spherical) with the straight line (Cartesian). The average

offset difference for each grid point between two coordinates is 12 cm, which is negligible



considering a grid size of about 500 m. To minimize the error around the mapping area,
the grid is lined up close to the Atlantic City DEM. The total difference between spherical
and Cartesian coordinates for Grid B is 465 meters. The average offset difference between
two coordinates is 31 cm for each point of this gird. To make the error as small as possible
for the western part of the domain (close to Atlantic City, NJ), this grid is also lined up
with the mapping area. Therefore, larger error values shows up in the eastern and southern
parts of the domain, which is not of concern because they fall within the sponge layer
region.

Figure 2 shows the location of these grids, as well as the location of the SMF sources
simulated in this project. Further information about these grids are provided in Table 1.
Figure 3 shows the initial surface elevation of each SMF source mapped onto Grid B. The
results of the simulations using Grids A and B were recorded on the Atlantic City DEM
boundaries in order to perform higher resolution modeling in nearshore regions. This

process is described in the next section of this document.

3.4 Nesting approach

In order to save computational time, an appropriate nesting approach is required to de-
crease the grid sizes from coarser grids offshore to finer grids nearshore. Accurate nesting
should insure that there would not be a loss of data on any of the boundaries on which cou-
pling is performed. The nesting scale represents the change in the grid size between two
levels of simulation. For example, if the 500 m grid results are used to perform a 125 m
simulation, the nesting scale is 4. Although the coupling capabilities of FUNWAVE-TVD

are such that large nesting scales could be used, a largest nesting scale of 4 has been used
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in this study in order to avoid any loss of data. As described in previous sections of this
report, Grids A and B are used to generate data on Atlantic City DEM boundaries. Both of
these grids have grid sizes of roughly 500 meters and larger. Next, using the recorded data
on the boundaries of Atlantic City NGDC DEM, simulations with grid sizes of roughly
125.0 meters (about 4 arc-sec) are implemented on this grid to record proper data around
four DEMs with resolution of 1 arc-sec (extracted from 1/3 arc-sec Atlantic City DEM)
in the main region to resolve tsunami inundation inland (and near-shore) with 30 meter
(about one arc-sec) grid size. Grilli et al. (2014) have used the similar nesting approach
and confirmed the values chosen here. Figure 5 depicts the diagram for the nesting ap-
proach performed in this project. In addition, characteristics of each grid are defined in

Table 1. All of the runs in this document were performed in Cartesian coordinates.

4 Results

This section describes the data recorded for each inundation simulation and its organiza-
tion as ArcGIS rasters for subsequent map development. The tsunami arrival time is an
essential piece of information for evacuation planners. The results are categorized into
onshore and offshore results. The onshore results depict the characteristics of the tsunami
on the land during inundation. Onshore tsunami effects are mainly demonstrated through

three parameters,

1. Maximum inundation depth
2. Maximum velocity

3. Maximum momentum flux

13
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arc-sec grids described in Table 1.
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Yeh (2007) reported different forces created by a tsunami on structures and concluded
that, having the three mentioned quantities, one can calculate good estimates of forces on
onshore structures resulting from tsunamis. Moreover, tsunamis can affect ship navigation;
therefore, in order to cover maritime planning and navigational issues during a tsunami,
three other parameters are recorded and depicted offshore in this project. These three

offshore parameters include,

1. Maximum vorticity

2. Maximum velocity

3. Maximum recorded water surface elevation

All six variables are recorded for each of the modeling domains introduced in Table 1 for
all of the tsunami sources discussed in previous sections. Appropriate rasters are generated
which are compatible with ArcGIS and other GIS software for mapping purposes. Finally,
the inundation line, which is calculated from the envelope of tsunami inundation extent

for each source, will be presented.

4.1 Arrival time

Tsunami arrival time plays an important role in evacuation planning during the occurrence
of an event. It is vital to report the arrival time of each tsunami relative to the time of
initial detection of an event. Here, the arrival time of the tsunami is based on the time
that the first tsunami bore passes the shoreline. Table 2 reports tsunami arrival times for
several locations in the Atlantic City NGDC DEM. For each location, arrival times for

each modelled tsunami source have been reported. The arrival time for each city in Table
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2 is a value for that particular location with about a 5 minute error margin. Since tsunami
propagation in the ocean is constrained by bathymetry, the propagation of tsunamis toward
the Atlantic City area is quite similar for all of the different sources. The northern part of
the domain (e.g. Atlantic City, NJ) is the first spot that would face the tsunami (Except
for SMF4 source). However, within a 5 to 10 minute lag difference, the southern part of
the domain that is facing Atlantic Ocean (e.g. Avalon, NJ) will be affected by the tsunami
as well. Finally, within 10 to 20 minutes lag in comparison with the northern parts of
the domain, tsunami would reach parts of the domain close to the Delaware Bay (e.g.
Cape May, NJ). Figure 6 demonstrates the location of gauges where the recorded surface
elevation was used to assess tsunami arrival time for all of the sources (Table 2). SMF
sources are clearly the closest source to the location of study, and will reach the entire
domain within 1 to 2 hours. The tsunami resulting from a Puerto Rico Trench (PRT)
event will affect the Atlantic City area between 4 to 5 hours after the earthquake. The
Lisbon historic event and the Cumbre Vieja Volcanic collapse (CVV) sources have similar

transoceanic travel time, and will influence the domain 8 to 9 hours after the incident.

Location SMF1 SMF2 SMF3 SMF4 PR LIS CVV! CVV?
Long Beach Islands, NJ 70 90 90 90 275 520 530 500
Atlantic City, NJ 65 95 100 85 275 535 525 500
Ocean City, NJ 75 100 95 85 275 540 535 510
Avalon, NJ 75 100 90 80 270 535 525 505
Cape May, NJ 80 105 105 80 275 545 540 520

Table 2: Arrival time in minutes after tsunami initiation for different locations and sources
in Atlantic City DEM based on the location of the gauges. CVV'! and CVV? refer to 80
km? and 450 km? slide volumes respectively.
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4.2 Raster Data

One of the most important results of this work is the inundation map corresponding to each
tsunami source. In order to facilitate the GIS work, appropriate rasters which are compat-
ible with any GIS software such as ArcGIS are created for all of the grids mentioned in
Table 1. As an example, Figure 7 depicts the inundation depth for the CVV 80 km? slide
for the Atlantic City DEM grid with 4 arc-second resolution. In this figure the domains in
which 1 Arc-second resolution runs have been performed are displayed as well.

Figures 8-13 show the maximum inundation depth for the 1 Arc-second domains
shown in Figure 7. These figures provide a comparison for different sources studied in
this project. This includes the envelope inundation map for SMF and coseismic sources
as well as both CVV sources. The inundation depth for SMF sources are similar to each
other, however, the inundation depth values for SMF3 is larger for the most part in com-
parison to the other SMF sources. This is probably because of the fact that the SMF3
is the closest SMF source to the location of study. Also, the PRT event is the dominant
coseismic source by far, and its inundation pattern is similar to SMF sources with some dif-
ferences especially behind the barriers. Since coseismic sources have larger wavelengths,
they are able to penetrate behind the barriers with less attenuation in comparison to SMF
sources. Figures 8-13 show that the CVV 450 km? source is clearly the dominant source
for the area studied here, and represents worst case scenario by far in comparison to other
sources. However, because its return period is estimated to be beyond 10000 years, it is
excluded from inundation line calculations at this point. The 80 km? slide CVV has a sim-

ilar inundation pattern to Puerto Rico source and SMF4. Except for some few locations it
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is the dominant source among all other sources, excluding the CVV 450 km? slide source.

The other important criteria required to be reported for inundated area, is the maxi-
mum momentum flux. Figure 14 is an example of the maximum momentum flux which is
extracted from AC_larc_2 domain for the CVV80 tsunami. Maximum-recorded velocity
is another essential quantity required to be reported for inundated area. Maximum velocity
is also an important factor for navigational issues during a tsunami. Therefore, for better
realizations of maximum velocity maps, two different maps are acquired for maximum
velocity on land (basically inundated area) and maximum velocity offshore, which are
shown in Figure 15. Finally, the other important variable for navigational problems during
a tsunami, which is the maximum vorticity is also reported with the similar method as the
other gridded values. Figure 16 depicts the maximum vorticity in Ocean City, NJ during
CVV80 tsunami. All of the rasters in this project have the Mean High Water (MHW) da-
tum and have ASCII format. In each raster file, the grid size (number of row and columns),
the latitude and longitude coordinates corresponding to the southern and western bound-
aries of the domain, and cell size that defines the resolution of the simulation are included.
Also, no data value for each raster is defined as well to limit the information to the inun-
dated areas or other areas of interest. More information about the raster data is provided

in Appendix A.

4.3 Inundation line

Tsunami inundation line is the main result of this project. The inundation line demon-
strates the envelope of the onshore maximum inundation extent of all tsunamis studied

in this work. We extracted the inundation line from inundation depth data. For each lo-

21



75°00"W 74°40'0"W

40°0'0"N-}

39°40'0"N

39°20'0"N

39°0°0"N

| - ehob oth Beach

*

38°40'0"N

75°0'0"W 74°40'0"W

74°20'0"W 74°0'0"W
. pantoioxing

40°0'0"N
39°40'0"N
39°20'0"N
39°0'0"N

1 Arc-Sec Domains

4 Arc-Sec Domain
38°40'0"N

74°20'0"W 74°0'0"W

Figure 7: CVV 80 km? slide Inundation Map for the Atlantic City DEM with 4
arc-second resolution. Red squares depicts the 1 arc-second resolution domains



Barneaq va("

/

svvaretown

Barne
Lial

T \Vvaretown

Barnegat -

Barne
Lial

i v}

Inundation Depth

-.osn [
[Jos-20m
2o
] TTvaretowin Ear Jrvaretown
Barnd Barng
Lial

Barnegat

©

domain boundaries.

23

(D)

Figure 8: Inundation depth for AC_larc_1 domain, A) SMF Envelope, B) Coseismic
Envelope, C) CVV 80 km? slide, and D) CVV 450 km? slide. Red box depicts AC_larc_1
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cation an envelope inundation depth map was generated from all of the tsunami sources.
Then, the zero contour of that map represents the inundation line, which is the extent
of tsunami inundation inland. As mentioned in the previous section, the 450 km3 CVV
source is excluded from the inundation line calculations, and its inundation line is sepa-
rately demonstrated as the low probability worst case scenario (shown in blue (Figure 17)).
The main inundation line is the envelope for all of the other cases studied here (shown in
red (Figure 17)). The inundation line for 4 arc-sec and 1 arc-sec domains were very close
to each other for all of the sources. For most areas, the 80 km? CVV source was the domi-
nant source controlling the inundation line; however, in a few locations the inundation line
representing the SMF3 source (which is the closest SMF source to the mapping location)
was the dominant tsunami source. It must be noted again that the 450 km® CVV source
would have been the dominant source by far if it was not excluded from the inundation
line calculations. Also, it should be noted that the inundations line in the overlapping areas
between different domains were almost identical for most of the cases, which is result of
a well performed nesting process. The inundation lines are saved as a shape file (.shp)
in order to simplify the inundation map generation process. More information about file

formats and names is provided in Appendix A.

5 Map Construction

The final results of this project are inundation maps that can be used for emergency plan-
ning. The inundation line shape files (.shp) provide the main resource for constructing

these maps. These shape files are mapped over USGS and ESRI topographic maps to
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construct the inundation map. In addition to the inundated area and the inundation line, in-
formation regarding the map construction is provided on each map. The tsunami sources
used to obtain these maps are mentioned in these maps. Also, the process of map con-
struction is briefly described on the map. Figures 18-22 show the draft inundation maps
for the “Long Island Beach, NJ”, “Atlantic City, NJ”, “Ocean City, NJ”, “Avalon, NJ” and
“Cape May, NJ” communities in 1:40,000 scale. The location of these maps are shown in
Figure 17. The basemaps for these figures are the USGS topographic maps obtained from

(http://basemap.nationalmap.gov/ArcGIS/rest/services/USGSTopo/MapServer).
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Figure 20: Inundation map for emergency planning for Ocean City, NJ at 1:40,000 scale.
The inundated area is covered in red, and the thick red line represents the inundation line
for this particular area.
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Figure 21: Inundation map for emergency planning for Avalon, NJ at 1:40,000 scale. The
inundated area is covered in red, and the thick red line represents the inundation line for
this particular area.
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Figure 22: Inundation map for emergency planning for Cape May, NJ at 1:40,000 scale.
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Appendix A Gridded Data Information

In order to facilitate GIS work used to report tsunami inundation simulation results, the
output data is saved in ESRI Arc ASCII grid format, which is compatible with GIS soft-
ware such as ArcGIS. For each file, the grid spacing could have two different values
(23.97,30.81) m, and (95.88,123.24) m) depending on the domain, and the coordinate
system is based on Geographic decimal degrees (Longitude and Latitude). Also, the ver-
tical datum of all rasters is mean high water (MHW), and the horizontal datum is World
Geodetic System of 1984 (WGS 84). The name of each file implies some information
about the file contents as well. The first part defines the type of data and could be one of
the following,

Inun . .. Onshore inundation depth

Inun_area ... Depicts the inundated area (inundation line)

Hmax. . . Maximum recorded offshore water surface elevation

Mfmx ...Maximum recorded onshore momentum flux

Uwet. .. Maximum recorded onshore velocity

Udry. .. Maximum recorded offshore velocity

vorm. . . Maximum recorded offshore vorticity

depth. .. depth

The rasters including inundation depth, maximum momentum flux, and maximum onshore
velocity (udry) are only meaningful onshore (for initially dry points, basically inundated

points), and by using the bathymetry data, nodata values have been defined for onshore



points in these rasters (nodata value=-9999). The reverse is performed for maximum vor-
ticity and maximum offshore velocity (uwet) rasters by setting the offshore values to -9999
to just consider the initially wet points in the domain. The second part of the raster name
defines the tsunami source used to obtain that data. This could be seven different sources

and are categorized as follows,

SMF1-4...Submarine Mass Failure 1-4
PR...Puerto Rico Trench
LIS...Lisbon Source

CVV...Cumbre Vieja Volcanic Collapse.

In each file, the grid sizes (mx,ny), the coordinates for south west corner of the domain,
and the grid size are included in the file heading as well as a nodata value through the

following format,

ncols 9397

nrows 12853

xllcorner -75.580046296295
yllcorner 37.679953703705
cellsize 9.2592589999999¢e-005

NODATA _value -9999



Beneath the file heading, the corresponding values to each point are written in the file
with the format that starts from the southwest edge of the domain, and writes each row
from western to eastern boundaries of the domain from south to north. This format is
different from FUNWAVE-TVD output format, and it is flipped upside down. There-
fore, the FUNWAVE-TVD outputs are flipped vertically to match with ESRI Arc ASCII
grid format here. The last part of the file name represents the name of the grid that the
raster is built for. The names for each grid can be found in table 1. Therefore, the raster
“Inun_SMF?2 _oc_30_1.asc” refers to the inundation depth data for the SMF2 source for the
first Atlantic City grid (AC_1) with the resolution of roughly 30 m ((dx,dy) = (24.30,30.81)
m (corresponding to 1 arc-sec in spherical coordinates)) described in the main document
(Table 1). Finally, the inundation lines are saved as shape files (.shp) for each domain
and have the same name format and projection with rasters. The combined inundation
line, which depicts the inundation line for the whole domain based on the finest results
available in any area, is presented as “final_inundation_line.shp” in the main folder of the
results. Figure 23 shows the way the data is organized. There exists a folder for each
domain (AC_1, AC_2 ) and each of them involve seven folders for each tsunami source
studied here. The raster data and inundation line shape file explained above are located in

these folders.
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Figure 23: Screen shot of the results folder
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Appendix B Modeling inputs

A brief description of model inputs that were saved during the simulation process is pro-
vided here. These files provide sufficient data for researchers who are interested to model
the tsunamis on their own. In the main results folder, there exist a folder called “input”
(Figure 24). In this folder, three categories of input files exist. First, depth files for each
domain are provided. The file name represents the location of the bathymetry data, and
one could figure it out using Table 1. For example, if the file name is “AC_larc_1, it
is the bathymetry data for the AC_larc_1 domain defined previously in this report (Ta-
ble 1,Figure 8). Next, the coupling file for each simulation domain is provided for seven
sources studied in this work. Coupling files force the boundary conditions on the domain
based on recordings from coarser grids in order to simulate tsunamis with finer resolution.
Similar to the bathymetry files, names of coupling files show their domain, as well as their
source. For instance, the file “smf3_ac_larc_3.txt” is the coupling file for SMF3 source
for the AC_larc_3 domain (Figure 10, Table 1). The coupling files can be easily distin-
guished from bathymetry files because bathymetry files do not have a tsunami source label
included in their names.

General instructions for configuring input files for FUNWAVE-TVD may be found in
the program’s users manual (Shi et al., 2011), available at,

http://chinacat.coastal.udel.edu/papers/shi-etal-cacr-11-04-version2.1.pdf.
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Appendix C Inundation Mapping Guidelines

The development of inundation maps for tsunami hazard assessment and evacuation plan-

ning is governed by three documents and a related appendix. These include:

1. NTHMP Inundation Modeling Guidelines

Available at: http://nws.weather.gov/nthmp/modeling_guidelines.html

2. Mapping Guidelines Appendix A

Available at: http://nws.weather.gov/nthmp/documents/MnM _guide_appendix-final.docx

3. NTHMP Tsunami Evacuation Mapping Guidelines
Available at:

http://nws.weather.gov/nthmp/documents/NTHMPTsunamiEvacuationMappingGuidelines.pdf

4. NTHMP Guidelines for Establishing Tsunami Areas of Inundation for Non-Modeled
or Low-Hazard Areas
Available at:
http://nws.weather.gov/nthmp/documents/Inundationareaguidelinesforlowhazardareas-

Final092611.docx



