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1 The tsunami models

1.1 Model 1 - GloBouss

GloBouss is a depth averaged model based on the standard Boussinesq equations, including
higher order dispersion terms, Coriolis terms, and numerical hydrostatic correction terms [9, 5, 6].
The numerical formulation is based on a staggered Arakawa C-grid computational stencil, solved
iteratively employing an ADI method. GloBouss is formulated in both Cartesian and geograph-
ical coordinates. GloBouss is mainly a tsunami propagation model designed for simulating
dispersive tsunami propagation over large distances in the open ocean, and lacks features such
as drying and wetting, and therefore cannot be used to compute inundation. Tsunami sources
are handled either through hot start conditions by giving the surface elevation and depth av-
eraged velocity fields as input, or by a series of sources and sinks through the temporal rate
of change of the water depth. To accommodate non-hydrostatic effects due to time dependent
depth perturbations of short horizontal scales, the tsunami generation is also coupled to a lin-
ear, full potential filter based on [3]. For submarine landslide tsunamis, the full potential filter
integrates and adds the response water surface response due to the landslide as a function of
time. This is done by adding a source term q to the momentum equation

∂η

∂t
= −∇ · {(h+ η)v}+ q, (1)

where η, h and v are the surface elevation, equilibrium depth and depth-averaged horizontal
velocity, respectively. In a full set of Boussinesq equations higher order, non-hydrostatic terms
will arise from temporal depth changes also in the momentum equations. Such terms are pre-
sented, for instance, in [8] where they are also included in a benchmark test. However, for short
landslides, such as in the present benchmark 2, these terms will not improve the performance,
but they may ruin the hybrid method of section 2.2 where all non-hydrostatic effects during
generation are included through the computation of q.

1.2 Model 2 - BoussClaw

BoussClaw is a new Boussinesq type model of similar mold as Funwave-TVD and Coulwave-
TVD, but with a different Boussinesq formulation [4]. In particular, the dispersion term is
simpler and not fully nonlinear, as robustness is given priority over high formal order. It is
an extension of GeoClaw [1], and solves the Boussinesq- type equations by [10], modified into
conservative form. The BoussClaw model employ a finite volume technique for the NLSW part
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of the equations and a finite difference discretization in fractional steps for the additional terms
such as dispersion terms, of both standard and higher order. BoussClaw is an operational
tsunami model that incorporates drying wetting formulations which allow for computation of
dry land inundation, as well as Manning type friction terms. During inundation and near shore
propagation, the dispersive terms are omitted, and the model is switched to NLSW. Tsunami
sources are handled either through hot start conditions by giving the surface elevation and depth
averaged velocity fields as input, or by modifying the bathymetry in the momentum equation
for each time step. To accommodate non-hydrostatic effects during tsunami generation from
a time dependent source such as a landslide, modifications to the bathymetry is necessary. In
this model the total flow depth H = h+ η is the primary unknown, together with v. Then the
forcing from the time dependent bottom appear in last term, which is spelled out, of the the
momentum equation

∂(Hv)

∂t
= −∇

{
Hv2 + g

1

2
H2
}

+ gH∇h+ ... (2)

2 The landslide tsunami source representation

2.1 The direct implementation

A standard way of implementing a landslide tsunami source in a long wave model is

q = −∂h
∂t
.

For a fast bottom variation, as an earthquake, this will give a similar result as copying the
bottom uplift on the surface. For a landslide as short as the one in benchmark 2, this procedure
will give very inaccurate results, as shown below.

2.2 The hybrid potential flow/long wave source implementation

Features of a bottom source that is not long in comparison to the local depth will not be conveyed
directly to the surface as assumed in the preceding section. In principle full potential theory
then must be employed to obtain the surface response. On the other hand, the result is that
shorter features of the source are smeared out to yield waves that are long enough to be within
the realm of dispersive long wave equations [2, 7]. Hence, we employ a hybrid model that that
employs full potential theory for the surface response, while long wave equations are used for
the wave dynamics. To this end we employ the Green function for the transfer of an impulsive
bottom source distribution to the surface elevation from [3] to obtain q from −∂h

∂t according to

q(x, y, t) = −
∞∫
−∞

∞∫
−∞

h(x′, y′, t))−2
∂h(x′, y′, t)

∂t
G

(√
(x− x′)2 + (y − y′)2

h(x′, y′, t)

)
dx′ dy′, (3)

where G is the normalized Green function

G(r) =
1

2π

∞∫
0

mJ0(mr)

coshm
dm =

1

π

∞∑
n=0

(−1)n(2n+ 1)

{(2n+ 1)2 + r2}
3
2

. (4)

The function G decays exponentially as r → ∞ and the integrals in (3) converge rapidly. To
compute (4) the bottom uplift rate is discretized one a fine Cartesian grid, with increments
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∆xg,∆yg and for each cell a source strength Dij is defined. This should optimally equal −∂h/∂t
integrated over the cell. Herein we use only the mid-point formula, even though better accuracy
could be obtained by modifying this at the edges of the slide body. The computed q is dis-
cretized on a grid (xn, yn) = (n∆x,m∆y) = ~rnm which is, normally, much coarser. The discrete
counterpart to (3), at location n,m, becomes

qnm = −
∑
i

∑
j

1

h2ij
σijDijG(|~rnm − ~rij |/hij), (5)

where i, j refers to the cells of the uplift grid and σij is a correction factor, explained below. Due
to the decay of G only the contributions from limited ranges in i and j, for which |~rij − ~rnm| <
Bhij need to be taken into account. In the simulations herein we have used B = 5.0. The factor
σij is defined according to

1 =
σij∆x∆y

h2ij

∑
n

∑
m

G(|~rnm − ~rij |/hij),

where the sums are over all pairs n,m for which qnm are given contribution from Di,j in the
truncated series in (5). This ensures volume conservation. When the grid increments are much
smaller than Bhij the factor σij is close to unity. For a landslide moving in a channel, side
wall effects may be accounted for by introducing mirror sources. However, such effects are only
noticeable for the deeper slide positions in benchmark 2. In principle (5) is valid only for constant
depth. However, if the horizontal depth variation small, equation (5) is a good approximation
in non-uniform depth as well. The application of (5) with the GloBouss model are shown agree
very well with full potential theory (both generation and propagation) in [7].

The transformed source may also be applied in the BoussClaw model, but in an incomplete
manner. The q as obtained above is then used to define an analogue depth, ĥ, through ∂ĥ/∂t =
−q. This depth is then used in the momentum equation 2 of BoussClaw. The source distribution
over the surface will then be well presented, but the modified bathymetry will not be correct.

3 Simulations of Benchmark 2

In benchmark 2 the bottom may be expressed as h = hb(x)−ζ̂(x−xs(t), y), and ζ̂(ξ, y) represents
the horizontal projection of the slide body, ζ, which is 0.395 m × 0.680 m. The hb of starting
positions are between 0.14 m and 27 m, while the maximum depth is 1.8 m. Hence, at the
beginning the landslide box is longer than the depth, albeit not by an order of magnitude,
while it becomes much smaller than the depth as it moves down the plane. As a consequence,
q = −∂h/∂t = dxs

dt ∂ζ̂/∂ξ, i.e. copying the seabed change directly to the water surface, produces
waves that are very different from those from q as obtained by equation (5), in particular in
deeper regions. This is illustrated in figure 1. Furthermore, we observe that q from (5) may be
computed with much relaxed resolution and that it, unlike ∂ζ̂/∂ξ, is continuous, both of which
are beneficial from a numerical point of view.

Time series for the initial slide depths d = 61 mm and d = 120 mm are shown in figures 2
and 3, respectively. There is good to excellent agreement between experiments and both models
offshore, even though there are markedly larger differences for BoussClaw. For gauge 1, on the
other hand, the models substantially underestimate the leading depression, in particular for the
d = 61 mm. Non-linear effects are just barely visible for the leading wave (all gauges) while they
slightly affect the second wave.
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Figure 1: Source distribution for the benchmark 2 landslide starting at x = 0.605 m (depth
80 mm) at t = 1.875 s, when the slide speed is 1.39 m/s. The equilibrium depth at the slide
center is then 0.59 m. Left panel: −∂h/∂t, right panel: q as obtained by (5). The ragged
appearance in the left panel reflects the inadequacy of a good resolution (∆x = 0.045 m) for q,
when applied to −∂h/∂t.
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Figure 2: Time series for d = 61 mm
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Figure 3: Time series for d = 120 mm

4 Remarks

The hybrid model generally works well, except at small times for the shallow gauge 1 where
it yields a too low initial depression. When results for all gauges are taken into account (not
shown) there is also a weak tendency that events with higher value of t0 (e.g. d = 140 mm
and d = 189 mm) yield a better general fit with experiments, possibly due to longer induced
wavelength. There is also a slightly improved fit for larger d, even for gauge 1.

Equation (3) is intrinsically linear in the sense that the sink/source distribution is applied at
the undisturbed sea bed. This is a rather crude approximation at the start of the slide motion,
in particular for d = 61 mm, for which the slide is thicker than half the undisturbed water depth.
Presumably, this is part of the explanation for the under representation of the leading depression
at gauge 1. Plane tests (not shown), including a full potential theory model for both generation
and propagation, supports this. However, the effects are different in 2D and 3D and further
investigation is needed to reach a firm conclusion. The modification of the geometry may be
taken into account in all other terms in GloBouss, but the effect on the solution is moderate.
In the presented simulations we have simply set ζ̂ = ζ. A corrected ζ̂, for which the slope has
been taken into consideration, has been tested, but gave only minor differences. The formula
(3) itself is valid for constant depth. Plane tests, where slides of similar length and height and
speed have been simulated with both GloBouss and full potential theory (not shown) points to
an error of up to 10%, say.

Equation (3) does not take the sidewalls or the beach into account. These effects are generally
small, but may be noticeable in deeper water close to the tank sidewalls. The effects of the
sidewalls may for some simple geometries, such as in benchmark 2, be included by mirror sources.
However, the generalization to more complex geometries is not straightforward. The original
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benchmark 2 parameters are still used. As pointed out before the workshop the slide description
given in the benchmark specification and the underlying articles include inconsistencies, which
also has bearing on the comparisons, in addition to other factors such as the gap between the
slide body and the beach etc.
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