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Abstract

This report is the documentation of a new model for large scale solution of the Boussinesq
equations. The equations are briefly presented with emphasis on the inclusion of spherical
coordinates and the Coriolis force. We have chosen to start with the standard Boussinesq
formulation, but have modified it to achieve improved dispersion properties for moderately
short waves. This formulation is put into the context of Boussinesq equations in general
in an appendix. Describing first the discretization in detail, we then design higher order
numerical differences, analyse dispersion, stability and the convergence rate of the iteration
scheme used at each time step. The performance of the present model is also compared to
state of the art models (FUNWAVE/COULWAVE).

A selection of tests are performed to validate the code and assess the applicability and
accuracy of the method. The tests include eigenoscillations in basins, solitary wave propaga-
tion, comparison with pre-existing models, diffraction of incident solitary waves by a vertical
cylinder and trans-Atlantic propagation of a hypothetical tsunami from the La Palma island.
The latter case is pursued further in a companion paper. All tests indicate that the model
is correctly coded, efficient and robust.
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1 Introduction

Shallow water models dominate operational ocean and tsunami modeling. The equations are
simple, well suited for explicit time stepping and special phenomena like bores and inundation
may be included. For most aspects of tsunami modeling shallow water theory is probably the
best option in view of efficiency, software implementation and performance combined. However,
tsunamis from non-seismic sources, such as gravity mass flows, are often substantially influenced
by dispersion. In particular may the accumulated effect of dispersion during long distance prop-
agation be important. In addition, specific wave forms, such as undular bores, that sometimes
evolves also for seismic tsunamis require a dispersive description. The more general dispersive
equations, like those of Navier-Stokes and full potential theory, are still too demanding for large
scale modeling of tsunamis or other oceanic waves. Hence, we are referred to dispersive long
wave equations, such as the Boussinesq type equations.

The Boussinesq equations come in great diversity; the standard formulation, Serre’s equa-
tion, Green-Nadgi and many more. Since the mid nineties Boussinesq equations with improved
dispersion1 properties [23] and full nonlinearity [6, 14, 21, 22] have been incorporated in general
purpose models. Excellent examples are the FUNWAVE [15, 40] and COULWAVE [20] models
that are freely available and widely used. These models are useful also for tsunami modeling,
but they may be somewhat heavy for large scale computation. In addition their strength, the
full non-linearity, is mainly useful in very shallow water. Here the waves rapidly break and it
is doubtful that the Boussinesq models then are as good, or robust at least, as NLSW models
with bore capturing facilities. The model presented in this report is not an general alternative
to models such as FUNWAVE/COULWAVE, but a simpler one with emphasis on efficiency and
only standard nonlinear terms. It is descending from other Boussinesq models employed from
1987 and forward [36, 26, 17, 3] to problems in hydrodynamic wave theory [39, 27, 29, 31] and
recently also to wave propagation from an oceanic asteroid impact on the continental shelf [9].
The models were bases on velocities or velocity potential, with a preference for the latter due
to efficiency. Like most other early Boussinesq solvers [37, 1, 47] only the standard types of
dispersion and nonlinearity were included. The current revitalization of the dispersive mod-
elling is motivated by a study of the trans-Atlantic propagation from the hypothetical La-Palma
tsunami [42]. In such a case geographical coordinates and the Coriolis effects must the be in-
cluded, while standard dispersion properties suffice. The latter is probably general for tsunamis;
the key question is whether dispersion is important at all and not what kind of dispersion that is
needed. Still, we will modify the standard Boussinesq equations to obtain improved dispersion,
in a similar manner as [2]. Moreover, a fourth order representation of the leading order (LSW)
terms will be invoked, in analogy with the FUNWAVE/COULWAVE model.

We prefer the standard, velocity based, Boussinesq formulations because

1. The standard equations are infallibly stable regarding depth gradients, unlike all other
Boussinesq formulations that the present authors have investigated. See section 3.7 and
the reference [41].

2. It is simple to discretize with staircase boundaries. Some other formulations, in particular
those with potentials as primary unknowns, requires fictitious values at the boundary when
discretized with a FDM technique. Naturally, sloping beaches or boundaries situated in

1This is overlooked by many researchers who are hung up on the notion “fully nonlinear”. We believe that
improved dispersion is at least as important (see appendix).
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very shallow water cannot anyhow be included without special treatment. Still, we will
show later that staircase boundaries may work well in linear applications, and even in
nonlinear ones provided the boundary is situated in water of some depth.

3. A simple correction term [2], may be included as to yield the same favourable dispersion
that has been found for the Nwogu formulation.

4. Even with the correction term, the standard model is somewhat simpler than Nwogu’s
model. In particular concerning the equation of continuity.

5. Boussinesq equations with potentials as primary unknowns are are applicable to non-
rotational flow, which render them less useful for a number of applications.

Subsequently, the equations, the discretization an tests will be presented. In addition we
attempt a thorough documentation also in terms of analysis of the discrete properties of the
model. This includes

• Numerical dispersion relations and stability. Those are surprisingly often omitted, or
incompletely discussed, even in articles on wave modeling as such.

• Discussion of accuracy, also in view of correct representation of weakly dispersive effects.

• Derivation of numerical correction terms and their properties.

• Convergence and stability of iteration methods for the coupled equations sets at each time
step.

• Eigenoscillations in rectangular basins. Numerical dispersion relations then provides an
exact numerical solution for validation of the code.

2 Formulation

2.1 Transformation

In our equations we include the Coriolis effect and the modification on arc lengths by the
curvature of the Earth. On the other hand, the deformation of the geoid and change of gravity
as well as centripetal accelerations are left out. In addition also some minor corrections to the
convective acceleration are neglected. Latitude and longitude, in radians, are denoted by φ and
ψ respectively and the radii of the Earth is R.

The key points in the transformation of the improved standard Boussinesq equations, (83)
and (91), are the geographical equivalents of a few differential operators. The gradient is

∇ =
1

Rcφ
~ıψ

∂

∂ψ
+

1

R

∂

∂φ
, (1)

where cφ = cosφ and ~ıψ, ~ıφ are the unit tangent vectors in longitudinal and lateral direction,
respectively. Letting ~v = u~ıψ + v~ıφ be the velocity, or another vector field in geographical
coordinates, the divergence becomes

∇ · ~v =
1

Rcφ

[

∂u

∂ψ
+
∂

∂φ
(cφv).

]

(2)
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One important quantity is the second order differential

∇ · ∇~v = 1
R2c2

φ

∂
∂ψ

[

∂u
∂ψ +

∂(cφv)
∂φ

]

~ıψ

+ 1
R2

∂
∂φ

[

1
cφ

∂u
∂ψ + 1

cφ

∂(cφv)
∂φ

]

~ıφ,
(3)

and another is the Laplace operator

∇2η =
1

R2cφ

[

∂

∂ψ

(

1

cφ

∂η

∂ψ

)

+
∂

∂φ

(

cφ
∂η

∂φ

)]

, (4)

where η is the surface elevation, or any other scalar quantity. The convective term becomes

~v · ∇~v =
(

u
Rcφ

∂u
∂ψ + v

Rcφ

∂(cφu)
∂φ

)

~ıψ
(

u
Rcφ

∂v
∂ψ + v

R
∂v
∂φ + u2 sinφ

Rcφ

)

~ıφ.
(5)

In addition there is a centripetal acceleration directed against the center of the Earth that is
left out. The last contribution in the second line may be important only at very high latitudes
and will be left out together with some terms related to the spatial variation of the map factor
cφ.

Finally we spell out the vorticity, even though that quantity does not appear explicitly in
the Boussinesq equations

∇× ~v =
1

Rcφ

{

∂v

∂ψ
− ∂(cφu)

∂φ

}

~ıR +
u

R
~ıφ −

v

r
~ıψ, (6)

where ~ıR is the unit vector that is normal to the surface of the Earth.

2.2 Scaling in geographical coordinates

We introduce dimensionless variables according to

(ψ, φ) = Θ(x, y), t = RΘ√
gh0

(u, v) = ǫ
√
gh0(û, v̂) h = h0ĥ η = ǫh0η̂

(7)

where the hats indicate dimensionless variables, g is the constant of gravity, h0 is a characteristic
depth and ǫ is an amplitude factor. The characteristic horizontal length (wave length) now
becomes Lc = RΘ, which may determine Θ, and the “long wave parameter” is accordingly
recognized as

µ2 =
h2

0

R2Θ2
. (8)

For the physical constants we substitute

g = 9.81
m

s2
, R = 6378135m. (9)

It is emphasized that these quantities are not constant, but their variation is neglected along
with other small effects of rotation and the curvature of the Earth, and that the value for R is
the equatorial one.
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Rotational effects are included simply by adding the Coriolis term to the momentum equa-
tion. According to the length and time scale inherent in (7) we the obtain a non-dimensional
Coriolis parameter

f =
2ΩR sinφΘ√

gh0
, (10)

where Ω is the angular frequency of the Earth.

2.3 Equations and Cartesian scaling

By omission of the hats the dimensionless equation of continuity in geographical coordinates
reads

cφ
∂η

∂t
= − ∂

∂x
{(h + ǫη)u} − ∂

∂y
{cφ(h+ ǫη)v}, (11)

where cφ = cosφ (as before), u and v are the depth-averaged velocity components in the longi-
tudinal and latitudinal directions respectively, h is the equilibrium depth and η is the surface
elevation. We observe that the equation (11) is written in conservative form with an area factor
at the left hand side.

The momentum equations are obtained by transforming (83), (91) and adding the Coriolis
term

∂u
∂t + ǫ

(

u
cφ
∂u
∂x + v ∂u∂y

)

= − 1
cφ

∂η
∂x + fv − γµ2h2 1

cφ

∂Dη

∂x

+µ2

2
h
c2
φ

∂
∂x

[

∂
∂x

(

h∂u∂t
)

+ ∂
∂y

(

cφh
∂v
∂t

)

]

−µ2(1
6 + γ)h

2

c2
φ

∂
∂x

[

∂
∂x

(

∂u
∂t

)

+ ∂
∂y

(

cφ
∂v
∂t

)

]

,

∂v
∂t + ǫ

(

u
cφ

∂v
∂x + v ∂v∂y

)

= −∂η
∂y − fu− γµ2h2 ∂Dη

∂y

+µ2

2 h
∂
∂y

[

1
cφ

∂
∂x

(

h∂u∂t
)

+ 1
cφ

∂
∂y

(

cφh
∂v
∂t

)

]

−µ2(1
6 + γ)h2 ∂

∂y

[

1
cφ

∂
∂x

(

∂u
∂t

)

+ 1
cφ

∂
∂y

(

cφ
∂v
∂t

)

]

,

(12)

where Dη is the dimensionless Laplacian of η which is obtained by replacing R,ψ, φ by 1, x, y
in (4). The optimal factor in the correction term is γ = −0.057. For a local simulation, in the
sense that propagation distances are much smaller than the radii of the earth, we may invoke
a constant value for cφ. We observe that the reciprocal of cφ then always combines with ∂/∂x.
Transforming the longitudinal coordinate by x̂ = cφx we then obtain the Cartesian counterparts
to (11) and (12), with no explicit map factors and equal arc-length factors in the two coordinate
directions.

While the different choices for horizontal and vertical length scales are useful for present-
ing the equations with the small terms immediately recognizable they obscure the discussion
of simulation results. Hence, unless otherwise is indicated, dimensionless computed results are
presented with typical depth h0 as both vertical and horizontal length scales and no amplitude
factor extracted2. In the Cartesian equations corresponding to (11) and (12) the small parame-
ters µ and ǫ are then replaced by unity. The new time unit corresponds to the time needed to
cover a horizontal distance equal to h0 with the shallow water speed.

2Sometimes this scaling is naively accused of being wrong. However, a scaling may be useful, or not, for a
given purpose. It is never wrong as long as the content of the equations has not been altered!
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Figure 1: Analytic phase (upper panel) and group velocity (lower panel) for the optimized
Boussinesq equations, with the Coriolis effect, and latitude φ = 45◦. The curves are labelled by
the depth in meters.

2.4 Effects of rotation and curvature

In figure 1 the phase and group velocities are depicted for different depths. Details on the
dispersion relation with rotation is found in section 3.4. Naturally, the rotation is important only
for longer waves and for the same wavelength-to-depth ratio it is most significant in deep water.
However, for h = 5000m the dispersive regime and the rotational regime are still separated,
even though rotational effects becomes noticeable for wavelengths larger than 500 km, say. In
shallower water the regimes are even more distinctly separated. We may state that a tsunami
in a shallow sea may be very long, in the sense of a large wavelength to depth ratio, and that
the rotation of the Earth thus may have a certain influence. However, from the perspective of
modeling dispersive tsunamis rotation probably means no more than a small modification on
the wave pattern over very long propagation distances, like the traversing of the major oceans.
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3 Numerical method

From its predecessors our new technique inherits the staggered grid, the temporal representation
of the convective terms and the iteration scheme for the implicit equations to be solved at each
time step.

For spatial discretization the C-grid is used. This is employed also in the Boussinesq type
models of FUNWAVE 2 [40] and that of Beji and Nadaoka [2], in addition to a number of re-
lated and unrelated models3. However, unlike the cited models the present one also retains a
staggered temporal grid. This is used frequently in hydrostatic ocean models, generally under
cover of, or interpreted as, a forward/backward time stepping, but is uncommon for Boussinesq
models. The staggered time stepping allows a complete decoupling of the implicitness in the
continuity equation from that of the momentum equations, which is an advantage. The FUN-
WAVE/COULWAVE models employ a rather complicated, iterative, Adam-Bashforth predictor-
corrector method. Beji and Nadaoka’s method, that otherwise has much in common with the
present one, utilizes a true leap frog time stepping, where temporal differences at i∆t are formed
by means of values at (i + 1)∆t and (i − 1)∆t, say, passing the middle node4 at i∆t. While
this allows for an explicit treatment of the equation of continuity it effectively doubles the time
step, thereby reducing the efficiency of the method. A true leap-frog discretization is also more
vulnerable to noise.

In the preceding formulations [36, 26] the implicit momentum equations are solved by a line
by line ADI iteration. For the standard Boussinesq equations (12), which has a slightly different
structure in the dispersion terms compared to the formulations in those references, this scheme
simplifies substantially while the convergence properties are retained. The method then becomes
similar to the one employed in [2].

Geographical coordinates and the Coriolis effect are not incorporated in any of the quoted ar-
ticles on Boussinesq models. However, these features are added to, for instance, the FUNWAVE
2 and their integration in a Boussinesq solver imply no principal difficulties.

3.1 Formalism and grid

To make the descriptions of the numerical details simple and concise we adopt the formalism
used in preceding papers [27, 32], which is also similar to that of [19]. The approximation to
a quantity f at a grid-point with coordinates (β∆x, γ∆y, κ∆t) where ∆x, ∆y and ∆t are the

grid increments, is denoted by f
(κ)
β,γ . To make the difference equations more compact and legible

we introduce the symmetric difference and average operators, δx and −x by

δxf
(κ)
β,γ =

1

∆x
(f

(κ)

β+ 1
2
,γ
− f

(κ)

β− 1
2
,γ

), (f
x
)
(κ)
β,γ =

1

2
(f

(κ)

β+ 1
2
,γ

+ f
(κ)

β− 1
2
,γ

). (13)

We note that the differences and averages are defined at intermediate grid locations as compared
to f . Difference and average operators with respect to the other coordinates y and t are defined
correspondingly. It is easily shown that these operators are commutative in all combinations.
To abbreviate the expressions further we also group terms of identical indices inside square
brackets, leaving the super- and subscripts outside the right bracket. In nonlinear terms it is

3An example to the latter is the traditional FDM Navier-Stokes model.
4This is a true leap-frog method. Unfortunately the term is sometimes confused with staggered grids.
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v

Figure 2: The grid with computational domain (rectangle) and additional points. We observe
that the η nodes are symmetrically distributed relative to the computational domain, in contrast
to the velocity nodes.

convenient to introduce a special notation for the squared temporal geometrical means

[f (∗2)](k) ≡ f (k+ 1
2
)f (k− 1

2
),

[f ∗ g](k) ≡ 1
2

(

f (k+ 1
2
)g(k− 1

2
) + f (k− 1

2
)g(k+ 1

2
)
)

,
(14)

where the common subscripts are omitted for brevity.
The equations are discretized on a C-grid and our method is thus closely related to, for

instance, the standard tsunami models TUNAMI [11, 12] and COMCOT[5], as well as those
cited before. Figure 2 displays the definition of the global grid. We observe that fictitious nodes
are surrounding the computational domain in a somewhat asymmetric fashion in order to have
(0, n + 1) × (0,m + 1) matrices for all primary unknowns, as well as the depth. The discrete
quantities thus become

u
(k+ 1

2
)

i,j+ 1
2

, v
(k+ 1

2
)

i+ 1
2
,j
, η

(k)

i+ 1
2
,j+ 1

2

. (15)

3.2 The discrete Boussinesq equations

One of the key points in the C-grid methods is the natural form of conservation of discrete
volume in the cell depicted in figure 3. The discrete equation of continuity becomes

[

δtη = −ry
(

δx{(h
x

+ ǫηxt)u} + δy{cv(h
y

+ ǫηyt)v}
)

+ A
](k+ 1

2
)

i+ 1
2
,j+ 1

2

, (16)
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v

v

∆y

Figure 3: Control cell for volume in the C-grid.

where A is a numerical correction term to be discussed later, ry = 1/cφ is defined at the η
nodes, while cv = cφ is defined at the v nodes. The introduction of both of these stretch factors
is convenient for subsequent use and they may both be presented by 1D arrays. Hence, the extra
use of memory is insignificant. The equation (16) is exactly volume conserving in the sense that
the sum of volume in a cluster of grid cells

V (k) =
∑

i,j

[

1

ry
η

](k)

i+ 1
2
,j+ 1

2

,

changes only due to a net flux through the external boundary of this cluster.
When all quantities up to (and including) t = (k+ 1

2)∆t are computed (16) provides explicit

expressions for η
(n)
i,j in the linear case (ǫ → 0) and a linear, banded set of equations otherwise.

For moderately non-linear cases this set is strongly diagonal-dominant and is thus well suited
for iterative solution. The iteration procedure is described subsequently and is, among other
things, designed as not to violate the volume conservation.

The x−component of the momentum equation is discretized according to

[δtu+ ǫTx = −ryxδxη + B + fuv
xyt − γµ2(h

x
)2ry

x ∂Dη

∂x

+µ2

2 h
x
(ry

x)2δx{δx(h
x
δtu) + δy(cvh

y
δtv)}

−µ2(1
6 + γ)(h

x
)2(ry

x)2δx{δxδtu+ δy(cvδtv)}](k)i,j+ 1
2

,

(17)

where B is a numerical correction term, fu is the Coriolis parameter evaluated at u-nodes and
the nonlinear term is discretized according to

[

Tx =
1

2
ry
xδx{(ux)(∗2)} + vx ∗ δyu

y
](k)

i,j+ 1
2

. (18)

This representation is designed from three requirements

(i) The equation set for u
(k+ 1

2
)

i,j+ 1
2

should be linear.

(ii) Numerical dissipation is avoided through the use of symmetric differences and averages.
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x
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∆x

η, h, Dη

u

v

(i, j)(i, j)

(i, j)

(i + 1, j)

Figure 4: Computational molecule, centered at point (i, j), for the x-component of the momen-
tum equation. In the linear case without corrected dispersion only the nodes within the dashed
box are involved. The u and η nodes outside the box enter through the non-linear term and Dη,
respectively.

(iii) Fictitious values outside an impermeable boundary do not enter the discrete momentum
equation since they are always multiplied with a zero normal velocity.

The formula (18) is well suited for long distance propagation of moderately nonlinear waves,
but is presumably not the best choice if run-up on sloping beaches or wave breaking should be
considered.

The combination of (17) and (18) yields the computational molecule in figure 4. The y-
component is discretized in a similar fashion, but differs slightly due to the latitude-dependent
factors and the sign of the Coriolis term. Subsequently we will express the two components of
the momentum equations in a single generic form (section 3.8). Provided everything is known
for t ≤ k∆t (17) and its y-component counterpart define a coupled, linear and banded equation
system for the new velocities5. For non-zero µ the solution of this system is more demanding than
the system from the continuity equation since the third order differences in the dispersion terms
cause large off-diagonal entries in the matrices, due to the cubic reciprocals of grid increments.

In general no smoothing or filtering is applied to the discrete equations. However, an optional
number of five point filtering may be applied to Dη and the correction flux components in A,
which are described in section 3.5.

3.3 Boundary conditions

Every boundary of a volume cell (see figure 3) may represent a piece of a no-flux boundary.
In a staircase fashion a boundary of any shape may then be approximated, even though the

5Actually we solve the equations for δtu and δtv.
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accuracy may be poor and spurious effects must sometimes be expected. The code will be
designed as to assure no influence on the solution from any points outside a no-flux boundary,
except for the dispersion optimization term Dη in (12). Linear extrapolation along the grid lines
from the adjacent points to the boundary was attempted, but produced instabilities. Instead
the invocation, in this term alone, of a symmetry condition for η seems to work well. As an
alternative to no-flux boundaries we may have boundaries (straight or staircase) beyond which
the computation is simply switched off. These may then be input boundaries in, for instance, a
nested model or when several grids are combined in domain decomposition approach. Run-up
techniques may probably be adopted from related C-grid models, at least when the dispersion
terms are renounced close to the shoreline.

At open boundaries a simple sponge layer is implemented as a separate step where all the
primary unknowns are relaxed according to a simple formula

[η = νη̃]
(k)

i+ 1
2
,j+ 1

2

,

where the tilde marks values that are found from stepping forward with the discrete equations.
The parameter ν is less than unity in a layer, of width Ls, close to one of the global boundaries

ν =

{

0, when s
Ls

≥ 1,

sin2
(

πs
2Ls

)

, when s
Ls
, < 1

where s is the distance from the boundary. Also other shape functions, such as exponential ones,
have been tested. All reasonable choices for shape functions and widths have yielded efficient
absorbing layers for waves propagating toward the boundary, but much less so for waves with
very oblique incidence on the boundary.

The temporally staggered grid is a little awkward in relation to initial conditions. If the
surface elevation and the velocities are given at t = 0, say, we make a first order error by
substituting the velocity directly into u−

1
2.. and v−

1
2.. . This is the case even if the initial velocities

are zero. For many applications, such as most tsunami simulations, this is naturally of little
consequence. However, for academic applications and code testing this O(∆t) error source may
be annoying. Hence, it is removed by employing the discrete momentum equations at t = 0 with
time step6 −1

2∆t. In fact, the same approach is applied when the initial velocities are specified
at some tu = O(∆t) rather than at t = 0. This is useful for importing initial conditions from
other models with staggered temporal grids.

3.4 Numerical dispersion relations and stability

To obtain simple wave modes as solutions of the differential equations, (11) and (12), or difference
equations, (16) and (17) etc., we have to assume vanishing amplitudes (ǫ → 0), constant depth
and constant latitude. The latter then implies that the Coriolis parameter as well as the map
factor cφ, and thereby ry and cv, are constant. It is then convenient to employ x̂ = cφx as
longitudinal coordinate and write





η(x̂, y, t)
u(x̂, y, t)
v(x̂, y, t)



 =





A
Au
Av



 ei(kx̂+ℓy−ωt).

6Actually the accelerations are computed and then −
1
2
∆t times the accelerations are added to the velocities.
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We note that the discrete equations in (x, y) transform to discrete equations in (x̂, y) with
map factors replaced by unity and ∆x replaced by ∆x̂ = cφ∆x. Moreover, we set the numerical
correction terms, A, B, C (in the y component of the momentum equation), to zero. Substitution
into the discrete equations now yields the dispersion relation

ω̃2 =
h(k̃2 + ℓ̃2){1 − γµ2h2(k̃2 + ℓ̃2)} + c̃2xc̃

2
y c̃

2
t f

2

1 + (1
3 − γ)µ2h2(k̃2 + ℓ̃2)

, (19)

where
k̃ ≡ 2

∆x̂ sin(1
2k∆x̂), ℓ̃ ≡ 2

∆y sin(1
2ℓ∆y), ω̃ ≡ 2

∆t sin(1
2ω∆t),

c̃x ≡ cos(1
2k∆x̂), c̃y ≡ cos(1

2ℓ∆y), c̃t ≡ cos(1
2ω∆t).

(20)

The analytic dispersion relation corresponds to k̃ → k, ℓ̃ → ℓ, ω̃ → ω and c̃x, c̃y , c̃t → 1. From
(20) we immediately realize that this is obtained in the limit ∆x̂,∆y,∆t→ 0.

In the analytic, non-rotational case, f = 0, the properties of the dispersion is discussed in
appendix A. For f 6= 0 and finite grid increments (19) becomes an implicit expression for ω that
may be written

ω̃2 =
B1 + f2c̃2xc̃

2
y c̃

2
t

B2
,

where B1 and B2 are the chunks of (19) that are independent of f and ω. The above relation
can swiftly be reorganized into

(

4B2

∆t2
+ f2c̃2xc̃

2
y

)

sin2(
1

2
ω∆t) = B1 + f2c̃2xc̃

2
y.

Stability now requires
(

4B2

∆t2
+ f2c̃2xc̃

2
y

)

≥ B1 + f2c̃2xc̃
2
y,

or
4B2

∆t2
≥ B1,

which implies that the stability criterion is independent of f . We then obtain

h∆t2 ≤
1 + 4(1

3 − γ)µ2h2
(

1
∆x̂2 + 1

∆y2

)

(

1
∆x̂2 + 1

∆y2

)(

1 − 4γµ2
(

1
∆x̂2 + 1

∆y2

)) , (21)

which is markedly more liberal than the standard CFL criterion.
The group velocity is defined as

~cg = (c(x)g , c(y)g ) =

(

∂ω

∂k
,
∂ω

∂ℓ

)

.

Observing that ∂k̃/∂k = c̃x etc. we differentiate (19) to obtain

c
(x)
g = (2ω̃c̃tB2)

−1 {2(h − 2γh3(k̃2 + ℓ̃2)) − ∆x2

2 f2c̃2y)

−ω̃2(2(1
3 − γ)h2 − ∆t2∆x2

8 f2c̃2y)}c̃xk̃

c
(y)
g = (2ω̃c̃tB2)

−1 {2(h − 2γh3(k̃2 + ℓ̃2)) − ∆y2

2 f2c̃2x)

−ω̃2(2(1
3 − γ)h2 − ∆t2∆y2

8 f2c̃2x)}c̃y ℓ̃

(22)
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Figure 5: Phase velocities for the Boussinesq equations with γ = −0.057 and direction of
wave advance θ = 0◦. The curves are labelled by ∆x̂/h, apart from the bold yellow line that

corresponds to full potential theory. The other grid increments are ∆y = ∆x̂ and ∆t = 1
2h

− 1
2 ∆x̂.

Some examples of phase velocities are shown in figures 5 and 6, while the corresponding group
velocities are found in figures 7 and 8. We observe that the numerical dispersion relation
is somewhat closer to its analytic counterpart for the standard model. However, this barely
an interesting feature since the difference is largest for the shorter waves, for which only the
optimized model yield an accurate description. Moreover, we also see that the group velocity
becomes zero for the shortest possible waves that may be present in the grid. It is easily realized
that this is general property, with a few exceptions only (µ = ℓ = 0,

√
h∆t = ∆x̂ or µ = k = 0,√

h∆t = ∆y). As a consequence, noise on the grid level will remain close to its origin, which
means close to the generation region in a tsunami simulation. In the figures 5 through 8 we
have also included the wave celerities from the full potential theory for comparison. For the
optimized equations (γ = −0.057) we observe that the numerical solution for ∆x̂/h = 0.35
follows the full potential theory much longer than the analytic one (∆x̂ = 0), the numerical
wave celerities decrease monotonically as λ decreases. This is a reminder that there may be
no gain in requiring higher accuracy in a numerical technique than what is inherent in the
differential equations in the first place.

For small wave numbers and grid increments we may expand the relation (19) in powers of
wave numbers and grid increments. Defining the wave number vector as (k, ℓ) = |k|(cos θ, sin θ),
where θ is the direction of wave advance, and neglecting rotational effects we obtain

ω =
√
h|k|

{

1 − β|k|2 +O(|k|4∆x̂2,∆x̂4...)
}

, (23)

where

β =
µ2h2

6
+

1

24
(∆x̂2 cos4 θ + ∆y2 sin4 θ − h∆t2). (24)

It is noteworthy that the error term in β vanish for θ = 0, π,
√
h∆t = ∆x̂ or θ = π

2 ,
3π
2 ,√

h∆t = ∆y, which correspond to propagation parallel to one of the axes and then an unitary
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Figure 6: Phase velocities for the Boussinesq equations with γ = 0.0 and direction of wave ad-
vance θ = 0◦. The curves are labelled by ∆x̂/h, apart from the bold yellow line that corresponds

to full potential theory. The other grid increments are ∆y = ∆x̂ and ∆t = 1
2h

− 1
2 ∆x̂.
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Figure 7: Group speed for the Boussinesq equations with γ = −0.057 and direction of wave ad-
vance θ = 0◦. The curves are labelled by ∆x̂/h, apart from the bold yellow line that corresponds

to full potential theory. The other grid increments are ∆y = ∆x̂ and ∆t = 1
2h

− 1
2 ∆x̂.
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Figure 8: Group speed for the Boussinesq equations with γ = 0.0 and direction of wave advance
θ = 0◦. The curves are labelled by ∆x̂/h, apart from the bold yellow line that corresponds to

full potential theory. The other grid increments are ∆y = ∆x̂ and ∆t = 1
2h

− 1
2 ∆x̂.

Courant number. Under the same conditions we have an exact solution for µ = 0. We observe
that while a good approximation of the wave celerity requires that the grid increments are
small compared to the wavelengths, the increments have to be small compared to the depth to
reproduce dispersion effects properly (give an accurate β). This is relevant for weakly dispersive
tsunamis crossing an ocean. For instance, if we assume a 2′ grid, that a long wave travels 1

2∆x̂ in
the time step ∆t and a depth of 5 km and northward wave propagation we find β/(h2/6) = 1.1.
This resolution is typical for the simulation trans-oceanic propagation that can be completed
within some hours on a single CPU. While the qualitative dispersive features are probably well
retained this motivates the inclusion of numerical correction terms. A further analysis on the
significance of the numerical dispersion (error in β) is presented in section 4.1.

The numerical part of β has the same form as the analytical one. Hence, for, for example,
wave propagation parallel to the x-axis we may reproduce the correct value of β with µ = 0 and√

∆x̂2 − h∆t2 = 2µh, meaning that we have a course grid with an increment that is somewhat
larger than twice the depth. This implies that we would obtain correct leading order dispersion
by simulating the LSW equations with grid increments fulfilling the relation given, even though
optimized dispersion properties are harder to obtain. At first glance this looks like an egg of
Columbus. However, there are a series of problems related to turning this observation into a
useful computational strategy. First, four our model we will obtain the correct dispersion only
for a single depth, unless we employ an adaptive grid. In one horizontal direction (1HD) this
is rather straightforward, but it is hardly achievable in 2HD. Moreover, the anisotropy of the
numeric dispersion will anyhow prevent an exact reproduction of β. Using other methods [45, 46]
these problems may be amended, but the problem of coarse grids remain. Firstly, moderately
short waves where an improved Boussinesq model, such as that of Nwogu, is still good can
hardly be resolved at all. Secondly, and most important, the grids are to coarse to allow a
proper representation of bathymetric effects and nonlinearity.
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3.5 Numerical correction terms

In the preceding section the numerical errors surface in the leading dispersion as given by the β
in (23). To obtain the correct long term properties in the evolution of a weakly dispersive wave
train it is crucial that β should be close to its analytical value of h2/6. For the uncorrected FDM
method this will in general require grid increments that are small compared to h, even though
1
2h may be regarded as fairly small in this context. In the COULWAVE [20] and FUNWAVE
[16, 15] models fourth order spatial representations are used for the linear, O(µ0) terms (inherent
in the LSW parts of the equations), while second order differences are used for the O(µ2) terms.
When this is combined with a fourth order temporal method the numerical errors will disappear
altogether from β as defined above. An alternative to such a procedure is the inclusion of terms
that improve the accuracy of the discrete solution, either completely or only concerning certain
aspects, and not of the individual terms. To this end we apply a similar procedure to those found
in [36, 27]. In these references simple terms were designed as to correct the dispersion, while
other properties, such as the relation between the surface elevation and the velocity in harmonic
modes, were not corrected. For the present equation set we have not found this strategy of
partially fourth order method for the LSW terms fruitful. Hence, we aim at slightly more
complex correction terms that remove the O(∆x2..) errors from the continuity and momentum
equations independently, leaving us with numerical errors of order (∆x4, µ2∆x2...).

3.5.1 Outline

Since we only aim at removing errors in the leading order terms we may analyze the discrete
equations in the form

[

δtη = −ry
(

δx(h
(u)u) + δy(cvh

(v)v)
)

+ A
](k+ 1

2
)

i+ 1
2
,j+ 1

2

, (25)

[δtu = −ryxδxη + B]
(k)

i,j+ 1
2

, (26)

[δtv = −δyη + C]
(k)

i+ 1
2
,j
, (27)

where the correction terms, A, B, C, must be determined. We have already replaced the averaged
expressions for the depths by presumably improved values7.

The relation between a derivative and a centered difference reads

δtu =
∂u

∂t
+

1

24
∆t2

∂3u

∂t3
+O(∆t4). (28)

Inserting such expressions into (25) through (27) we obtain difference/differential equations

ηt + ry{(hu)x + (cvhv)y} = −∆t2

24
ηttt − ry{

∆x2

24
(hu)xxx + cv

∆y2

24
(hv)yyy} + A + ...,(29)

ut + ryηx = −∆t2

24
uttt − ry

∆x2

24
ηxxx + B + ..., (30)

vt + ηy = −∆t2

24
vttt −

∆y2

24
ηyyy + C + ..., (31)

7Such values may not be available in digitized bathymetries, but the corrections of other discrete errors may
still be useful.
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where the implicit errors are of fourth order in the grid increments and errors from discretization
of map factors have been neglected. Indices are now used for differentiations to abbreviate the
expressions. Due to the implicit fourth order errors we may regard the correction factors (A etc.)
as consisting of either derivatives or corresponding second order finite difference expressions.
Expanding the correction terms according to

A = ∆t2

24 A(t) + ∆x2

24 A(x) + ∆y2

24 A(y),

B = ∆t2

24 B(t) + ∆x2

24 B(x) + ∆y2

24 B(y),

C = ∆t2

24 C(t) + ∆x2

24 C(x) + ∆y2

24 C(y),

(32)

we obtain a fourth order representation of the leading balance of the equations provided

A(t) = ηttt + so, A(x) = ry(hu)xxx + so, A(y) = rycv(hv)yyy + so,

B(t) = uttt + so, B(x) = ryηxxx + so, B(y) = so,

C(t) = vttt + so, C(x) = so, C(y) = ηyyy + so,

(33)

where so = O(∆x2,∆y2,∆t2). Now, discrete versions of the derivatives on the right hand
sides in these expressions are not all suitable options for the correction terms. The third order
temporal derivatives, in particular, will then violate the structure of the discrete equations and
render them less useful8. Instead the right hand sides must be rewritten using the leading order
balances of (29) through (31), which simply reduce to the LSW equations. From these we may
also derive second order relations on the form

ηtt = r2y(hηx)x + (hηy)y,

utt = r2y(hu)xx + ry(hv)xy ,

vtt = ry(hu)xy + (hv)yy .

(34)

In these expressions we have assumed constant map factors in accordance with the neglect of
discretization errors in the map factors in the first place. Below these factors are allowed to slip
inside and outside of differential and difference operators as we see fit.

3.5.2 Corrected methods

From the first equalities in (33) and (34) we have

A(t) = ηttt + so = r2y(hηx)xt + (hηy)yt + so

= −r3y(h{(hu)x + (cvhv)y}x)x − ry(h{(hu)x + (cvhv)y}y)y + so

= −r3yδx(h
x
δx{δx(h

x
u) + δy(cvh

y
v)}) − ryδy(h

y
δy{δx(h

x
u) + δy(cvh

y
v)}) + so.

(35)

While the triple temporal derivative is awkward, the rightmost expression in the first line can
be used in an implicit formulation of the equation of continuity. However, also the last line

8Asymmetric second order representations, invoking values from at least three preceding time steps can be
contemplated. This will be reminiscent of the time stepping in FUNWAVE/COULWAVE. However, extra memory
is required and the resulting method will not be neutrally stable.
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possesses some desirable features (see below), in spite of the lengthy appearance. For the other
components of A we may simply use

A(x) = ryδ
3
x(h

x
u) + so, A(y) = ryδ

3
y(cvh

y
v) + so. (36)

Now, in conservative form, the corrected discrete equation of continuity should be written ac-
cording to

δtη = −ry
(

δx{(h
x

+ ǫηxt)u+Q(x)} + δy{cv(h
y

+ ǫηyt)v +Q(y)}
)

.

When the expressions on the first line of (35) is used the correction fluxes takes on the form

Q(x) = − 1
24(∆t2ryh

x
δxδtη + ∆x2δxD(x)),

Q(y) = − 1
24(∆t2cφh

y
δyδtη + ∆y2δyD(y)),

(37)

where D(x) and D(y) are the linear divergence contributions δx(h
x
u) and δy(cφh

y
v), respectively.

Employing the last line of (35) we obtain the purely explicit correction terms

Q(x) = 1
24(ry

x2h
x
∆t2 − ∆x2)δxD(x) +

ryx2h
x
∆t2

24 δxD(y),

Q(y) = 1
24(h

y
∆t2 − ∆y2)δyD(y) + h

y
∆t2

24 δyD(x),
(38)

We observe that D(x) and D(y) anyhow must be computed due to the leading order divergence
term, even though that may be difficult to exploit in an efficient manner, and that the extra
computations required by the correction is limited. In addition the corrections does not affect
the iteration. One might have been concerned about the combination of the corrections terms
and irregular staircase boundaries. However, we set also the flux corrections to zero at the
boundary segments and the remaining fluxes can be computed without involving “dry” values,
in analogy to the dispersion terms of the momentum equation.

The corrections to the momentum equation also require a little reworking of the temporal
parts

B(t) = ry
x2{δ2x(h

x
δtu) + δxδy(cvh

y
δtv)} + so,

C(t) = ry
y{δyδx(h

x
δtu) + δ2y(cvh

y
δtv)} + so.

(39)

Discretizing the third order spatial derivatives in (32) directly we find

B(x) = +ryδ
3
xη + so, C(y) = δ3yη + so, (40)

while B(y) = C(x) = 0. The expressions in (40) yield contributions to the discrete momentum
equations that are similar to the analytic correction terms, related to Dη, in (12). On the other
hand, if we rewrite B(x) and C(y) by means of the leading order momentum equations, ut = −ryηx
and vt = −ηy we arrive at the alternative forms

B(x) = −δ2xδtu+ so, C(y) = −δ2yδtv + so, (41)

These expressions are similar to the ordinary dispersion terms and thus readily included by
adjusting a few coefficients. Naturally, the different options for numerical corrections may be
combined, as weighted averages, in the equations for both momentum and continuity. Fur-
thermore, we may observe that the corrections terms, in all varieties, are similar to either the
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dispersion terms that are present in the standard Boussinesq equations or extra terms that
appear in Nwogu’s formulation or the optimized version of the standard formulation (γ < 0).
Presently, only the combination (38) and (41) is implemented in the software. This is a good
choice, but subsequent analysis will indicate that other options may work slightly better under
given circumstances.

One extra remark is now timely. The inclusion of the analytical correction term for dispersion
followed by the numerical counterpart may be regarded as a patchwork. Of course, the desirable
strategy would be to include both kinds of corrections simultaneously and then subject the
total discrete equations to an optimization process with regard to performance. However, the
methodology is far from obvious, and neither are the criteria for good model performance. For
instance, the analytic correction only relates to constant depth propagation, while the numeric
counterparts also may take depth gradients into account.

3.5.3 Discussion of correction terms

Ignoring the the Coriolis effect, deleting the nonlinear terms and assuming constant depth,
constant map factors and wave advance parallel to the x̂ axis, we obtain the generic corrected
discrete equations in the form

δtη = −hδxu+ qcδ
2
xδtη − pchδ

3
xu, (42)

δtu = −δxη + (qm − γµ2h2)δ3xη + {µ2(
1

3
− γ)h2 + pm}δ2xδtu, (43)

where the hats over x are omitted here and in the remainder of subsection 3.5 and

qc = fc
∆t2

24 h, pc = 1
24 ((1 − fc)h∆t

2 − ∆x2),

qm = fm
∆x2

24 , pm = 1
24 (h∆t2 − (1 − fm)∆x2).

Here the factors fc and fm are, to some extent, arbitrary numbers. fc=0 corresponds to (38),
fc = 1 to (37), and an intermediate value to a combination of the two options for flux correction.
It is natural to regard fc as being between 0 and 1, but there is no principal reason for excluding
values somewhat outside this interval. The other factor fm is 0 and 1 for (41) and (40), respec-
tively. We note that for fc = fm = 0 the correction terms disappear when the Courant number
equals unity, which is consistent with (23) and (24). We readily obtain a dispersion relation
from (42) and (43) on the form

ω̃2 =
hk̃2(1 + (qm − γµ2h2)k̃2)(1 − pck̃

2)

(1 + {µ2h2(1
3 − γ) + pm}k̃2)(1 + qck̃2)

. (44)

As mentioned in appendix A the differential equations are only stable for γ < 0. The q and
p factors are generally positive and negative, respectively. If pc and pm could have been fixed
number, while ∆x,∆t → 0, both the second parenthesis in the numerator and the correction
part in denominator may point to instabilities for short waves. However, since pc and pm are
dependent on the grid increments this instability is not realized

|pck̃2| < 1

6

∣

∣

∣

∣

1 − (1 − fc)
h∆t2

∆x2

∣

∣

∣

∣

, |pmk̃2| < 1

6

∣

∣

∣

∣

1 − fm − h∆t2

∆x2

∣

∣

∣

∣

.
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Figure 9: Phase velocities for the Boussinesq equations with γ = −0.057 and direction of wave
advance θ = 0◦. The curves are labelled by ∆x̂/h together with ”c” and ”p” for corrected and
uncorrected numerical methods, respectively, expect for full potential theory that is depicted in
bold yellow. The time step is ∆t = 1

2h
− 1

2 ∆x̂ and fc = fm = 0.

Hence, unless the factors fc and fm, or the Courant number, are exceptionally large no change
of sign, that may cause instability, is possible in neither numerator nor denominator. Similar
limitations will apply to the other correction terms that appear in the general case in 2HD.

Dispersion relations with and without the discrete correction terms are compared in the
figures 9 and 10. The results are restricted to fc = fm = 0, while other forms of the correction
term are discussed in the next subsection. We see an substantial improvement of dispersion
properties, in particular for the case ∆x = 1.5h and wavelengths around 6h − 8h. For the
shortest waves, that may be resolved for each ∆x, the gain is less significant, in particular
regarding the group velocity. On the other hand, when the exact dispersion relation is considered
(from full potential theory), the graphs indicate that results for ∆x̂ = 0.7h is as good as the
exact optimized Boussinesq equations.

3.5.4 Relation to the FUNWAVE/COULWAVE methods

The numerical methods in both the FUNWAVE models, as well as the COULWAVE model,
differ from the one presented herein with respect to the time integration method. Moreover,
the FUNWAVE 1 and COULWAVE models are non-staggered in space. On the other hand,
Shi et al. [40] redesigned the FUNWAVE model to include curvilinear coordinates and changed
to the spatially staggered C-grid, which is the same as is used herein (and in numerous other
wave models). They reported improved performance as compared to the non-staggered method
in relation to noise generation. All FUNWAVE and COULWAVE models employ a temporal
fourth order Adam-Bashforth-Moulton scheme with a third order Adam-Bashforth predictor
step and a fourth order implicit Adam-Moulton corrector step. To achieve a simple comparison
between the numerical dispersion properties of these methods and that presented herein we will
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Figure 10: Group speed for the Boussinesq equations with γ = −0.057 and direction of wave
advance θ = 0◦. The curves are labelled by ∆x̂/h together with ”c” and ”p” for corrected and
uncorrected numerical methods, respectively, expect for full potential theory that is depicted in
bold yellow. The time step is ∆t = 1

2h
− 1

2 ∆x̂ and fc = fm = 0.

assume plane waves and exact time integration, which corresponds to ∆t → 0. However, for
comparison also results with a finite Courant number, C =

√
h∆t/∆x will be presented for our

own method.
The spatial relationship between the FUNWAVE 2 method and the present one is swiftly

established. From (28) the difference formula in [40] for the gradient terms of order ǫ0, µ0

immediately follows

[

∂u

∂x

]

i+ 1
2

+O(∆x4) =

[

δxu
x − ∆x2

24
δ3xu

x

]

i+ 1
2

=
1

24∆x
{(ui+2 − 27ui+1 + 27ui − ui−1)}. (45)

Using this expression for the leading spatial derivatives in the Nwogu’s equations (simplified
from (80) and (81)), while employing centered, second order differences elsewhere, we obtain
a set of differential/difference equations akin to (42) and (43) with the correction alternative
fm = 1 and (40). Since ∆t → 0 the other factor, fc, is aribitrary. In terms of the the discrete
unknowns η(t)i+ 1

2
and u(t)i, where the t is kept due to the assumption of exact time integration,

the equations read

[

η̇ = −hδxu+ h{∆x2

24
− µ2(

1

2
z2
α + zαh+

1

3
h2)}δ3xu

]

i+ 1
2

, (46)

[

u̇ = −δxη +
∆x2

24
δ3xη − µ2(

1

2
z2
α + zαh)δ

2
xu̇

]

i

, (47)

where the dots indicate temporal differentiation. When comparing these equations to (42) and
(43) the δt in these equations must be replaced by dots because we are now considering the
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limit of vanishing ∆t. Provided that the relation (92) between zα and γ holds the differential
equations of Nwogu and the standard formulation yield identical dispersion relations. In the
discrete case, even with correction terms, this still holds and the dispersion relation of (46) and
(47) is identical to (44) with fm = 1 and ∆t→ 0. The latter corresponds to ω̃ → ω.

Next, we derive the principal spatial discretization of FUNWAVE 1 and COULWAVE in the
present context and notation. For a non-staggered grid we have the discrete unknowns η(t)i and
u(t)i. The basic differential/difference equations for the LSW equations then become

[η̇ = −hδxux]i , [u̇ = −δxηx]i . (48)

We observe that the discrete quantities are divided into two uncoupled families, namely odd η
nodes plus even u nodes and even η nodes plus odd u nodes. Comparing to the corresponding
equations consistent with the uncorrected (16) and (17) we realize that in (48) we solve the same
equation twice, with the same method, but with a doubled space increment. The non-staggered
method then gives four times as large discretization errors for a comparable use of computer
resources (CPU time and memory). In addition the non-staggered method is more susceptible
to noise if the two families are combined by, for instance, nonlinear terms. As it is, (48) is indeed
a poor scheme and amendments are needed9. Since the leading error in the spatial differences
is now simply increased by a factor 4 compared to (28) we obtain

δxu
x =

∂u

∂x
+

1

6
∆x2 ∂

3u

∂x3
+O(∆x4).

In accordance with the preceding subsections we then obtain the corrected difference presentation

[

∂u

∂x

]

i

+O(∆x4) =

[

δxu
x − ∆x2

6
δ3xu

x

]

i

=
1

12∆x
{8(ui+1 − ui−1) − (ui+2 − ui−2)}. (49)

The leftmost expression is the one applied in [15] for internal points. However, the expression
in the middle is better suited for calculation of discrete dispersion relations and we will stick to
that.

For constant depth, and linear plane waves, the discrete versions of (80) and (81) now read

η̇ = −hδxux + h{∆x2

6
− µ2(

1

2
z2
α + zαh+

1

3
h2)}δ3xux, (50)

u̇ = −δxηx +
∆x2

6
δ3xη

x − µ2(
1

2
z2
α + zαh)δ

2
xu̇, (51)

where the dot indicates temporal differentiation and the common index k has been omitted.
The derivation of the numerical dispersion relation is now straightforward

ω2 =
hk̃2(1 + {∆x2

6 − µ2(1
2z

2
α + zαh+ 1

3h
2)}k̃2)c̃2x(1 + ∆x2

6 k̃2)

1 − µ2(1
2z

2
α + zαh)k̃2

. (52)

It is stressed that this dispersion relation is based on exact temporal integration and it will thus
apply to the FUNWAVE 1 and COULWAVE models only in the limit ∆t → 0. For finite ∆t
these models will yield, for instance, a small damping corresponding to an imaginary part in ω.

9The a possible reason for the choice of non-staggered grid in FUNWAVE 1 and COULWAVE may be a simpler
discretization of higher order nonlinear terms.
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Provided γ = 1
3 + zα

h + 1
2
z2α
h2 , Nwogu’s formulation, which is the basis of the model (50), (51)

and the improved standard model are equivalent (see section A.3). Hence, we may compare the
errors relative to the analytical dispersion from (52) to that of (44) with ∆t = 0. To keep it
simple we employ only the correction terms according to fm = 0 in this comparison. As will be
evident below, the deviations between the different corrected C-grid methods, including the one
corresponding to FUNWAVE 2, will be much smaller than the deviation between any of them and
the non-staggered method. Denoting the errors in phase and group velocity with ∆c and ∆cg,
respectively, we obtain the results in figure 11. For the same ∆x the corrected standard model
performs substantially better than the non-staggered FUNWAVE 1/COULWAVE formulation.
In fact, also for the corrected models, with dispersion, the non-staggered version is similar to the
staggered one with twice the grid size. Naturally, the temporal errors may change the picture
somewhat, as shown below. Still, the non-staggered method must be reckoned as somewhat
inferior to the the staggered methods.

In figure 12 we have compared the version of the numerical correction implemented in our
“standard” model (fm = 0) to the correction method that corresponds to the FUNWAVE 2
model (fm = 1). The methods are rather similar, but fm = 1 yields somewhat better results
for the coarse grid ∆x̂ = 1.2h, while fm = 0 is a little better for the finer grid increment
∆x̂ = 0.6h, for which the choice fm = 1 overshoots the wave celerity slightly. For the finest grid,
∆x̂ = 0.3h, both options are too good in the sense that they follow the analytic behaviour too
long in relation to the deviation from full potential theory. This and preceding results of this
subsection indicate that there is no point in applying a grid finer than ∆x̂ = 0.6h, say, but it
must be emphasized that the results are obtained without nonlinearity and variable depth.

In the figures 13 and 14 results are displayed for different values of the Courant number
C =

√
h∆t/∆x̂. It turns out that the value of fc does not significantly affect the wave celerity.

Therefore, this parameter is not varied in the graphs. For C = 0.5 the results are very similar to
those for C = 0, which correspond to figure 12; the spatial errors still dominate. For ∆x̂ = 0.6h
and C = 1 we observe that the performance with fm = 0 has become slightly poorer, while the
performance with fm has improved in relation to C = 1 (the overshoot has nearly vanished).
However, in tsunami simulations C is non-constant and presumably much less than unity in
large regions. Hence, no clear ranking of the different options for the corrections terms presents
itself.

3.5.5 Corrected depths

In (25) depths values at the u and v nodes were introduced as h(u) and h(v) respectively. To
obtain formal fourth order accuracy in the leading balance of the discrete equations (linear
hydrostatic) we cannot employ the simple mid point formulas h(u) = h

x
and h(v) = h

y
. We may

readily identify two methods for amendment

1. Accurate values for h(u) and h(v) may be obtained from depth functions or bathymetric
databases in the first place. Inspection of the discrete equations readily reveals that the
discrete depth is always invoked at a velocity node. Hence, at the cost of an extra discrete

field we may employ {h(u)

i,j+ 1
2

} and {h(v)

i+ 1
2
,j
} as depth matrices instead of {hi+ 1

2
,j+ 1

2
}. Since

a few extra matrices, in addition to those of the field variables, are anyway needed due
to the iteration this implies only a modest relative increase in the memory requirements,
while the discrete expressions are moderately simplified. For academic problems with a
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gl. ∆x̂/h = 0.3

Fu. ∆x̂/h = 0.3

gl. ∆x̂/h = 0.6

Fu. ∆x̂/h = 0.6

gl. ∆x̂/h = 1.2

Fu. ∆x̂/h = 1.2

λ/h

∆c√
h

gl. ∆x̂/h = 0.3

Fu. ∆x̂/h = 0.3

gl. ∆x̂/h = 0.6

Fu. ∆x̂/h = 0.6

gl. ∆x̂/h = 1.2

Fu. ∆x̂/h = 1.2

λ/h

∆cg√
h

Figure 11: Numerical error in c and cg for the present method with fm = 0 (gl.) and the
Funwave 1 (Fu.) method in the limit ∆t→ 0. The bold yellow line marks the difference in wave
celerity between full potential theory and the optimized Boussinesq equations.
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fm = 0, ∆x̂/h = 0.3

fm = 1, ∆x̂/h = 0.3

fm = 0, ∆x̂/h = 0.6

fm = 1, ∆x̂/h = 0.6

fm = 0, ∆x̂/h = 1.2

fm = 1, ∆x̂/h = 1.2

λ/h

∆c√
h

fm = 0, ∆x̂/h = 0.3

fm = 1, ∆x̂/h = 0.3

fm = 0, ∆x̂/h = 0.6

fm = 1, ∆x̂/h = 0.6

fm = 0, ∆x̂/h = 1.2

fm = 1, ∆x̂/h = 1.2

λ/h

∆cg√
h

Figure 12: Numerical error in c and cg for two different correction schemes, corresponding to
fm = 1 and fm = 0, in the limit ∆t → 0. The bold yellow line marks the difference in wave
celerity between full potential theory and the optimized Boussinesq equations.
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fm = 0, C = 0.0

fm = 1, C = 0.0

fm = 0, C = 0.5

fm = 1, C = 0.5

fm = 0, C = 1.0

fm = 1, C = 1.0

λ/h

∆c√
h

fm = 0, C = 0.0

fm = 1, C = 0.0

fm = 0, C = 0.5

fm = 1, C = 0.5

fm = 0, C = 1.0

fm = 1, C = 1.0

λ/h

∆cg√
h

Figure 13: Dependene of numerical errors on the Courant number for ∆x̂ = 0.6 and fc = 0.
The bold yellow line marks the difference in wave celerity between full potential theory and the
optimized Boussinesq equations.
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fm = 0, C = 0.0

fm = 1, C = 0.0

fm = 0, C = 0.5

fm = 1, C = 0.5

fm = 0, C = 1.0

fm = 1, C = 1.0

λ/h

∆c√
h

fm = 0, C = 0.0

fm = 1, C = 0.0

fm = 0, C = 0.5

fm = 1, C = 0.5

fm = 0, C = 1.0

fm = 1, C = 1.0

λ/h

∆cg√
h

Figure 14: Dependene of numerical errors on the Courant number for ∆x̂ = 1.2 and fc = 0.
The bold yellow line marks the difference in wave celerity between full potential theory and the
optimized Boussinesq equations.
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given smooth formula for the depth it may indeed be worthwhile employing the double
depth matrix. However, for measured bathymetries the data are generally inaccurate in
the first place and the gain is less certain.

2. We may keep the depth matrix defined at the semi-integral η nodes, but employ a more
accurate interpolation than mid-point averaging. A four point interpolation may yield the
fourth order representation

h
(u)
j =

9

16
h
x
j −

1

16
(hj− 3

2
+ hj+ 3

2
) +O(∆x4) = [h

x − ∆x2

8
δ2xh

x
]j +O(∆x4), (53)

where the common second index is implicit and a corresponding formula applies at the v
nodes. Naturally, (53) is advantageous only in the principal flux terms in the equation of
continuity; elsewhere the second order formula h(u) = h

x
can be used without any expected

loss of accuracy. At the boundaries asymmetric formulas may be employed. If j = 0 is a
boundary, a third order relation is defined in analogy to (53)

h
(u)
0 = h

x
0 − ∆x2

8
δ2xh 1

2
+O(∆x3), (54)

where we have exploited the availability of h− 1
2
. A fourth order formula may naturally be

obtained, but in a more lengthy form. Also the higher order interpolation formulas will
generally be less useful for a measured bathymetry.

Both the proposed methods will work well when the depth is accurately known, such as in
problems with idealized geometries. When bathymetric data, such as ETOPO 2 min. grids, are
employed the application of corrected depths seems futile. On the other hand, in the example
of section 5 we will observe that the numerical correction terms really improve the results even
though the parts related to corrected depths are left out.

3.6 Iteration procedures

3.6.1 The continuity equation

In the nonlinear case the discrete equation of continuity (16) yields an implicit set of equations
for the new surface elevations. The equation set is strongly diagonal dominant as long as
ǫryu∆t ≪ ∆x and ǫv∆t ≪ ∆y. This implies that the particle motion during a time step is
much smaller than the grid increment. Assuming a Courant number of order unity we may also
interpret the requirements as the particle velocity being much less than the phase and group
velocities. Collecting all implicit terms of (16) on the left hand side we obtain

1

∆t
η + ǫ

ry
2
{δx(ηxu) + δy(cvη

yv)} = R, (55)

where the indices are implicit and R contains all the contributions of times less than (k+ 1)∆t.
Due to the diagonal dominant structure a point by point method is applicable. Carrying out

iteration number p+ 1 then corresponds to computing

1

∆t
ηp+1 = −ǫry

2

{

δx(ηp
x
u) + δy(cvηp

x
v)
}

+R, (56)
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where the superscripts now count iteration level and not time step. In the limit p → ∞ the
quantity ηp should then approach η(k+1). The rule (56) corresponds to a Jacobi iteration.
Application of a Gauss-Seidel like approach is not recommended because it will violate exact
volume conservation.

The error after p iterations, denoted as νp = η(k+1) − ηp, will fulfill the same equation as ηp,
namely (56), with R = 0. To obtain an indication of the efficiency and stability of the Jacobi
iteration we set map factors and velocities to constant values and assume

νp = ν̂βpei(kx̂+ℓy). (57)

It is noted that Cartesian-like longitudinal coordinate x̂ is used here and throughout this sub-
section. The homogeneous counterpart to (56) then implies

β = −iǫ1
2
∆t(uc̃xk̃ + vc̃y ℓ̃). (58)

A sufficient stability criterion then reads

|β| ≤ ǫ
1

2
∆t

( |u|
∆x̂

+
|v|
∆y

)

< 1. (59)

We observe that the iteration is stable when the fluid particles cover well below a spatial grid
increment in a time step. For velocities of order one tenth of the phase speed (ǫ = 0.1) and
wavelengths around six times the depth β becomes approximately 0.1.

We may also apply a line by line implicit method

1

∆t
ηp+

1
2 + ǫ

ry
2
δx(η

p+ 1
2

x

u) = −ǫry
2
δy(ηp

y
v) +R, (60)

1

∆t
ηp+1 + ǫ

ry
2
δy(ηp+1

y
v) = −ǫry

2
δx(η

p+ 1
2

x

u) +R. (61)

We observe that each of the two half iterations involve the solution of a series of tri-diagonal
equations. Substitution of constant values for the velocity and assumption of the form (57) for
the error now yield

β =
−ǫ2∆t2c̃xc̃y k̃ℓ̃uv

4
(

1 − 1
2 iǫuc̃xk̃

)(

1 − 1
2 iǫvc̃y ℓ̃

) . (62)

Bearing in mind that this value is the result of two half-steps, while the factor in (58) arises
from a single step, the line by line and Jacobi method display similar convergence rates for
small amplitudes. For large amplitudes, on the other hand, the line by line iteration is markedly
better and, above all, it is stable. Hence, the line by line approach is preferred, even though it
is computationally more demanding.

3.6.2 The momentum equation

Due to the reciprocals of grid increments the discrete momentum equations display larger off-
diagonal entries in the coefficient matrix10 and are thus not well suited for a point-wise iteration
scheme. Instead a line by line approach is modified from [27, 36]. In these references we have

10Such a matrix do of course exist in principle, but it is never explicitly assembled in the software.
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equations of the Helmholtz type for either a velocity potential or the velocity components. For
all equation-sets we then do alternate implicit sweeps in the x and y directions. In the present
case we alternate by implicit sweeps along the x axis for the x component and sweeps along
the y axis for the y component. In comparison to [36] we do only half the number of sweeps,
without any degradation of the convergence in the linear case, as shown below. The iteration is
very similar to the one used in [2].

In relation to the dispersion terms it is simplest to solve (17), and the corresponding y
component, in terms of local accelerations rather than velocities. When velocities and surface
elevations are computed up to, and including, t = k∆t we thus seek values for

[u̇ ≡ δtu]
(k)

i,j+ 1
2

, [v̇ ≡ δtv]
(k)

i+ 1
2
,j
.

Advancing from iteration level p to p + 1 we first solve the sequence of tridiagonal equations
given by

u̇p+1 + ǫT̂x = Rx + ∆t
2 fuv̇

pxyt

+
(

µ2

2 h
x

+ Ik
24∆t2

)

(ry
x)2δx{δx(h

x
u̇p+1) + δy(cvh

y
v̇p)}

−
(

µ2(1
6 + γ)(h

x
)2(ry

x)2 + Ik
24∆x2

)

δ2xu̇
p+1

−µ2(1
6 + γ)(h

x
)2(ry

x)2δxδy(cv v̇
p),

(63)

where Rx contains all explicit contributions, Ik = 1 corresponds to the corrected numerical
method, with fc = fm = 0, and

T̂x =
1

2
∆t{ryxδx{(uxu̇p+1

x
)} + (vxδyu̇p + v̇p

x
δyu)

y
}. (64)

The velocities in this expression are the ones evaluated at t = (k − 1
2)∆t. Then we substitute

u̇p+1 for u̇ in the y component and solve a corresponding sequence of tri-diagonal equations for
v̇p+1.

To simplify the matters we analyze the cases ǫ 6= 0, µ = 0 and ǫ = 0, µ 6= 0 separately. In
the first case we assume constants values for v and u, but not11 for δxu̇, in the x-component of
the momentum equation. For the deviation from the exact discrete solution and the value after
p iterations we write νp = u̇(k) − u̇p. Again, we invoke the expression (57) and obtain

β =
− iǫ∆t

2 c̃y ℓ̃v

1 + iǫ∆t
2 c̃xk̃u

,

which implies

|β| ≤ ǫ∆t

2∆y
|v|.

Performance and stability is similar to the corresponding properties of the point-wise iteration
for the equation of continuity. A corresponding behavior is naturally found for the y-component.

11In principle an inconsistent assumption, but such simplifications are still commonly used in assessments and
analysis of methods.
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For ǫ = 0, µ 6= 0 the iterations on the two components of the momentum equations are
coupled. As before we analyze equations with constant coefficients, which may be obtained by
assuming constant depth (h = 1) and constant map factors. Again introducing the deviations

νp = u̇(k) − u̇p, ζp = v̇(k) − v̇p,

we find the equations

[ν − {(1
3 − γ)µ2 + Ik

24(∆t2 − ∆x2)}δ2xν]p+1 + [−{(1
3 − γ)µ2 + Ik

24∆t2}δxδyζ − ∆t
2 fζ

xy
]p = 0,

[ζ − {(1
3 − γ)µ2 + Ik

24 (∆t2 − ∆y2)}δ2yζ]p+1 + [−{(1
3 − γ)µ2 + Ik

24∆t2}δxδyν + ∆t
2 ν

xy]p+1 = 0.

Now we separate variables according to

(

νp

ζp

)

=

(

ν̂

ζ̂

)

βpei(kx̂+ℓy),

and find that β may attain the values 0 and

β =
{(1

3 − γ)µ2 + Ik
24∆t2}2k̃2ℓ̃2 − ∆t2

4 f2c̃2xc̃
2
y

(

1 + {(1
3 − γ)µ2 + Ik

24(∆t2 − ∆x2)}k̃2
)(

1 + {(1
3 − γ)µ2 + Ik

24(∆t2 − ∆y2)}ℓ̃2
) . (65)

A closer investigation of the equations for νp and ζp reveals that the occurrence of β = 0 is linked
to the fact that no start value for νp is involved since ν0 do not appear in any of the equations.
The start value for v̇ may be the values from the previous time step yielding ζ0 = ζ̂ = O(∆t).
This gives

ν̂ =
1 + {(1

3 − γ)µ2 + Ik
24 (∆t2 − ∆y2)}ℓ̃2

{(1
3 − γ)µ2 + Ik

24∆t2}k̃ℓ̃+ ∆t
2 f c̃xc̃y

ζ̂ .

For long waves ν̂ may be large. However, this is not a real problem since the first ν value to
appear, namely ν1 = βν̂, still becomes small.

The iteration is always stable for f = 0 and stable provided f∆t < 1
2 otherwise. For long

wave components we observe a very fast convergence, but the presence of shorter components
slow down the convergence. Then, a remedy may be the inclusion of a shift, such as is used in
[36]. However, in the present context it is much more difficult to find the useful employment of
the shift than in the formulation of the reference. Hence, we omit this topic herein.

3.7 Possible instabilities from bottom gradients

A sequence of Boussinesq type equations were studied by [41] with respect to instabilities due to
variable depth. The standard formulation, which corresponds to the one used herein with γ =
f = 0, was invariably stable. All other investigated formulations displayed linear instabilities.
Among these potentially unstable formulations was that of Nwogu which is given by (80) and
(81) without the nonlinearities and the ad-hoc terms. However, we emphasis that Nwogu’s
formulation was among the better ones with respect to instability and that it should be applicable
to a variety of cases where no such stability problem is likely to occur.

Hence, the basic method herein, without corrected dispersion and numerics, it is already
demonstrated to be stable by the reference [41]. Still, we need to investigate the stability
properties when non-zero γ and numerical correction terms, such as A and B, are included.
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Details on the procedure of the stability analysis are given in [41], and we will recall only
some key points below. For linear equations and wave advance parallel to the x-axis there exist
solutions on the form

η(x, t) = η̂(x)eiωt, u(x, t) = û(x)eiωt. (66)

The quantity ω may be real or complex and will generally be found from an eigenvalue prob-
lem. In the linearized Boussinesq equations the introduction of (66) will simply correspond to
∂u/∂t → iωû etc. For the discrete equations ω is replaced by ω̃ = 2 sin(1

2ω∆t)/∆t, in the same
manner as in the dispersion relation (19) etc.

We assume wave advance parallel to the x-axis, ǫ = 0, uniform map factors, and introduce
once again the Cartesian longitudinal coordinate x̂. Omitting the hat over the x we obtain the
discrete continuity equation

[iω̃η̂ = −δx(h
x
û+ Â)]j+1/2, (67)

where the common temporal factor is removed and the corresponding linear discrete momentum
equation

[iω̃û = −δxη̂ − γµ2δ3xη̂ + iω̃
µ2

2
h
x
δ2x(h

x
û) − iω̃µ2(h

x
)2(

1

6
+ γ)δ2xû+ B̂]j . (68)

Next, the surface elevation is eliminated by substituting the right hand side expression in equa-
tion (67) into (68). Spelling out the expressions for the correction terms (fm = fc = 0), we find
a single equation for the velocity profile

(1 + γµ2δ2x)
(

δ2x(h
x
û) + Ik

24δ
2
x[(∆t

2h
x − ∆x2)δ2x(h

x
û)]
)

+

ω̃2
(

û− µ2

2 h
x
δ2x(h

x
û) + µ2(1

6 + γ)(h
x
)2δ2xû− 1

24 [∆t2δ2x(h
x
û) − ∆x2δ2xû]

)

= 0,
(69)

where Ik is as defined below (63). When applied in closed basins of variable depth with symmetric
no-flux conditions for û at the side walls, we obtain a generalized eigenvalue problem on the
form

(A + ω̃2
B)u = 0, (70)

where A and B are banded coefficient matrices and u is the velocity eigenvector containing the
nodal values of û. The method for solving (70) numerically is given in [41].

We then investigate a few simple types of basins. One such geometry is the step-shelf, which
is a basin with one part of constant unitary depth and one part of constant depth hm between 0
and 1, separated with one grid point only. Another is the spike, which is one grid point of depth
hm, and otherwise unitary depth. More details on these depth configurations are given in [41].

In the chosen configurations we systematically scan through combinations of ∆x and hmin,
the minimum depth, searching for the occurrence of complex ω̃. When complex ω̃ are found, the
unstable modes are inserted into an numerical model, integrated in the time domain, to validate
that the complex frequency is correct and that exponential growth is actually taking place. The
eigenvalue method is also validated by insertion of the reconstructed solution from (66) in the
time dependent equation and computation of the residuals.

In [41], no unstable modes were found for the standard formulation without correction terms
(Ik = γ = 0). Introduction of the numerical correction terms only (Ik = 1), does not lead
to discovery of any unstable modes. By also including the dispersion optimisation terms γ =
−0.057, we find unstable modes for the step-shelf (figure 15), but not for the spike geometry.
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Figure 15: Stability limits for the optimized set in a step shelf geometry. The colour-bar indicates
the growth rates for the unstable modes (complex values in ω).

Setting Ik = 0 and and keeping the optimisation terms we find no change the stability limits.
Hence, the unstable modes are related to the γ term alone, and not to the combination of
optimization and numerical correction terms. The unstable modes are related to very steep
depth gradients as shown in figure 15. The stability limits are comparable to the ones found for
the Nwogu formulation [23], i.e. they occur for small values of ∆x and hmin. Such small values
may of course be encountered in discretization of real bathymetries, but this is presumably rare.

3.8 Conventions for enumeration and coding

The momentum equations are written in a generic manner for to sweeps in either the x or y
direction. Denoting the implicit direction by s, the other direction by n and the corresponding
velocity components by U and V , respectively, we enumerate a computational molecule as
shown in figure 16. All fields are stored as one-dimensional arrays and increments in the s and
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Figure 16: Computational molecule centered at point I in generic enumeration as explained in
the text.

Is In γs γn κ1 κ2 f̂ ∆s ∆n

s = x (ψ) 1 n+ 2 1
cφ

1 1 cφ −f ∆x ∆y

s = y (φ) n+ 2 1 1 1
cφ

cφ 1 f ∆y ∆x

Table 1: Values of coefficients for sweeps in x and y directions.

n directions are defined as In and Is, respectively.

∂U
∂t + ǫ

(

γsU
∂U
∂s + γnV

∂U
∂n

)

= −γs ∂η∂s + f̂V − γµ2h2γs
∂Dη

∂s

+
(

µ2

2 h+ Ik∆t2

24

)

γs
∂
∂s

[

1
cφ

∂
∂s

(

κ1h
∂U
∂t

)

+ 1
cφ

∂
∂n

(

κ2h
∂V
∂t

)

]

−
(

µ2(1
6 + γ)h2γs + Ik∆s2

24 κ2

)

∂
∂s

[

1
cφ

∂
∂s

(

κ1
∂U
∂t

)

]

.

−µ2(1
6 + γ)h2γs

∂
∂s

[

1
cφ

∂
∂n

(

κ2
∂V
∂t

)

]

.

(71)

The coefficient Ik is unity if numerical corrections are included, 0 otherwise, while the other
coefficients are defined in table 1. A corresponding convention is suited for implicit sweeps in
the equation of continuity.

4 Test problems

In the present section we employ a scaling with h0 as both the vertical and the horizontal scaling
factor. This scaling is discussed at the end of section 2.3.
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4.1 Numerical errors in an asymptotic wave-front

A classic problem in wave theory is that of evolution from an initially confined surface elevation
(the Poisson-Cauchy problem). In finite depth one of the features of the solution is an asymptotic
wave front, described by an Airy function, that slowly stretches and attenuates. The standard
solution procedure is the Fourier transform, which can be applied also in the discrete case with
a cut-off wave number equal to π/∆x̂. However, the front is governed only by the leading
dispersion in (23) and this suggest a short-cut. Since the asymptotic behavior at the front is
shared by all equations (discrete and non-discrete) that are consistent with (23) we may solve
the linear KdV equation

∂η

∂t
+ c0

∂η

∂x
+ c0β

∂3η

∂x3
= 0, (72)

where c0 =
√
h. The asymptotic solution may then be regarded as a similarity solution

η = A(t)F (ζ), ζ = σ(t)−1(x− c0t),

that leads to

σ3(c0βA)−1 dA

dt
F − (c0β)−1σ

dσ

dt
(x− c0t)F

′ − F ′′′ = 0.

An equation with only the composite quantity ζ as free variable is obtained by demanding

σ3(c0βA)−1 dA

dt
= 1, (c0β)−1σ

dσ

dt
(x− c0t) = ζ.

Naturally, we could have multiplied the right hand sides by any constants, without affecting the
final solution. The above relations yield A = A0t

− 1
3 , σ = (3βc0t)

1
3 and the differentiated Airy’s

equation
(F ′′ + ζF )′ = 0.

In terms of the initial volume, V , the solution may then written

η ∼
1
2V

(βc0t)
1
3

Ai

(

x− c0t

(βc0t)
1
3

)

.

Denoting the analytical and numerical amplitudes with Aa and An, respectively, we then obtain
the ratio

An
Aa

=

(

βa
βn

)
1
3

≈ 1 − 1

12
(
∆̂x

2

h2
cos4 θ +

∆y2

h2
sin4 θ − ∆t2

h
),

where we have introduced the angle, θ for direction of wave advance. For the example at the
end of section (3.4) we now find that the computed wave front will be reduced by roughly 3%.

4.2 Eigenoscillations in basins

From the numerical dispersion relations we may find exact linear solutions for discrete eigenoscil-
lations in rectangular basins. From these solutions we may extract initial conditions for simula-
tions. The numerical model should then reproduce the eigenoscillation exactly, save for errors
owing to finite precision arithmetics, round-off errors in the initial conditions and incomplete
convergence of the iterative solvers involved. The latter error source is absent in 1HD cases
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where all equations actually are solved by direct methods. Still, effects of finite arithmetics may
accumulate to yield a final error that is enlarged by a decimal power or two compared to the
precision of single floating point numbers.

Two sets of test are performed. Since inclusion of the rotational effects disables simple
solutions for the eigenvalue problem the Coriolis term is omitted.

• 1HD oscillations where the motion is confined to either of the grid directions. It is con-
trolled that the results are independent of the basin width (direction transverse to the
motion). In these cases the correction terms A and either B or C are retained.

• 2 HD oscillations where the numerical correction terms are omitted.

The simulations of eigenoscillations is a check on the computer code. On the other hand
they provide no information on the performance of the numerical technique, as such, that goes
beyond what is already inherent in dispersion relations and the analysis of the iteration scheme
for the momentum equation.

We assume a rectangular basin of width L = n∆x̂ and width B = m∆y. Modes are
characterized by double indices, N and M , and expressed according to

η = A cosωN,M t cos kN x̂ cos ℓMy,

u = U sinωN,M t sin kN x̂ cos ℓMy,

v = V sinωN,M t cos kN x̂ sin ℓMy,

(73)

where kN = Nπ/L, ℓM = Mπ/B and ωN,M , kN , and ℓN fulfill the discrete dispersion relation.
For the 1HD cases we have either V = M = 0 or U = N = 0.

For the 1HD case with numerical correction terms according to fm = fc = 0 (see section
3.5.3) we have the amplitude relation

U =
ω̃NA

hk̃N (1 − pk̃2
N )
, p =

1

24
(h∆t2 − ∆x̂2).

The 2HD case without numerical corrections yield the relation

(

U
V

)

=

(

k̃

ℓ̃

)

ω̃A

(

1 − µ2

3
hω̃2 − µ4

3

γh4(k̃2 + ℓ̃2)2

1 + (1
3 − γ)µ2h2(k̃2 + ℓ̃2)

)

,

where the indices are omitted for brevity.
For the 1HD case and the parameters A = 1, L = 8, h = 1, n = 11, ∆t = 0.48727.. we find

ω1 = 0.71752.... After t = 10.2.., which is somewhat longer than 1 period, the errors in η are less
than 10−13 and 10−6 for single and double floating point precision, respectively. This is valid
for both directions and the results are independent on the transverse extension of the basin.

The 2HD case is somewhat more difficult to interpret since extra errors may arise from the
iteration procedure. Initializing with the accelerations from time (k − 1)∆t the relative error
before the first iteration on the accelerations at k∆t is roughly ω∆t. After p double sweeps we
then are left with the relative error ε = ω∆tβp, where β is found from (65) inserted f = 0,
k = kN,M and ℓ = ℓN,M . The number of iterations, p, is then selected as to give ε less than 10−8

and 10−16 for single and double precision, respectively. For most real problems such numbers of
iterations are naturally unnecessary high. Some numerical examples are given in table 2. They
are consistent with the 1HD tests above and strongly sugest that the parts of the model used in
these applications are correctly coded.
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L B n m β tm p(s) δm(s) p(d) δm(d)

2 2 11 8 0.238 2.6 12 3.0 · 10−7 25 0.8 · 10−14

5 4 11 8 0.025 6.4 5 3.0 · 10−7 10 1.1 · 10−14

8 6 11 8 0.005 10.2 4 3.3 · 10−7 7 0.8 · 10−14

Table 2: Maximum error in η, δm, for eigenoscillations during the time 0 < t < tm. Double (64
bit) and single (32 bit) precision results are marked with (d) and (s) respectively. For all cases
M = N = 1.

4.3 Propagation of solitary waves

An obvious test for any dispersive and nonlinear wave model is propagation and preservation
(shape, height) of the solitary wave. All to often the simulation of permanent form waves, such
as the solitary wave or the Stokes wave, is omitted from the test programs of wave models. This
is in particular severe for models with damping, such as most Navier-Stokes solvers, since the
computation of permanent waveforms may reveal the significance of artificial dissipation. The
present model inherits no systematic damping and in constant depth and with no rotation, which
is ignored throughout this subsection, the standard formulation (γ = 0) shares the solitary wave
solution with the formulations of [27, 28]. In this subsection we employ the scaling with the
depth as sole length scale. Hence, the dimensionless depth is unity and for a wave parallel to
the x-axis we write

ǫη = Y (x− ct), ǫu = U(x− ct),

to obtain

Y = U(c− U)−1,

µ2

6 c(U
′)2 = −1

6U
3 + 1

2cU
2 + U + c log(1 − U/c),

c2 = (1 +A)2{(1 +A) log(1 +A) −A}{1
3A

3 + 1
2A

2}−1 = 1 +A+O(A2),

(74)

where A is the maximum value of Y . It is important to employ a solution that is fully consistent
with the model equations and not, for instance, the solitary wave solution of the KdV equation.
For plane waves the present method becomes similar to that in [28], where the concept of discrete
solitary waves is investigated. In short, the discrete medium possesses solitary wave solutions,
but the shape and, to a smaller extent, the speed are different from the corresponding properties
of the analytical solution. Starting with (74) as initial condition we then expect the numerical
solution to reshape slightly into a new permanent form.

In figure 17 the results for a series of simulations with A = A0 = 0.2 and different ∆x = ∆t is
summarized. At intervals the maximum surface elevation a(t) is calculated as the maximum of
an interpolating cubic spline. As expected a(t) approach a steady value, slightly different from
A0. The deviation from A0 vanish with decreasing ∆x. It is also observed that the modified
surface profile, after t = 200, approximate the analytical profile, with A = a(200), closely.

In figure 18 the numerical correction terms are tested for the evolution of a solitary wave
with A0 = 0.2 and C = ∆t/∆x = 1

2 . The correction is moderately efficient. The limited success
is due to the fact that for the shape of a solitary wave both dispersive and nonlinear effects are
equally important, and the latter is still only represented with second order accuracy in the grid
increments.
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Figure 17: Left: evolution of a(t) ≡ ηmax. Right: comparison with analytical solitary wave
shape, with amplitude A = a(t), after t = 200 for ∆x = 0.125.
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Figure 18: Evolution of a(t) ≡ ηmax for Courant number C = 1
2 . Left: uncorrected method.

Right: corrected method.
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4.4 Propagation into an abyss; comparison with pre-existing models

In this section we invoke a simple test bathymetry, consisting of two uniform depth regions, with
non-dimensional depths 1 and hr, respectively, joined by a smooth slope

h(x) =











1 if x < xa,

1 + (hr−1)
2

(

1 − cos
(

π(x−xa)
ℓ

))

if xa < x < xa + ℓ,

hr if x > xa + ℓ.

(75)

Varying the parameters hr and ℓ we may produce cases that are more or less challenging con-
cerning the effects of bottom gradients and wave dispersion. Generally, the length xr should be
half the wavelength, at least.

The wave propagation is started from rest with an initial elevation in the shape of half a
bump adjacent to the left boundary.

η(x, 0) =

{

2A cos2
(

πx
λ

)

if 0 < x < 1
2λ,

0 if x > xr.
(76)

In linear shallow water theory this will give rise to a wave of length λ and amplitudeA. Naturally,
the effect of dispersion will increase with decreasing λ.

For wave propagation it is not trivial to define the optimal error norm between two solutions.
In a mathematical context the standard choice is some quadratic integrated norm, such as L2.
However, for long term wave propagation this may be quite inappropriate, due to accumulated
errors in the phase. In fact, according to the L2 norm two solutions of similar amplitude and
shape, but large phase errors, may be more different than either of the solutions and the trivial
zero field. Still, for even slightly complex wave patterns alternatives like maximum amplitude
deviations are even less satisfactory. In the present investigation we study the evolution of an
initial pulse over a rather short propagation distance, including a sloping region. The solution
will generally consist of a leading pulse, that in constant depth would approach an asymptote
given by the Airy function, and a small residual wave train that may be qualitatively different
for the various models. Deviations in both should contribute to a defined error. In this case the
L2 norm is probably a sensible choice, at least in want of a better alternative.

When a discrete quantity, γj, is defined on a grid, xj (j = 1..n), the L2 norm is defined as

L2(γ) =

√

√

√

√

n
∑

j=1

∆xj(γj)2, (77)

where the increments, ∆xj, must be adequately defined, for instance as ∆xj = 1
2(xj+1−xj−1)

12.
At the boundaries special care must be exercised concerning proper calculation of the contribu-
tion to the norm. Normally, we will report normalized deviations between the different solutions
with emphasis on differences in the propagation properties. In these cases the boundary contri-
butions may as well be left out.

We need to compute the deviation between discrete quantities, γ and κ, that are defined
on different grids. Interpolation is then employed to calculate values κ̂, of the latter, on the

12For uniform grids we naturally employ ∆xj = ∆x, but for methods with a variable grid, such as the boundary
integral model, we need the more general expression.
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t = 0.55

t = 3.75

x

Eη

Figure 19: Difference between present and pre-existing model for the standard formulation
(γ = 0). The parameters are A = 0.2, λ = 12, ℓ = 10, hr = 2, ∆x = 0.793 and ∆t = 0.526.

grid associated with γ. In case two solutions of the boundary integral method (see below)
are compared we use spline interpolation that is consistent with the method itself. Otherwise,
piecewise linear interpolation is invoked. The normalized deviation is then defined as

D(γ, κ) =
L2(γ − κ̂)

L2(γ)
. (78)

When this procedure is employed to solutions from the same model, but with different grids, it is
expressed as D(∆x1,∆x2). It must be noted that while D is sensible as a measure of differences
between converged solutions, it may become dominated by interpolation errors when applied as
a measure of difference between numerical solutions obtained with different resolutions or grids.
The use of D(∆x1,∆x2) is then mainly to assure that errors of both numerics and interpolation
are small enough to allow for a proper comparison of the outcome of solving different sets of
equations.

This case is simulated by a selection of pre-existing models [33]. Among these are 1HD
standard model, also used in [8], and a model for the Nwogu formulation. During the work with
the present report a minor error in the Nwogu model of [33] has been discovered. Hence, all
presented data are produced in new simulations using the correct models. A particular script
has been devised as to “clone” old simulations of 1HD models with the model presented herein.
Parameters, initial conditions and bathymetry are extracted automatically and used to set up a
2HD simulation in a basin, aligned parallel to the x-axis, with only one row of internal points.
This is done to assure consistency and provide an efficient way to produce a large number of
comparisons in a variety cases. However, below we will only show a few results obtained with
linear simulations.

For the standard model (γ = 0) the old and new formulations are mathematically equivalent
for a plane wave with direction of wave advance parallel to one of the axes. As shown in figure
19 the differences in surface elevation, Eη, are of order 10−6, or smaller, which according to
our experience is typical for accumulated round-off errors for this kind of models with 32-bits
arithmetics.

For the optimized models, the present model with γ = −0.057 and Nwogu’s with zα =
−0.531h, exact agreement is not to be expected. Most importantly, the two models are not
identical for variable depth. Besides, a small discrepancy is also introduced through the treat-
ment of the initial conditions.

41



A more demanding case with a shorter initial wave elevation (λ = 3) and a steeper bottom
gradient (ℓ = 2) is depicted in figure 20. From the right panels we observe that the pre-existing
and current standard formulations are virtually identical, while the performances of the current
optimized model and the Nwogu model are similar. The optimized formulations are superior to
the standard formulations for this case, in particular near the first trough, but they display a
marked deviation from full potential theory at the front due to the large depth gradient. In the
left panels the solution, at different times, and the accuracy of the potential model are shown.

4.5 Diffraction of solitary waves by a vertical cylinder

Complex geometries are represented by staircase boundaries in the present method. Such bound-
aries are common in ocean modeling and are known to perform fairly well for linear equations
under certain conditions. However, the authors have experienced spurious effects linked to stair-
case boundaries even in very simple settings. A vertical impermeable wall in constant depth
may act as a wave guide with non-physical trapping [25]. In shallow water combined with
coarse resolution the linear solution is prone to severe noise [30, 35, 18]. When non-linearity
is added in near-coast regions we may experience model breakdown. An obvious cause is the
present absence of a run-up/withdrawal facility that would have removed or added grid cells
and prevented inclusion of dry cells in the computational domain. However, the combination
of under-resolution, non-linearity and irregular boundaries may also produce model breakdown
independent of occurrence of dry cells (results not shown). A crucial question is then whether
or not a staircase boundary may perform well at all for non-linear and dispersive simulations.
Below, we will show that in finite depth it may.

Our test example is diffraction of waves from a circular and vertical cylinder. For periodic
incident waves this is an important problem in ocean engineering. However, much of the research
have been performed with cylinders of small diameter in deep or intermediate water. Moreover,
the steady state solutions, that are the ones in focus, depend heavily on the use of radiation
conditions. These features make diffraction of periodic waves ill suited for testing and validation
of a Boussinesq solver. Hence, instead we employ large diameters and incident solitary waves.

We employ two different cylinder radii, r = 5 and r = 10, and 4 different resolutions
corresponding approximately to ∆x = 1, 1

2 ,
1
4 ,

1
8 , respectively. The cylinders are placed in the

center-line of channels of width B = 2r + 20 with x = xs as the along-channel position. The
incident solitary wave has amplitude A = 0.15 (h = 1) and the position of the initial peak is13

λ 1
2

= − ln(0.25 · 10−3)/
√

3A = 12.4. Accordingly the position of the center of the cylinder is

xs = 2.1λ 1
2

+ r. The initial setup is shown in figure 21.

Closeups for r = 10 are shown in figure 22, for the two coarsest and the finest resolution.
We clearly see some grid dependence in the results. On the other hand, in view of the ragged
appearance of the cylinder even the coarse grids produce surprisingly smooth solutions. The
marks are time series locations situated at lines aligned at angles 60◦, 135◦ and 150◦ relative to
the positive x-direction. In addition to the angle the points are recognized by the distance, s,
from the circumference of the cylinder. Time series are shown in figures 23 and 24 for r = 10
and r = 5, respectively. The results clearly point to convergence as the resolution is increased.
However, for θ = 60◦ and r = 5, in particular, we observe a marked grid dependence, even in
the leading wave, for the two coarsest resolutions. Still, as a whole the results are definitely

13This assures that at the distance λ 1

2

from the peak the wave height is reduced to ≈ 10−3A.
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Figure 20: Comparison of linear Boussinesq and full potential models for A = 0.2, λ = 3.0,
ℓ = 2, hr = 2, xr = 2.3, xmax = 7.4, ∆x = 0.05 (stand.). Upper left panel: surfaces
at given times and the bottom. Upper right panel: comparison of different solvers at t = 4.9.
Lower left panel: convergence of potential model; evolution of relative errors. Lower right panel:
difference between other models and the potential theory. The LSW solution rapidly grows
beyond the depicted window. Explanation of legends:
stand.: pre-existing standard formulation. gstd.: current standard formulation. opt.: current
optimized formulation (γ = −0.057). Nwog.: Nwogus formulation. LSW: shallow water equa-
tions.
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Figure 21: Initial condition for r = 10.

encouraging. In this test the depth is unity; a staircase boundary in shallow water, with poorly
resolved incident waves, would be a different story altogether.
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Figure 22: Contour plots of the solution after t = 20 for r = 10 and ∆x equal to 1.01 , 0.50 and
0.13, respectively. Locations for time series are marked by symbols.
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Figure 23: Time series for a = 0.15 and r = 10. The panels are marked according to the text
and the curves are marked by ∆x.
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Figure 24: Time series for a = 0.15 and r = 5. The panels are marked according to the text and
the curves are marked by ∆x.

47



5 Case study example: trans-oceanic propagation

Trans-oceanic tsunamis are presumably rare in the Atlantic Ocean. The only known historical
event that may be classified as such is the tsunami that followed the 1755 Lisbon earthquake.
A pre-historic candidate is the Storegga tsunami. However, geological evidence of runup from
this event on the coasts of America and Greenland is still not confirmed. The much debated
tsunami from the Cumbre Vieja Volcano on the La Palma in the Canary Islands is clearly
a potential candidate. Since the sensational claims by Ward and day (2001) [43] of a major
flank collapse followed by an ocean wide tsunami disaster, other authors have questioned their
results. Herein, we will not discuss neither the probability nor the consequences of a tsunami
from Cumbre Vieja, but use a given, disastrous scenario for testing the present model concerning
oceanic propagation of mildly dispersive tsunamis. A more complete description of the physical
background and motivation for the present case study are found in [7] and [42].

The computations are carried out in four stages.

(i) First, the SAGE multi-material model for slide dynamics and wave generation is used for
the first five minutes in a local bathymetry obtained by interpolation applied to ETOPO
2. Then a Boussinesq model is used for 5min < t < 10min in a particularly smooth and
adapted bathymetry. All simulations for the first ten minutes are performed in a Cartesian
grid and without Coriolis effects. We will not go into detail on this first phase, but focus
on large scale propagation.

(ii) Surface elevation and velocities are extracted from the phase (i) and used as initial con-
ditions at t = 10min for Boussinesq simulations, with and without nonlinearity and opti-
mised dispersion. The computations are then continued well beyond 45min in a regional
domain which spans from 27.6◦W, 21.7◦N to 11.6◦W, 36.0◦N and includes a maximum
depth of 5771m. The depth matrix is constructed from the ETOPO 2 database, but the
data are interpolated to grids with resolution 1′ and 0.5′. Besides, a particularly adapted
threshold depth is invoked for each of the Canary Islands. For the 2′, 1′ and 0.5′ grids we
employ ∆t = 15 s, ∆t = 7.7 s, and ∆t = 3.9 s, respectively. The total number of cells in
the finest grid amounts to 3.3 millions.

(iii) With the surface elevation and velocities from, unless otherwise is indicated, the linear14

regional model at t = 45min as initial conditions we employ the model with ǫ = 0 (linear
mode) in a large domain covering a significant part of the Atlantic Ocean (90◦W, 10◦S
to 0◦W, 60◦N). Here, the ETOPO 2 grid is used without modification or we sample it to
a coarser 4′ grid. The computational domain, depicted in figure 28, includes 5.6 million
cells in the 2′ grid. From t = 45min the leading waves spend another 6 h, say, until they
reach the American continent. With a time step equal to 12.7 s , relating to the maximum
depth of 8637m, this time span corresponds to 1846 time steps. For this phase we also
perform plane simulations in the transects shown in figure 28, for which the 2′ grid, as well
as initial conditions, are interpolated.

(iv) The results from the trans-oceanic simulation are used for initiation of a small number of
regional studies at different continents. These computations will not be addressed here,
but are left for [42].

14Preferably the nonlinear results should have been used, but this is of no consequence for the assessment of
the model performance for the ocean crossing.
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Figure 25: The La Palma tsunami after t = 10min. Upper panel: contour graph of the surface
elevation. Lower panel: southern transect. The surface elevation and the depth are scaled
differently in the lower panel.

The transects mentioned in point (iii) are also used for comparison of 2HD results in both
the regional and global simulations.

5.1 Regional simulations

The surface from the phase (i) simulation is depicted in figure 25. We observe that the waves
already have entered the deep ocean, while the amplitudes are still quite impressive, well above
120m, and yield a wave-height to depth ratio of roughly 0.03 for the leading crest. This ratio
corresponds to a weakly nonlinear wave, but the amplitude attenuates rapidly due to radial
dilution of energy and frequency dispersion.

After t = 45min, in phase (ii), we obtain the wave field depicted in the figures 27. In the
figure we observe a series of waves spreading outward from the source region with a preferred
directionality to the West. From the figure 26 we infer that the accumulated nonlinear effects
for 10min < t < 45min are weak and that there are only small differences between the results

49



for15 ∆ψ = ∆φ = 2′ and ∆ψ = ∆φ = 0.5′ (0.4m for southern transect, 0.1m for the two
others). The number of iterations is varied between 1 and 4. For the East-West transect there
is very little difference, as the wave advance is nearly parallel to the x axis, but for the southern
transect (figure 26, lower panel) we observe errors when only one iteration is used. However, the
difference between 2 and 4 iterations is small (0.4 cm for height of leading crest) and 2 iterations
are hence employed for the global simulation (phase iii).

The numerical correction terms does not improve the regional simulations significantly. As
observed below, this is quite different for the global propagation phase.

5.2 Trans-Atlantic wave propagation

In the trans-ocean propagation (phase iii) we focus on long term dispersion effects. Without
the correction terms, but with the remaining terms kept in the computations16 the CPU time
is close to 5 h in serial run on a two years old AMD desktop. The dispersion optimisation term
add another 10min, while the numerical correction terms are included at an extra expense of
50min. Certainly there is room for much larger computations, in particular if parallel computing
is employed. However, to assess the performance of the model relative to sensitivity regarding
resolution it will suffice to include 2HD simulations with a 4′ resolution combined with a more
complete transect (1HD) grid refinement study in a transect. This transect, at 28◦ N, is the
middle one in figure 28. The northern and southern transects displayed in the figure are used
for error analysis in the 2HD simulations only.

To give an idea of the evolution of the wave system a few surface profiles, at 28◦ N, from the
2HD simulation, with γ = 0, are shown in figure 29. As time increases we observe a reduction of
wave heights, partly due to radial spreading and partly to frequency dispersion, stretching of the
leading crest and that the trailing waves eventually become higher than the leading one. For more
details and explanation we refer to [42]. From the figure we also observe that there are marked
deviations between the 2′ grid (with correction), and the 4′ grid without correction. These
differences increase with the distance from the start of the wave train and become particularly
evident when interference is important. With correction the 4′ grid yields very good agreement
with the 2′ grid nearly throughout the part of the wave train that is displayed. Even further
back the deviations will be larger and also more influenced by diffraction effects from islands and
continents that presumably are strongly grid dependent. The difference between the corrected
2′ and 4′ grids also appears to be larger at some of the peaks. To investigate this further we
compute the maxima by spline interpolation. Local maxima below 0.5m and maxima closer
than 0.5◦ to other maxima are ignored. In the latter case, if several maxima are clustered,
which may happen for fine grids, the highest one is selected. Figure 30, and table 3 confirm
that there are noticeable differences in the maxima also for the corrected simulations. Wave
peaks at the other transects are shown in figure 31. For the northern transect the waves reach
the American continental shelf already at roughly 57.2◦ W. Hence, an earlier time is selected
for this transect; when the waves enter the shelf a 4′ grid, in particular, becomes too coarse
to give any meaningful results. Again the positive effect of the correction terms is apparent
for the southern transect, while both 4′ grids are good for the first few peaks in the northern
transect. The evolution of the leading crest is very regular, while there are fluctuations in the

15∆ψ and ∆φ are the non-scaled counterparts to ∆x and ∆y, respectively, according to (7).
16The discrete nonlinear terms are computed, but the contributions are multiplied with zero. This is done to

avoid dry cells at the shore and to avoid problems with heavily under-resolved waves in shallow regions.
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Figure 26: Upper panel: east-west transect after t = 45min; Boussinesq results (B.), for 2′ and
0.5′ grid and linear dispersive results (d.).
Lower panel: southern transect after t = 45min; Boussinesq results marked by the number of
iterations.
All results inthis figure are obtained with optimized dispersion, in the lowe panel also numerical
corrections are used.
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Figure 27: The La Palma tsunami after 45min. Upper panel: contour graph of the surface
elevation. Lower panel: transect at 28◦ latitude, with a redefined origin close to the leading
crest.
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Figure 28: The three transects used for sensitivity studies.

grid 1 2 3 4 5 6 7

2′(c) 1.79 0.66 1.57 3.30 5.53 3.58 1.94
4′(c) 1.80 0.65 1.56 3.00 5.27 3.76 1.91
2′ 1.77 0.70 1.46 3.14 5.36 3.61 1.91
4′ 1.71 0.81 1.17 2.43 4.55 3.78 0.99

Table 3: Surface maxima, in sequence from the front of the wave train, in 28◦N transect after
6h 15.0min. The rows are marked by grid increments and an additional (c) if they correspond
to a simulation with correction terms.

deviations between the different solutions for the subsequent crests. Using the corrected 2′

simulation as reference we obtain the differences in figure 32. We observe that the 4′ results
start out with a common error due to interpolation errors in the initial condition. Then the
deviation from the reference solution diminishes, presumably due to increasing length of the
leading crest. The corrected 4′ solution rapidly becomes more accurate than the uncorrected
2′ solution. The final heights (t = 6h 45min) of the corrected and uncorrected 2′ simulations
are 1.586m and 1.564m, respectively. Since the corrected 2′ and 4′ solutions agree very closely
for the first two crests (figure 29 and table 3), we may assume that they describe the front of
the wave system accurately. This points to an error less than 1.5% for the leading crest of the
uncorrected solution with 2′ resolution. We may also estimate this error through the assumption
that the wave height for the uncorrected solution is approximately H∆ψ = H0 + b∆ψ2, where
H0 corresponds to the analytical value. The 4′ grid with Ik = 0 yields a leading peak height
equal to 1.509m. From H2′ and H4′ we then find H0 = 1.582m which is fairly consistent with
the previous error estimate of 1.5%.

An illustration of the overall importance of nonlinearity and optimised dispersion is given
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Figure 29: Surface profiles at 28◦ N. The curves are marked by grid increments and an additional
(c) if they correspond to a simulation with numerical correction terms. At this latidue one
longitudinal degree corresponds to 98.3 km.
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Figure 30: Surface maxima at 28◦ N. The curves are marked by grid increments and an additional
(c) if they correspond to a simulation with correction terms.
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Figure 31: Surface maxima at northern (upper panel) and southern (lower panel) transects. The
curves are marked by grid increments and an additional (c) if they correspond to a simulation
with correction terms.
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Figure 32: Convergence of 2HD model; deviations from the simulation with a 2′ grid and
numerical correction terms. The quantity δ is the difference in the height of the leading crest
and the numbers in the legend are grid increments in minutes.

Models 1 2 3 4 5 6 7

Bouss(o)+disp(o) 1.88 0.83 1.35 3.55 5.52 3.75 1.59
Bouss+disp 1.88 0.83 1.31 3.44 5.47 3.94 1.37
disp+disp 1.77 0.78 1.24 3.35 5.50 4.06 1.57

Table 4: Surface maxima, in sequence from the front of the wave train, in transect after 6h
15.0min. The rows are marked by combination of models used in regional and global simulations.
The (o) indicates that the optimal value of γ is used, otherwise γ = 0.

in figure 33 and table 4. Omission of nonlinearity in the regional simulation will alter the wave
height by typically 5− 8% when the waves have nearly crosed the Atlantic ocean. The effect of
dispersion optimisation is much smaller, but increases toward the rear of the wave train.
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Figure 33: Results for various model combinations at 28◦N transect at t = 6h 15min. The
two parts of the curve legend correspond to phase (ii) and (iii), respectively. ”Bouss” and
”disp” denotes Boussinesq and linear dispersive equations, respectively, while the ”(o)” indicates
optimized dispersion. All simulations are performed on a 2′ grid without numerical corrections.
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Figure 34: Differences in peak height in plane simulations. The curves are identified by the grid
factor Fg and an ’c’ when correction terms are used.
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5.3 Transect simulations in 1HD

Even though the 2HD simulations provide a reasonably good basis for estimation of accuracy
it is useful to pursue the grid refinement further in 1HD transect simulations which allow a
wider span in grid resolution. Then the transect at 28◦ N is used. Plane simulations, such as
these, are most conveniently performed with Cartesian coordinates. The origin is selected at
90◦ W and we define a reference grid corresponding to 2′, which yields ∆x∗r = 3.3 km, and a
refinement factor Fg = ∆x∗/∆x∗r . This factor ranges from 8 (finest grids) to 0.5 (corresponding
to 4′). The corrected simulation with Fg = 8 is chosen as reference and deviations in peak
heights are displayed in figure 34. The minimum separation distance is now set to 1 km. The
first peak is very well reproduced by Fg = 1 when the correction terms are retained, while also
the corrected method with Fg = 0.5 yields good agreements with the reference solution. The
uncorrected simulations yield larger errors. Clearly, the deviations are larger for the second and
third peak, but the corrected method still performs well with Fg = 1 and Fg = 0.5. In relative
terms Fg = 1, without corrections, and Fg = 0.5, with corrections, yield more comparable
errors for the following crests than the first one. We note that in 1HD simulations we have no
radial spreading and the leading crests become much higher (finally around 8m, 10m and 11m,
respectively). This must be kept in mind with relation to interpretation of the errors.

The depth related corrections have been left out in all simulations. Still, we obtain a good
effect of the numerical correction terms even for grids with 4′ spatial increments. This suggest
that the correction terms are useful also in realistic simulations with digitised bathymetries.

6 Remarks

The analysis, tests and applications in this report demonstrate that the proposed model, in-
cluding mathematical formulation, numerical algorithm and implementation in computer code,
works correctly and efficiently, within its limitations. In its present form it is an adaptation
and extension of an preceding numerical technique. The motivation is long distance propaga-
tion of weakly dispersive tsunamis. For this purpose the model is very well suited. It is also
very useful for weakly nonlinear and dispersive propagation of waves in other contexts where a
neutrally stable method, also in relation to nonlinearity, is required. However, while we believe
that concerning the documentation and validation this report is comparable, at least, to most
other treatises of its kind, our model still lacks a number of the features found in, for instance,
the FUNWAVE/COULWAVE models. Some of the features in question may be included later,
while others may never be included. It is anyhow important that the model stays comparatively
simple and efficient. Some lacking features, that may be included in the future, can be identifies
as

• A runup model.

• Inclusion of breaking waves.

• Put the model in a framework for large scale parallel computing and combination with
other types of tsunami models.

• More general and flexible inclusion of tsunami sources.

60



• Full nonlinearity, such as in FUNWAVE/COULWAVE. This feature may enhance the
performance of the method in some coastal engineering applications. On the other hand,
the gain is small in other applications [13, 34, 24].

A Long wave equations

We employ a typical depth d and a wavelength L as vertical and horizontal length scales,
respectively. The choice of L, in particular, is ambiguous and it may also correspond to other
lengths than that of a wave. Identifying the time scale tc = L/

√
gd, where g is the acceleration of

gravity, and the dimensionless amplitude, ǫ, we define ǫL/tc, ǫd/tc and ǫd, respectively, as scales
for horizontal velocity, vertical velocity and surface elevation. Whereas the extraction of the
amplitude factor, ǫ, is convenient for classification and description of long wave models, it will
generally make results from computations less transparent. Hence, we will in graphs modify the
scaling in a way that corresponds to putting ǫ = 1 instead of invoking some amplitude measure.

Different long wave equations can be obtained through perturbation expansions in µ ≡ d/L
and ǫ and may then be classified according to which orders of these parameters that are retained
in the equations. Omission of all µ terms yields the nonlinear shallow water (NLSW) equations,
while retaining second order in µ yields Boussinesq type equations that are available in a series of
varieties [38, 44, 22]. Long wave theory prescribes a simple vertical structure of the field variables.
In NLSW theory the horizontal velocity is vertically uniform and the pressure hydrostatic.
Therefore, the vertical coordinate, z, vanishes from the equations. When O(µ2) terms are
retained there are vertical variations in the horizontal velocity. Still, the explicit appearance of
z is removed from the continuity and momentum equations by integration. Hence, in this form
they are often referred to as “depth integrated equations”. The spatial dimension of the partial
differential equations is then reduced by one. Furthermore, the nonlinear free surface appear
only through nonlinear coefficients. These features make long wave formulations well suited for
numerical solution. Regardless of the mathematical reduction of dimension, we will still refer to
problems as two- or three dimensional according to the physical configuration.

The order of a long wave equation is reflected in the dispersion characteristics. According
to full potential theory the dispersion relation of a linear, sinusoidal wave reads (depth: h = 1)

c2 =
1

kµ
tanh(µk) = 1 − 1

3
(µk)2 +

2

15
(µk)4 + ..., (79)

where c is the phase speed and k is the wave number. Shallow water theory only reproduces the
first term on the right hand, while traditional Boussinesq equations yield the first two. However,
as we will see below, different formulations valid to O(µ2) give different dispersion properties.
They may even reproduce the O(µ4) term in (79) correctly or display an extended validity range.

A.1 Boussinesq theory

During the last fifteen years fully nonlinear Boussinesq type equations with improved dispersion
properties have been put to work in computer models. Following [10] we write a set of fully
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nonlinear Boussinesq equations on the form

ηt = −∇ ·
[

(h+ ǫη)(v + µ2M)
]

+O(µ4), (80)

vt +
ǫ

2
∇(v2) = −∇η − µ2

[

1

2
z2
α∇∇ · vt + zα∇∇ · (hvt)

]

(81)

+ǫµ2∇(D1 + ǫD2 + ǫ2D3) +O(µ4) + N + E,

with

M =

[

1

2
z2
α − 1

6
(h2 − ǫhη + ǫ2η2)

]

∇∇ · v +

[

zα +
1

2
(h− ǫη)

]

∇∇ · (hv),

D1 = η∇ · (hvt) −
1

2
z2
αv · ∇∇v − zαv · ∇∇ · (hv) − 1

2
(∇ · (hv))2,

D2 =
1

2
η2∇ · vt + ηv∇∇ · (hv) − η∇ · (hv)∇ · v,

D3 =
1

2
η2
[

v · ∇∇ · v − (∇ · v)2
]

,

and where the index t denotes temporal differentiation, h is the equilibrium depth, η is the
surface elevation, v is the horizontal velocity evaluated at z = zα and ∇ is the horizontal
component of the gradient operator. The heuristic terms N and E in the momentum equation
(81) represent bottom drag and artificial diffusion, respectively. This particular form of the
leading dispersion (ǫ0µ2) term was discussed and tested by [23], while additional nonlinearity
was added by [6].

A similar formulation, with the velocity potential as primary unknown instead of the velocity,
is found in [4]. Applying transformations and deletion of various higher order terms to the set
(80) and (81) we may reproduce a number of other Boussinesq type equations from the literature
[23, 6, 14]. As pointed out in the reference [6] weakly nonlinear versions, in the sense that some
or all O(ǫµ2) terms are omitted, may sometimes yield nonzero volume flux at the shoreline of a
sloping beach. This should in particular be avoided for runup simulations.

When h is constant and ǫ→ 0 Boussinesq equations on the form (80,81) yield c2 as a rational
function of µ2k2

c2 = h
1 − αµ2h2k2

1 + βµ2h2k2
, (82)

where β = − zα

h − z2α
2h2 and α = 1

3 − β. The latter identity assures that we always reproduce the

O((kh)2) term in (79), regardless of the value of zα. For zα = (
√

1/5 − 1)h the expression (82)
reproduces the first three terms in the expansion (79), while zα = −0.531h yields a particularly
favourable dispersion relation over an extended range of wave numbers. (see figures 35 and 36).
With zα = (

√

1/3 − 1)h the velocity v differs from the depth depth averaged velocity (v) by
O(ǫµ2), only. If we then delete all O(ǫµ2) terms in (80) and (81) we retrieve the traditional
Boussinesq equations for constant depth. These possess a dispersion relation that is clearly
inferior to the optimal version of (80,81) (figure 35).

A.2 Standard and “mild-slope” Boussinesq equations

In general, the form of the volume flux in (80) implies17 v = v + µ2M. Differentiating this
relation with respect to time, inserting the resulting expression for vt in (81), and invoking

17To reproduce v from v in non-constant depth we would have to employ a time dependent zα.
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Eq. 79

zα = (
√

1
3 − 1)h

zα = −0.531h

KdV

LSW

λ/d

c∗√
gd

Figure 35: The phase speed as function of wavelength for long wave equations compared to that
of the fully inviscid set. The curve for the Korteweg-deVries (KdV) equation is included for
comparison.

Eq. 79

zα = (
√

1
3 − 1)h

zα = −0.531h

KdV

LSW

λ/d

c∗g√
gd

Figure 36: The group velocity as function of wavelength for long wave equations compared to
that of the fully inviscid set. The curve for the Korteweg-deVries (KdV) equation is included
for comparison.
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v = v + O(µ2) in nonlinear and dispersive terms we obtain the standard Boussinesq equations
that inherit errors of order ǫµ2, µ4

∂η

∂t
= −∇ · ((h+ ǫη)v) , (83)

∂v

∂t
+ ǫv · ∇v = −∇η +

µ2

2
h∇∇ · (h∂v

∂t
) − µ2

6
h2∇2∂v

∂t
(84)

+O(µ4, µ2ǫ) + N + E.

If we delete N and E we may invoke the depth averaged velocity potential and the standard
Boussinesq equations take on the form [26, 17]

∂η

∂t
= −∇ ·

[

(h+ ǫη)∇φ+ µ2G2

]

+O(µ4, µ2ǫ), (85)

∂φ

∂t
+

1

2
ǫ(∇φ)2 + η + µ2G1 = O(µ4, µ2ǫ). (86)

The terms G1 and G2 are dispersion terms that may be written according to

G1 = −1

2
h∇ · ∇(h

∂φ

∂t
) +

1

6
h2∇2∂φ

∂t
, (87)

G2 = h

(

1

6

∂η

∂t
− 1

3
∇h · ∇φ

)

∇h. (88)

It must be emphasized that the sets (83,84) and (85,86) are far from equivalent, unless the depth
is constant. The relation between the velocity and potential then reads

v = ∇φ, (89)

and the formulations share the same curve in figure 35. However, in case of variable depth
the relation between v and φ is much more complex and the appearance of depth gradients in
(85) and (86) is both inconvenient and prone to instabilities that are pursued in an ongoing
parallel investigation. Assuming a mild bottom variation we may delete depth gradients in the
dispersion terms and employ the simpler relations

G1 = −1

3
h2∇2∂φ

∂t
, G2 = 0. (90)

In view of the approximations implicit in (90) it is now consistent to employ the relation (89)
also for non-constant depth.

Subsequently we will refer to the set (83) and (84) as the standard Boussinesq equations,
while (85) and (86) with (90) will be denoted as “mild” or “mild-slope” Boussinesq equations.
The latter formulation is, maybe, the simplest Boussinesq equation that can be employed for
propagation of nonlinear and weakly dispersive waves.

A.3 The standard formulation with improved dispersion properties

As an alternative to procedure in section A.1 we may employ a simple idea proposed by Madsen
and co-workers in a series of papers [22] to obtain improved dispersion properties. Starting with
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the standard formulation, (83) and (84), we simply add an extra term of order µ4, ǫµ2 to the
latter equation. This term is of the form µ2G, where

G = −h2γ∇2(
∂v

∂t
+ ∇η) = O(µ4, ǫµ2)

where the last identity follows from the leading order balance of the momentum equation. The
modified momentum equation then becomes

∂v
∂t + ǫv · ∇v = −∇η − γµ2h2∇2∇η + µ2

2 h∇∇ · (h∂v∂t )
−µ2(1

6 + γ)h2∇2 ∂v
∂t +O(µ4, µ2ǫ) + N + E.

(91)

The factor γ may be used to optimize the dispersion properties, in analogy to zα. We again
obtain a dispersion relation of the form (82) with α = γ. Hence, we have dispersion properties
identical to those of (80,81) when

γ =
1

3
+
zα
h

+
1

2

z2
α

h2
(92)

The optimal value zα = −0.531h then corresponds to γ = −0.057. Naturally, the common disper-
sion relation must imply that also the differential equations are equivalent. This is demonstrated
most simply by starting with (80). We insert constant depth, omit nonlinearities, employ (92)
and make the identification

v = v + µ2h2γ∇∇ · v. (93)

This immediately reproduces the continuity equation for the depth averaged velocity. We make
the same assumptions in (81), delete the ad-hoc terms, invokes the above relation, and arrive at

∂v

∂t
= −∇η + µ2h2(

1

3
− γ)∇∇ · ∂v

∂t
.

From this momentum equation we readily obtain an expression for γµ2h2∇∇2η in terms of v
and v. When this expression is subtracted from the right hand side of the above momentum
equation we may use (93) once more to eliminate v and obtain a result that is identical to (91)
without variable depth, nonlinearities and ad-hoc terms.

Compared to the standard formulation without the dispersion term, third order derivatives
of η have appeared. In some numerical methods this, combined with nonlinear terms, may lead
to an increased sensitivity with respect to noise production. Extra caution is also needed for
application of boundary conditions. We observe that also the Boussinesq equations in section A.1
correspondingly display higher order derivatives in the equation of continuity. In addition, this
formulation involves third order derivatives of the depth. On the other hand, when higher order
numerical schemes are applied higher order differences is bound to show up anyhow. Hence,
it is quite open which version of the improved Boussinesq equations that is favourable from a
numerical point of view. However, the improved standard formulation is somewhat simpler. We
note that (91) still inherits errors of order µ2ǫ, that are not present in (81).

A.4 Potential formulations with improved dispersion properties

Staying with a mild-slope approximation the formulation of [4] corresponds to

G1 =

(

1

2
z2
α + zαh

)

∇2 ∂φ

∂t
, (94)

G2 = −h
(

1

6
h2 − 1

2
(zα + h)2

)

∇3φ, (95)
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where φ now is the value of the potential at vertical location zα. With these dispersion terms
we reproduce (82). The cost is the appearance of a fourth derivative of the potential in the
continuity equation.

An alternative is to stick with the depth averaged potential and rewrite the dispersion term
G1 by means of ∂φ/∂t + η = O(µ2, ǫ):

G1 = γh2∇2η − (
1

3
− γ)h2∇2 ∂φ

∂t
, G2 = 0. (96)

Here γ has the same role as in (91).
One might be tempted to combine the potential at zα with a modification like (96) of the

dispersion term of the momentum equation. The dispersion relation would then take on the
form

c2 = h
1 − αµ2h2k2 + κµ4h4k4

1 + βµ2h2k2
, (97)

where we still have α = 1
3 − β. Unfortunately, (97) is an unsound expression. If κ < 0 the

numerator becomes negative for large k with resulting instability. On the other hand, if κ > 0
c→ ∞ as k → ∞ which is another undesirable property.

A.5 Shallow water equations

Deletion of all O(µ2) terms simplifies (80,81) to the NLSW equations. The pressure gradient
in the momentum equation then becomes ∇η, corresponding to hydrostatic pressure. As a
consequence the horizontal velocity becomes independent of z. The NLSW equations lack the
important effect of wave dispersion and may lead to erroneous results for long term propagation,
even if the waves are long compared to the depth[38]. However, they are still a quite reasonable
option for surf zone dynamics and are, by far, the most commonly used framework for runup
calculations, as well as tsunami and storm surge models.

If the NLSW equations are linearized to yield the LSW equations, we may eliminate the
velocity to obtain the standard wave equation

ηtt −∇ · (h∇η) = 0. (98)
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