

© 2003 WebCT, Inc.

®

WebCT® Campus Edition 4.0

Technical Reference Guide

Technical Communications

April 30, 2003

© 2003 WebCT, Inc.

Use of this guide is subject to the terms and conditions of the Software License Agreement for WebCT Campus Edition. The
information contained herein is provided “as is” and is subject to change without notice. WebCT, Inc. and/or its licensors may
make improvements and/or changes in the products described herein at any time. This guide may include technical inaccuracies
or typographical errors. WEBCT, INC. MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS GUIDE,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. WEBCT, INC. SHALL NOT BE LIABLE FOR ANY ERRORS OR FOR SPECIAL, INDIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR
USE OF THIS GUIDE OR THE EXAMPLES HEREIN.

This guide is copyright © 2003 WebCT, Inc. All rights reserved.

Complying with all copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this
guide may be reproduced, distributed, displayed, stored in or introduced into a retrieval system or transmitted in any form or by
any means (electronic, mechanical, photocopying, recording or otherwise), for any purpose, without the express written
permission of WebCT, Inc.

WebCT is a registered trademark in the U.S. Patent and Trademark Office and in the European Union. The WebCT product
names referenced herein are either registered trademarks or trademarks of WebCT, Inc. in the United States and other
jurisdictions.

SCT, Banner, Plus, and Campus Pipeline are either registered trademarks or trademarks of Systems & Computer Technology
Corporation in the United States and/or other countries.

WebEQ is a trademark of Design Science, Inc.

MathML is a trademark of the W3C.

Microsoft, Windows, and Internet Explorer are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

UNIX is a registered trademark of The Open Group.

Intel is a registered trademark of Intel Corporation.

Sun, Sparc, Solaris, all Sun-based marks, Java, and Java-based trademarks are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

Mac and all Mac-based marks are trademarks of Apple Computer, Inc., registered in the U.S. and other countries.

Netscape, the Netscape N, and Ship's Wheel logos are registered trademarks of Netscape Communications Corporation in the
United States and other countries.

AOL is a registered trademark of America Online, Inc.

VeriSign is a registered trademark of VeriSign.

All other product names, company names, marks, logos, and symbols are trademarks of their respective owners.

ABOUT THIS GUIDE... 8
Section 1: Campus Edition Focus License ___ 8
Section 2: Campus Edition Institution License __ 8

INTERNATIONAL SUPPORT.. 10
Overview... 10

Some background ___ 10
How to display multiple languages in the same course in the same WebCT installation 10

Creating courses to display multiple languages___ 10
Converting courses from one character set to another__ 11
Importing data into WebCT__ 11

Using the Standard API .. 12
Using the IMS API ... 12

Exporting data from WebCT ___ 13
SECTION 1: CAMPUS EDITION FOCUS LICENSE ... 14
CHAPTER 1 USER AUTHENTICATION.. 15

Choosing An Authentication Method.. 15
Browser-Based Authentication Process___ 15
Ticket Based Authentication Process __ 16
How WebCT Generates Tickets __ 16

Implementing Ticket Based Authentication .. 16
CHAPTER 2 STANDARD API.. 18

Overview of the Standard Application Programming Interface... 18
Choosing the Appropriate Interface for your Requirements .. 18
Functionality in the Standard API.. 18
Implementing the Standard API ... 19

Command Line Interface (webctdb) ___ 19
Syntax ... 19
Functions .. 23

Adding users ... 23
Adding a single user to the global database.. 23
Adding a single user to the student database .. 24
Adding multiple users to the global database ... 24
Adding multiple users to the student database.. 26

Updating users .. 26
Updating a single user in the global database... 27
Updating a single user in the student database ... 27
Updating multiple users in the global database .. 28
Updating multiple users in the student database... 29

Deleting users ... 30
Deleting a single user from the global database ... 30
Deleting a single user from the student database.. 30
Deleting multiple users from the global database... 31
Deleting multiple users from the student database ... 31

Finding users... 32
Finding a user in the global database.. 32
Finding a user in the student database .. 33

Changing WebCT IDs .. 33

© 2003 WebCT, Inc. 3

Changing a single user’s WebCT ID .. 33
Changing multiple users’ WebCT IDs ... 34

Web-based Interface (serve_webctdb) ___ 34
1. Setting the API Shared Secret Value .. 35
2. Developing a Program to Generate an HTTP Request ... 36

Creating Message Authentication Codes.. 36
Option 1: Using the get_authentication C function .. 36
Option 2: Using the Message Authentication Code Generator (get_md5 executable) 37
Option 3: Create a MAC using a language of your own choice ... 38

How the serve_webctdb MAC is Generated .. 38
Assembling the HTTP request.. 38

Syntax ... 39
Functions .. 40

Adding users ... 40
Adding a user to the global database .. 40
Adding a user to the student database... 41

Updating users .. 42
Updating a user in the global database ... 42
Updating a user in the student database.. 43

Deleting users ... 45
Deleting a user from the global database.. 45
Deleting a user from the student database .. 45

Finding users... 46
Finding a user in the global database.. 46
Finding a user in the student database .. 47

Changing WebCT IDs .. 48
Changing a user’s WebCT ID... 48

SECTION 2: CAMPUS EDITION INSTITUTION LICENSE ... 49
CHAPTER 1 USER AUTHENTICATION.. 50

Choosing An Authentication Method.. 50
Browser Based Authentication Process___ 50
Ticket Based Authentication Process __ 51
How WebCT Generates Tickets __ 51

Implementing Ticket Based Authentication .. 51
Choosing an Authentication Source ___ 52

Using one authentication source... 52
Using multiple authentication sources.. 53
Specifying the LDAP settings .. 55
Specifying the Kerberos settings .. 55
Specifying the Windows 2000 Domain Controller settings ... 55

Implementing Custom Authentication... 56
UNIX/Linux ___ 56
WINDOWS 2000 ___ 57

CHAPTER 2 AUTOMATIC SIGNON FROM OTHER SYSTEMS... 58
Automatic Signon Process .. 58
Implementing Automatic Signon... 59

Setting Shared Secret Values and Enabling Ticket Based Authentication __________________________ 59
Developing a Program to Automatically Authenticate a User ___________________________________ 60

Creating Message Authentication Codes.. 60
Option 1: Using the get_authentication C function .. 60
Option 2: Using the Message Authentication Code Generator (get_md5 executable) 61

© 2003 WebCT, Inc. 4

Option 3: Create a MAC using a language of your choice ... 61
Finding the IMS ID for Automatic Signon... 62

Finding the IMS ID using the Web-based IMS API... 62
Finding the IMS ID using the command line IMS API.. 62

Finding WUUIs .. 63
Finding the WUUI using the Web-based Standard API ... 63

Find a user’s WUUI from an IMS ID... 64
Finding the WUUI using the command line Standard API .. 64

Making a Request to the Automatic Signon CGI ... 65
How the Automatic Signon MAC is Generated ... 65

CHAPTER 3 OVERVIEW OF THE APPLICATION PROGRAMMING INTERFACES ... 67
Differences Between the IMS Enterprise API and the Standard API ... 67

Functional Differences ___ 67
Operational Differences___ 68

Choosing the Appropriate Interface for your Requirements .. 68
CHAPTER 4 IMS ENTERPRISE API.. 70

IMS API Adaptors... 70
SIS Grade Export.. 71

Functionality in the IMS Enterprise API .. 71
Terminology.. 71
Implementing the IMS API ... 72

Command line interface (ep_api.pl) ___ 73
Syntax ... 73
Functions .. 74

Import ... 74
IMS Import Logging... 75

Export ... 78
IMS Export Logging... 81

Configure .. 82
Ims Configuration Logging .. 83

Web-based interface (serve_ep_api.pl) ___ 84
Setting the API Shared Secret Value .. 84
Developing a Program to Generate an HTTP Request ... 85

Creating Message Authentication Codes.. 85
Option 1: Using the get_authentication C Function ... 85
Option 2: Using Message Authentication Code Generator (get_md5 executable)............................. 86
Option 3: Create a MAC using a language of your own choice ... 87

How the serve_ep_api.pl MAC is Generated ... 87
Generating a checksum... 88
Assembling the HTTP request.. 88

XML File Format Guidelines ... 90
IMS objects and WebCT relationships ... 91

Properties object: System identifier.. 91
Group object: Course.. 91
Orgunit Object: Categories ... 92
Relationship Object: Cross-listed Courses ... 93
Person object: User ... 98
Membership Object: User Type.. 99
Specific Group Object: Terms .. 102

Complete specifications.. 105
Other XML considerations ... 105

© 2003 WebCT, Inc. 5

Syntax ... 105
Functions .. 106

Import ... 106
Export ... 108
Configure .. 111

CHAPTER 5 STANDARD API.. 113
Functionality in the Standard API.. 113
Implementing the Standard API ... 114

Command Line Interface (webctdb) __ 114
Syntax ... 114
Functions .. 117

Adding users ... 117
Adding a single user to the global database.. 117
Adding a single user to the student database .. 118
Adding multiple users to the global database ... 118
Adding multiple users to the student database.. 119

Updating users .. 120
Updating a single user in the global database... 120
Updating a single user in the student database ... 120
Updating multiple users in the global database .. 121
Updating multiple users in the student database... 123

Deleting users ... 124
Deleting a single user from the global database ... 124
Deleting a single user from the student database.. 124
Deleting multiple users from the global database... 124
Deleting multiple users from the student database ... 125

Finding WUUIs .. 125
Finding WUUIs using IMS IDs.. 126

Finding users... 126
Finding a user in the global database.. 126
Finding a user in the student database .. 127

Changing WebCT IDs .. 127
Changing a single user’s WebCT ID .. 127
Changing multiple users’ WebCT IDs ... 127

Exporting myWebCT in XML format .. 128
Web-based Interface (serve_webctdb) __ 129

Setting the API Shared Secret Value .. 129
Developing a Program to Generate an HTTP Request ... 130

Creating Message Authentication Codes.. 130
Option 1: Using the get_authentication C Function ... 130
Option 2: Using the Message Authentication Code Generator (get_md5 executable) 131
Option 3: Create a MAC using a language of your own choice ... 132

How the serve_webctdb MAC is Generated .. 132
Assembling the HTTP request.. 132

Syntax ... 132
Functions .. 134

Adding users ... 134
Adding a user to the global database .. 134
Adding a user to the student database... 135

Updating users .. 136
Updating a user in the global database ... 136

© 2003 WebCT, Inc. 6

Updating a user in the student database.. 138
Deleting users ... 139

Deleting a user from the global database.. 139
Deleting a user from the student database .. 139

Finding WUUIs .. 140
Examples .. 140
Finding a user’s WUUI from a WebCT ID .. 140
Finding a user’s WUUI from an IMS ID.. 141

Finding users... 141
Finding a user in the global database.. 141
Finding a user in the student database .. 142

Changing WebCT IDs .. 143
Changing a user’s WebCT ID... 143

Exporting myWebCT in XML format .. 143
RESOURCES... 145

LDAP Resources... 145
Web Sites___ 145

Kerberos Resources.. 145
Web Sites___ 145

IMS Resources .. 145
Web Sites___ 145

APPENDIX ... 146
Supported Character Sets ... 146

© 2003 WebCT, Inc. 7

ABOUT THIS GUIDE
The Technical Reference Guide: WebCT Campus Edition 4.0 is a how-to manual for carrying out advanced
administration, integration and reporting tasks not available through the administrator interface. It is written for
system administrators and Web developers who are deploying WebCT Campus Edition 4.0 for Focus License
holders and WebCT Campus Edition 4.0 for Institution License holders.

This guide is separated into two main sections, one for each of the two license types available. Prior to the two
sections is a chapter describing WebCT’s International Support, which describes how administrators can enable
courses to display multiple languages through WebCT system administrator interface settings, and through
Standard and IMS API commands.

SECTION 1: CAMPUS EDITION FOCUS LICENSE
Campus Edition Focus Use License holders have access to the Standard API, which provides advanced
WebCT administrative and reporting functions. Examples in this guide focus primarily on syntax and assume a
strong Web programming background. For more detailed examples, download the Practical Examples
document from the WebCT Documentation, API Guides section at http://download.webct.com.

An overview of Section 1 follows:

Chapter 1: User Authentication
� Describes methods for providing secure access to WebCT.

Chapter 2: Standard API
� Describes how to add, update, and delete one or multiple users.
� Describes how to find users in the global or student database.
� Describes how to change WebCT IDs.

SECTION 2: CAMPUS EDITION INSTITUTION LICENSE
Campus Edition users have access to the IMS API and the Standard API. The IMS API enables integration
with existing campus systems, such as student information systems and portals. The Standard API allows
access to advanced WebCT administrative and reporting functions.

Examples in this guide focus primarily on syntax and assume a strong Web programming background. For
more detailed examples, download the Practical Examples document from the WebCT Documentation, API
Guides section at http://download.webct.com.

An overview of Section 2 follows:

Chapter 1: User Authentication
� Describes methods for providing secure access to WebCT, using one or more

authentication sources.

Chapter 2: Automatic Signon from Other Systems
� Describes how to implement automatic signon.

Chapter 3: Overview of the Application Programming Interfaces

© 2003 WebCT, Inc. 8

� Describes the functional and operational differences between the IMS Enterprise API and
the Standard API.

Chapter 4: IMS Enterprise API
� Describes how to import data into the WebCT database, export data from the WebCT

database, and how to set the IMS ID for group and person objects.
� Describes log files created during IMS import, export and configure events.

Chapter 5: Standard API
� Describes how to add, update, and delete one or multiple users.
� Describes how to find WUUIs and how to find users in the global or student database.
� Describes how to Change WebCT IDs.
� Describes how to export myWebCT in XML format.

© 2003 WebCT, Inc. 9

INTERNATIONAL SUPPORT

OV E R V I E W
WebCT Campus Edition supports both ISO 8859-1 and UTF-8 character sets. Functionality in the Standard
API, the IMS API, and the system administrator interface allow multiple languages to be displayed in the same
course in the same WebCT installation. This is required, for example, if an instructor teaching a Japanese
course to English speaking students wants English and Japanese characters to be displayed in the same course.
Note that while a course can display multiple languages, the actual course content will continue to be in one
language. In the course described above, the language of the course would be English, but an instructor can
upload and display Japanese files in the course.

SOME BACKGROUND
Textual data in a file is input and displayed in a character set, which is a specific collection of characters
representing an alphabet. The ISO-8859-1 character set, for example, can display a file written in English,
French, Spanish and most other Western European languages. In previous versions of WebCT, the ISO-8859-1
character set was used exclusively. If a file is encoded in a character set other than ISO-8859-1, such as
Japanese, the characters in this file would be displayed incorrectly in a WebCT course.

WebCT now allows files to be converted to the UTF-8 character set, which supports over 650 of the world’s
languages including Japanese, Chinese, Russian, French, and German. Once converted, files are saved in
WebCT’s database in the UTF-8 character set.

Important: Courses converted from UTF-8 to ISO-8859-1 may lose some characters in the conversion.

HO W T O D I S P L A Y M U L T I P L E L A N G U A G E S I N T H E S A M E
C O U R S E I N T H E S A M E WE BCT I N S T A L L A T I O N
Displaying course material in multiple languages requires some work by a system administrator. This work
revolves around the requirement that WebCT know the character set of the data it is dealing with to properly
support the mixing of character sets. Administrators will need to perform tasks related to internationalization
when doing the following:

• Creating courses to display multiple languages
• Converting courses from one character set to another
• Importing data into WebCT
• Exporting data from WebCT

Details about each task are provided below.

CREATING COURSES TO DISPLAY MULTIPLE LANGUAGES
WebCT ships with two default English language plug-ins: English ISO-8859-1 and English UTF-8. In addition,
you can install other language plug-ins, each of which will have a UTF-8 version. A setting in the WebCT
administrator interface allows you to choose one of the installed languages as the default language to be used
when creating new courses. If your instructors have a common need to mix characters from different languages
within courses then you should select a UTF-8 language as the default setting for new courses, and selectively

© 2003 WebCT, Inc. 10

create ISO-8859-1 courses only as required. However, if a majority of your instructors use ISO-8859-1 files for
their course content then you should select an ISO-8859-1 language as the default setting for new courses, and
selectively create UTF-8 courses only as required.

Note:

• If new courses are created in the UTF-8 character set, this enables designers of mixed language
courses to upload files as UTF-8.

• If new courses are not created in the UTF-8 character set, designers do not have access to the
functionality allowing them to upload files as UTF-8.

For instructions on setting the default language for new courses, see the appropriate version of the
System Administrator’s Guide: WebCT Campus Edition, Chapter 5, User Management, “Setting the Default
Language for New Courses.”

CONVERTING COURSES FROM ONE CHARACTER SET TO ANOTHER
Courses created in previous versions of WebCT will commonly be in the ISO-8859-1 character set. If required,
these courses can be converted to the UTF-8 character set. Courses can also be converted from UTF-8 to ISO-
8859-1. You can perform the conversion using a command line utility. For instructions, see the appropriate
version of the System Administrator’s Guide: WebCT Campus Edition, Chapter 3, Course Management,
“Converting the Course Character Set.”

Note: Converting courses using this utility will convert all content in a course except Mail and Discussions
attachments.

IMPORTING DATA INTO WEBCT
The character set for the administrator interface is always UTF-8. If you use the administrator interface or the
API to import data that is encoded in a character set other than UTF-8, WebCT converts the data to UTF-8. In
the administrator interface, there is a setting that allows you to select the character set of your region so that
whenever you import or export data, the data can be converted. The default is set to convert from ISO-8859-1.

You can override this default setting when importing using the command line interface to the Standard API and
the IMS API. For example, if you are importing a UTF-8 file and your administrator interface character set is
ISO-8859-1, you can override this setting.

We recommend you configure any background scripts that use the Standard or IMS API to specify an override for
the default character set. Further details and instructions to perform each of these tasks are provided in the next
section.

For instructions on selecting the character set of your region, see the appropriate version of the System
Administrator’s Guide: WebCT Campus Edition, Chapter 5, User Management, “Set the Character Set for
Imported and Exported Administrator File.”

Note: This setting does not change the language of the administrator interface. To change the language, see the
appropriate version of the System Administrator’s Guide: WebCT Campus Edition, Chapter 5, User
Management, “Set the Language for the WebCT Administrator Interface.”

© 2003 WebCT, Inc. 11

USING THE STANDARD API

To override the character set for imported and exported administrator files when using the
command line interface to the Standard API
When you perform an operation using the Standard API, you can override the character set for imported and
exported administrator files, which is set in the administrator interface. For example, to import a file created in
UTF-8 through the command line interface when your character set for administrator is ISO-8859-1, you will
need to override the file character set by specifying a character set of UTF-8 at the command line. See Section
1: Campus Edition Focus License, Chapter 2 Standard API, Implementing the Standard API,Command Line
Interface (webctdb), page 19 in this guide for details about how to set the CHARSET parameter.

To override the character set for imported and exported administrator files when using the
Web interface to the Standard API
Some system administrators have created scripts that automatically import data files from outside systems to
WebCT on a regular basis. By default, these scripts rely on the character set for imported and exported
administrator files, which is set in the administrator interface. You should change all automatic scripts to
explicitly specify the character set of the files being imported to match the actual character set of the source
data. This will ensure that background scripts import data smoothly, no matter the changes made to the
character set for imported and exported administrator files. See Section 1: Campus Edition Focus License,
Chapter 2 Standard API, Implementing the Standard API,Command Line Interface (webctdb), page 19 in this
guide for details about how to set the CHARSET parameter.

USING THE IMS API

To override the character set for imported and exported administrator files when using the
command line interface to the IMS API
XML header files contain a tag specifying the character set of the file. This tag will override the character set
for imported and exported administrator files, which is set in the administrator interface. However, as some
sources of IMS XML data will generate files in which the tag indicating the character set in the header doesn't
match the actual character set used in the contents of the file, it is recommended that you always specify the file
character set parameter at the command line to override the XML header tag. This will ensure data is imported
correctly. See Section 2: Campus Edition Institution License, Chapter 4 IMS Enterprise API, Import, Example
2 page 75 in this guide for details about how to set the CHARSET parameter.

To override the character set for imported and exported administrator files when using the
Web interface to the IMS API
Some system administrators have created scripts that automatically import data files from outside systems to
WebCT on a regular basis. By default, these scripts rely on the character set for imported and exported
administrator files, which is set in the administrator interface. You should change all automatic scripts to
explicitly specify the character set of the files being imported to match the actual character set of the source
data. This will ensure that background scripts import data smoothly, no matter the changes made to the
character set for imported and exported administrator files. See Section 2: Campus Edition Institution License,
Chapter 4 IMS Enterprise API, Import, Example 2 page 75 in this guide for details about how to set the
CHARSET parameter.

© 2003 WebCT, Inc. 12

EXPORTING DATA FROM WEBCT
To ensure that data exported from WebCT can be displayed correctly in the target system, the character set for
imported and exported administrator files, which is set in the WebCT administrator interface, must match the
character set of the local machine used by the target system for viewing exported files. You should specify the
setting to match the machine to which you most often export, which may be your own. Exported files are
converted to the character set specified in the setting.

If the target system requires a different character set than that indicated in the setting, you can override the
setting. You can do so using the command line interface of the Standard API and the IMS API. See the relevant
sections of the Importing data into WebCT in this guide for details.

We recommend you configure any background scripts that use the Standard or the IMS API to always specify
an override for the default character set. See the relevant sections of the Importing data into WebCT in this
guide for details.

© 2003 WebCT, Inc. 13

SECTION 1: CAMPUS EDITION FOCUS LICENSE

© 2003 WebCT, Inc. 14

CHAPTER 1 USER AUTHENTICAT ION
WebCT Campus Edition 4.0 provides two major methods for user authentication:

Browser Based
Authentication

• Users are authenticated through a browser dialog box that prompts
for a username and password. The username and password are
verified against WebCT’s internal database. If the user is
authorized, a Basic Authentication Header is provided. Subsequent
page accesses to WebCT are authorized according to the browser
header.

• This authentication method is used in previous versions of
WebCT.

Ticket Based
Authentication

• Users are authenticated through a login page that prompts for a
username and password. The username and password are verified
against WebCT’s internal database. If the authentication is
successful, the user is issued a browser cookie that serves as a
ticket. Subsequent page accesses to WebCT are authorized
according to the ticket.

CH O O S I N G AN AU T H E N T I C A T I O N ME T H O D
Certain features of WebCT Campus Edition 4.0 require ticket-based authentication, including:

• Logout
• Server lockdown
• Session timeout
• Customizable login page

Browser-based authentication is primarily provided in WebCT Campus Edition 4.0 as a legacy option.
Choose this method of authentication if:

• Your institution has an information technology policy forbidding the use of applications that
employ browser cookies.

• It is critical that the authentication method remains the same as used in your previous version of
WebCT, and if the previously used method was browser-based authentication.

BROWSER-BASED AUTHENTICATION PROCESS
Browser-based authentication has served as the standard authentication method for all previous versions of
WebCT. When a user a requests a URL, authentication of the user occurs as follows:

1. The Web server checks to see if the requested URL requires authorization.

2. If none is required (e.g., a user requests a course Welcome Page), then the Web server delivers the page
to the browser.

3. If authorization is required, the Web server checks to see if the user has already provided a username
and password by checking to see if a valid Basic Authentication Header was provided in the request. If
the header is valid, the page is delivered.

© 2003 WebCT, Inc. 15

4. If the Basic Authentication Header is invalid, or no header is provided, the user is prompted with a
username and password dialog box. The cycle is then repeated.

TICKET BASED AUTHENTICATION PROCESS
When a user requests a URL, authentication of the user occurs as follows:

1. The Web server checks to see if the requested URL requires authorization.

2. If none is required, the Web server delivers the page to the browser.

3. If authorization is required, WebCT checks for a valid ticket.

4. If a valid ticket is found (i.e. the user has been authenticated and is authorized for the resource), the
page is delivered to the browser.

5. If a ticket is not found, a login form is delivered to the browser. The user submits the form and WebCT
authenticates the user, issuing their browser a cookie. The URL is re-requested and the cycle repeats.

HOW WEBCT GENERATES TICKETS
WebCT tickets (in the form of browser cookies) contain the following information:

• Username
• Encrypted Password (DES encryption)
• Timestamp (UNIX Epoch format)
• Message Authentication Code (MAC)

The MAC is generated in three steps:

1. The username, encrypted password, timestamp, user agent information (if sent),
and a shared secret value are concatenated.

2. The concatenated string is encrypted with the MD5 algorithm.

3. The encrypted string is encrypted a second time with the MD5 algorithm.

IM P L E M E N T I N G T I C K E T BA S E D AU T H E N T I C A T I O N
With ticket-based authentication, you authenticate using WebCT’s internal database.

1. From the Admin toolbar, click Server Mgmt. The Server Mgmt toolbar appears.

2. From the Server Mgmt toolbar, click Settings. The Administrator Settings screen appears.

3. Under User Authentication, select Use ticket based authentication.

4. Choose whether the Logout link should appear in the course Menu Bar:

• To display the Logout link, select Display Logout link in course Menu Bar.

© 2003 WebCT, Inc. 16

• To hide the Logout link, deselect Display Logout link in course Menu Bar. Note: If you run
WebCT in a framed environment (such as a portal) where a logout link or "Return to Portal" link
already exists, you can hide the Logout link.

5. In the Ticket shared secret value text box, either leave the shared secret value that was automatically

generated by WebCT or enter a new shared secret value. For security reasons, the value secret does not
work. The secret value

• is case-sensitive
• cannot exceed 256 characters
• cannot contain tab or other control characters
• should not contain end-of-line characters. Note: By default, the UNIX text editors vi and pico

automatically add end-of-line characters. Check the file size to ensure that the number of
characters equals the number of bytes.

6. In the Tickets remain valid for text box, enter the number of minutes until ticket time-out. This value

controls the expiry time of the ticket based on the user’s last access and therefore affects how long a user
can stay logged in while inactive. The default is 180 minutes.

7. Choose whether to allow WebCT authentication across a domain. Authentication across a domain allows
users to access all servers in the domain, without having to re-authenticate for each one.

• To allow authentication across a domain:
a) Select Allow WebCT authentication across a domain.
b) In the Please specify your domain text box, enter the domain name. The domain name

must have a period in front of it. Example: .webct.com
• To disallow authentication across a domain, select Do not allow WebCT authentication across a

domain.

8. Under User is authenticated using, from the drop-down list for the authentication source that you are
using, select First. Note: With a Focus Use License, only the WebCT internal database can be used as the
authentication source.

9. For all other authentication sources, select Never.

10. Scroll to the bottom of the screen and click Update.

© 2003 WebCT, Inc. 17

CHAPTER 2 STANDARD API
The Standard API gives administrators and developers access to the WebCT databases via command line or
Web-based interfaces, to perform a variety of administration and reporting tasks.

OV E R V I E W O F T H E S T A N D A R D AP P L I C A T I O N
PR O G R A M M I N G IN T E R F A C E
Application Programming Interfaces (APIs) allow users and other systems to directly interface with WebCT
without the graphical user interface. This chapter describes the proprietary WebCT CE 4.0 Standard API. This
API has two interfaces: a command line interface and a Web-based interface.

CH O O S I N G T H E AP P R O P R I A T E IN T E R F A C E F O R Y O U R
RE Q U I R E M E N T S
WebCT provides two interfaces of the Standard API: a command line interface and a Web-based interface.
Choosing an interface is not a one-time decision; it will vary depending on the task that you need to
accomplish.

Use the following table as a guide for choosing the best interface for your task.

Task Suggested
Interface

Processing multiple records simultaneously command line

Processing a single record command line

Integrating systems that are on the same physical server and run as the same
user as WebCT

command line

Debugging command line

Integrating external system with WebCT
(e.g., you want to integrate your institution’s SIS with WebCT)

Web-based

FU N C T I O N A L I T Y I N T H E ST A N D A R D API
The Standard API allows you to manipulate two separate databases within WebCT: the global database and the
student database.

The global database contains the central listing of all users on the WebCT server. By default, the global
database contains the WebCT ID, Password, First Name, Last Name, Courses, and Registered Courses fields.
All users must have a record in this database in order to access a course.

The student database is a term for a collection of databases specific to a course. Every WebCT course has its
own student database that contains, by default, the User ID, Password, First Name, and Last Name fields. The

© 2003 WebCT, Inc. 18

information in the student database can be viewed in the designer interface of the Manage Students feature in
each WebCT course.

Generally, a WebCT ID is linked to a User ID for each course that a user is enrolled in. Users can have
different User IDs from their WebCT IDs, as well as different First Name and Last Name data in the student
and global databases.

The functionality of the Standard API can be divided into the following basic categories:

Adding Users • Adding a single user to the global database or student database
• Adding multiple users to the global database or student database

Updating Users • Updating a single user in the global database or student database

• Updating multiple users in the global database or student database
• Updating user types

Deleting Users • Deleting a single user from the global database or student database

• Deleting multiple users from the global database or student database

Finding Users • Finding a user in the global database or student database

Changing
WebCT IDs

• Changing a single user’s WebCT ID
• Changing multiple users’ WebCT IDs

IM P L E M E N T I N G T H E ST A N D A R D API

COMMAND LINE INTERFACE (WEBCTDB)
The command line interface to the standard API provides a simple interface to the WebCT API. The executable
file webctdb, is located in the directory <install_dir>/webct/webct/generic/api/.

Important: WebCT strongly recommends you run the Standard API as the WebCT user. Operating the API as
the Root user can prevent students and designers from logging into WebCT.

SYNTAX
The general syntax for each of the Standard API operations is as follows:

Operation Field Names
add <db> <course> <fieldsData_pair_list> <separator>

[encrypted] [charset]

delete <db> <course> <WebCT_ID | user_id> [charset]

changeid <db> <course> <fieldsData_pair_list> <separator>

[charset]

© 2003 WebCT, Inc. 19

Operation Field Names
update <db> <course> <fieldsData_pair_list> <separator>

[encrypted] [charset]

find <db> <course> <WebCT_ID | user_id> <separator>

[user_type] [charset]

fileadd <db> <course> <filename> <separator> [encrypted]

[charset]

fileupdate <db> <course> <filename> <separator> [encrypted]

[charset]

filedelete <db> <course> <filename> [charset]

filechangeid <db> <course> <filename> <separator> [charset]

Details about each field name are provided below:

Field Name: db
Value: global or student
Example: global

Description: This is the name of the database, either global database or student database.

Field Name: course
Value: Course ID
Example: cs100

Description: - Required for student database operations.
- For global database operations, enter the placeholder value xxxx.

Field Name: fieldsData_pair_list
Value: A double quote-enclosed list of field-data pairs in the form:

field_name=data_value.
Example: “WebCT ID=student1”

Description: - The field names must exist in the WebCT global database or student
database. The separator must be inserted between each of the field-data
pairs.

- For the global database, the optional fields Courses and Registered
Courses are available for adding and/or modifying courses and registered
courses to which a global user belongs. The values for these fields can be
a colon-separated list of course IDs for Courses or course names for
Registered Courses. For example,
Courses=cs100:psyc100:math100. If you also specify a user
type with the course, this is separated from the course ID by a semicolon,
for example, Courses=cs100;D:psyc100;TA. Note: The default
user type is (S)tudent.

© 2003 WebCT, Inc. 20

- A user can be added as a primary designer or as a secondary designer.
The first WebCT ID added to the course as a designer becomes the
primary designer; every subsequent designer becomes a secondary
designer.

© 2003 WebCT, Inc. 21

Field Name: fieldsData_pair_list (cont.)
Description: Note: The following are reserved words in the fieldsData_pair_list:

- Login ID (this is old terminology and is supported for backward
compatibility only. It has the same meaning as User ID).

- User ID (the User ID of a student in a course)
- Password (the password of the global user or the student)
- Global ID (this is old terminology and is supported for backward

compatibility only. It has the same meaning as WebCT ID).
- WebCT ID (WebCT ID of a global user)
- First Name (first name of the global user or the student. It is one of the

reserved columns in both the global and student databases)
- Last Name (last name of the global user or the student. It is one of the

reserved columns in both the global and student databases)
- Courses (the list of WebCT courses for a global user). If you populate this

field through the API, the course must already exist on the WebCT server.
- Registered Courses (the list of courses maintained by the registrar for a

global user. These courses may or may not be a WebCT course.)
- Thumbprint (internal data and cannot be modified)
- LockPID (internal data and cannot be modified)
- #User Type (internal data. This can be modified through the API)
- #E-mail (internal data and cannot be modified)
- #Password Question (internal data and cannot be modified)
- #Password Answer (internal data and cannot be modified)
Note: Reserved words are case sensitive.

Field Name: separator
Value: Any alphanumeric string representing the separator between data pairs in the

fieldsData_pair_list.
Example: "," (comma)
Description: Delimiter used to separate data items. You must declare what value you will

be using as a delimiter for the operations add, delete, changeid, update, and
find.
Note: For the global database, the colon and semi-colon are not allowed as
separators.

Field Name: user_type
Value: user_type
Example: user_type

Description: Only used with the find operation on the global database; return value of
user_type is one of three users types: S for student , D for designer, and TA
for teaching assistant.

© 2003 WebCT, Inc. 22

Field Name: encrypted
Value: encrypted
Example: encrypted

Description: - Only used with the add, update, fileadd and fileupdate operations.
- The password must be encrypted using the standard UNIX DES

encryption method or the newly added or modified users may not be able
to access WebCT.

- Add to the end of the command line to indicate that the passwords are
passing in encrypted form.

Field Name: charset
Value: A valid character set. See the Appendix.
Example: “--charset=iso-8859-1”

Description: - If specified, charset will override the character set as defined on the
administrator settings page as the file charset.

- Note: The default charset type is UTF-8

FUNCTIONS

ADDING USERS
Users can be added to the global database or student databases. However, you should add users to the global
database and use the Courses field to add them to each course. This method is simpler and automatically links
the WebCT ID to each User ID.

Important: If you are adding a user to a cross-listed course, see Adding Users to Cross-Listed Courses, page
95 for rules governing user roles.

Warning: WebCT strongly recommends you re-add previously deleted users through the administrator
interface. Re-adding users through the Standard API may prevent preserved records from merging with the
user. See the appropriate version of the System Administrator’s Guide: WebCT Campus Edition, Chapter 5,
User Management.

ADDING A SINGLE USER TO THE GLOBAL DATABASE
Operation = add
• The fieldsData_pair_list must include both the WebCT ID and Password fields.
• You can specify the user type: S for student, D for designer, TA for teaching assistant. If you

don’t specify a user type, the user type defaults to (S)tudent. Except in the case of a cross-listed
course, if the user type is specified as (D)esigner and there is no existing designer, the user is
added as the primary designer. In a cross-listed course, all designers are secondary, or shared
access designers. In the case of a non-cross-listed course, if there is an existing designer, the user
is added as secondary designer.

Warning: When a designer is assigned to one cross-listed course, they also have designer access to

all courses in the set, with access to all student and TA records. Similarly, when a TA is assigned
to one cross-listed course, they also have TA access to all courses in the set, with access to all

© 2003 WebCT, Inc. 23

Operation = add
student records.

Syntax
add
<db> <course> <fieldsData_pair_list> <separator> [encrypted]

Example
Add a user named Justin Case to the global database as a designer for cs100; a teaching assistant for
cs200; and as a student in cs810:

Enter the command:

UNIX ./webctdb add global xxxx "WebCT ID=jcase,Password=1234,First

Name=Justin,Last Name=Case,Courses=cs100;D:cs200;TA:cs810;S" ","

Windows webctdb add global xxxx "WebCT ID=jcase,Password=1234,First

Name=Justin,Last Name=Case,Courses=cs100;D:cs200;TA:cs810;S" ","

ADDING A SINGLE USER TO THE STUDENT DATABASE
Operation = add
• The fieldsData_pair_list must include both the User ID and Password fields.

Syntax
add
<db> <course> <fieldsData_pair_list> <separator> [encrypted]

Example
Add a user named Bailey Wick to the student database for course cs100:

Enter the command:

UNIX ./webctdb add student cs100 "User ID=bwick,Password=1234,

First Name=Bailey,Last Name=Wick" ","

Windows webctdb add student cs100 "User ID=bwick,Password=1234,

First Name=Bailey,Last Name=Wick" ","

ADDING MULTIPLE USERS TO THE GLOBAL DATABASE
Operation = fileadd
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is only the name of the file. A
file extension, such as .txt, is recommended.

• The file must be in plain text. The first line of the file must be the field names separated by the
separator value. The rest of the file contains the data, one record per line. Data should be in the
same order as the field names, separated by the separator value. There must be no spaces between

© 2003 WebCT, Inc. 24

Operation = fileadd
the data and the separators.

• If the user exists in the database, fileadd will send an error message to STDOUT. The user
record will not be changed; the process will skip to the next record in the file.

• An optional encrypted argument can be added at the end of the command line to indicate that
the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or the newly added or modified users may not be able to
access WebCT.

• If you are adding users to a cross-listed course, be sure to review the rules about user roles in
cross-listed courses in Adding Users to Cross-Listed Courses, page 95.

Syntax
fileadd
<db> <course> <filename> <separator> [encrypted]

Example
Add users to the global database from a text file named users.txt.

SAMPLE USERS.TXT FILE:
WebCT ID,Password,Last Name,First Name
jsmith,9876,Smith,John
jbrown,2345,Brown,Jane
bfawlty,8765,Fawlty,Basil
arigsby,5432,Rigsby,Arthur

Enter the command:

UNIX ./webctdb fileadd global xxxx users.txt “,”

Windows webctdb fileadd global xxxx users.txt “,”

© 2003 WebCT, Inc. 25

ADDING MULTIPLE USERS TO THE STUDENT DATABASE
Operation = fileadd
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is only the name of the file. A
file extension, such as .txt, is recommended.

• The file must be in plain text. The first line of the file must be the field names separated by the
separator string. The rest of the file contains the data, one record per line. Data should be in the
same order as the field names, separated by the separator value. There must be no spaces between
the data and the separators.

• If the user exists in the database, fileadd will send an error message to STDOUT. The user
record will not be changed in the database; the process will skip to the next record in the file.

• An optional encrypted argument can be added at the end of the command line to indicate that
the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or the newly added or modified users may not be able to
access WebCT.

Syntax
fileadd
<db> <course> <filename> <separator> [encrypted]

Example
Add students whose records are stored in the file class.txt to the course cs100.

SAMPLE CLASS.TXT FILE
User ID,Password,Last Name,First Name
jsmith,9876,Smith,John
jbrown,2345,Brown,Jane
bfawlty,8765,Fawlty,Basil
arigsby,5432,Rigsby,Arthur

Enter the command:

UNIX ./webctdb fileadd student cs100 class.txt “,”

Windows webctdb fileadd student cs100 class.txt “,”

UPDATING USERS
Important: If you are adding a user to a cross-listed course, see Adding Users to Cross-Listed Courses, page
95 for rules governing user roles.

© 2003 WebCT, Inc. 26

UPDATING A SINGLE USER IN THE GLOBAL DATABASE
Operation = update
• The fieldsData_pair_list must include the WebCT ID.
• Empty fields are not changed.
• If the field value is “_DELETE_”, the value will be set to null
• When updating the Courses and Registered Courses field, the Standard API always overwrites

the field. If you supply a Courses field in your update, the user’s WebCT ID will be linked to the
courses that you supply and unlinked from any pre-existing courses that you do not supply.

• You can update and change a user type by specifying a different user type. For example, you can
change a designer (D) into a student (S).

• update cannot be used to modify quiz scores.
• An optional encrypted argument can be added at the end of the command line to indicate that

the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or updated users may not be able to access WebCT.

• If you are updating a user in a cross-listed course, be sure to review the rules about user roles in
cross-listed courses in Adding Users to Cross-Listed Courses on page 95 in this guide.

Syntax
update
<db> <course> <fieldsData_pair_list> <separator> [encrypted]

Example 1
For the student Justin Case, password 1234, with the following courses: cs100(D) cs200(TA)
cs810(S), update the password in the global database and update the courses so that only cs100 remains.

Enter the command:

UNIX ./webctdb update global xxxx "WebCT ID=jcase,Password=abcd,

Courses=cs100" ","

Windows webctdb update global xxxx "WebCT ID=jcase,Password=abcd,

Courses=cs100" ","

Example 2
Using the previous example, update Justin Case so he is now a student in course cs100.

Enter the command:

UNIX ./webctdb update global xxxx "WebCT ID=jcase,Password=abcd,
Courses=cs100;S" ","

Windows webctdb update global xxxx "WebCT ID=jcase,Password=abcd,

Courses=cs100;S" ","

UPDATING A SINGLE USER IN THE STUDENT DATABASE
Operation = update
• The fieldsData_pair_list must include the User ID field.

© 2003 WebCT, Inc. 27

Operation = update
• Empty fields are not changed.
• If the field value is “_DELETE_”, the value will be set to null
• When updating the Courses and Registered Courses field, the Standard API always overwrites

the field. If you supply a Courses field in your update, the user’s WebCT ID will be linked to the
courses that you supply and unlinked from any pre-existing courses that you do not supply.

• You can update a user type by specifying a different one.
• update cannot be used to modify quiz scores.
• An optional encrypted argument can be added at the end of the command line to indicate that

the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or the updated users may not be able to access WebCT.

Syntax
update
<db> <course> <fieldsData_pair_list> <separator> [encrypted]

Example
To update the student Bailey Wick, first name, last name, and password of abcd.

Enter the command:

UNIX ./webctdb update student cs100 "User ID=bwick,Password=abcd,

First Name=Bailie,Last Name=Wicke" ","

Windows webctdb update student cs100 "User ID=bwick,Password=abcd,

First Name=Bailie,Last Name=Wicke" ","

UPDATING MULTIPLE USERS IN THE GLOBAL DATABASE
Operation = fileupdate
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is the name of the file. A file
extension, such as .txt, is recommended.

• The file must be in plain text. The first line of the file must be the field names separated by the
separator. The rest of the file contains the data, one record per line. Data should be in the same
order as the field names, separated by the separator value. There must be no spaces between the
data and the separators.

• An optional encrypted argument can be added at the end of the command line to indicate
that the passwords are passing in an encrypted form. The passwords should be encrypted using
the standard UNIX DES encryption method or the newly added or modified users may not be
able to access WebCT.

• fileupdate will add a user if they do not exist in the database.
• Empty fields will not be changed.
• For fileupdate, if the value field value is “_DELETE_”, the value will be set to null.
• When updating the Courses and Registered Courses field, the Standard API always overwrites

the field. If you supply a Courses field in your update, the user’s WebCT ID will be linked to the
courses that you supply and unlinked from any pre-existing courses that you do not supply.

© 2003 WebCT, Inc. 28

Operation = fileupdate
• If you are updating a user in a cross-listed course, be sure to review the rules about user roles in

cross-listed courses in Adding Users to Cross-Listed Courses on page 95 in this guide.

Syntax
fileupdate
<db> <course> <filename> <separator> [encrypted]

Example
Change the names of a group of users whose updates are contained in the file updates.txt.

SAMPLE UPDATES.TXT FILE:
WebCT ID,Last Name,First Name
jsmith,Smith,Jerry
jbrown,Brown,Janet
bfawlty,Fawlty,Brian
arigsby,Rigsby,Alan

Enter the command:

UNIX ./webctdb fileupdate global xxxx updates.txt “,”

Windows webctdb fileupdate global xxxx updates.txt “,”

UPDATING MULTIPLE USERS IN THE STUDENT DATABASE
Operation = fileupdate
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is the name of the file. A file
extension, such as .txt, is recommended.

• The file must be in plain text. The first line of the file must be the field names separated by the
separator. The rest of the file contains the data, one record per line. Data should be in the same
order as the field names, separated by the value of the separator. There must be no spaces between
the data and the separators.

• An optional encrypted argument can be added at the end of the command line to indicate
that the passwords are passing in an encrypted form. The passwords should be encrypted using
the standard UNIX DES encryption method or the newly added or modified users may not be able
to access WebCT.

• fileupdate will add a student or user if they do not already exist in the database.
• Empty fields will not be changed.
• For fileupdate, if the field value is “_DELETE_”, the value will be set to null.
• fileupdate overwrites the data fields being changed; it does not append.

Syntax
fileupdate
<db> <course> <filename> <separator> [encrypted]

© 2003 WebCT, Inc. 29

Example
Change the names of students in the course cs100 using updates contained in the file updates.txt.

SAMPLE UPDATES.TXT FILE:
User ID,Last Name,First Name
jsmith,Smith,Jerry
jbrown,Brown,Janet
bfawlty,Fawlty,Brian
arigsby,Rigsby,Alan

Enter the command:

UNIX ./webctdb fileupdate student cs100 updates.txt “,”

Windows webctdb fileupdate student cs100 updates.txt “,”

DELETING USERS

DELETING A SINGLE USER FROM THE GLOBAL DATABASE
Operation = delete
• global_id is the ID of the user to be deleted from the global database.

Note: Depending on the User Data setting in the administrator interface, the student’s data can also
be deleted from the student database.

Syntax
delete
<db> <course> <WebCT_ID | user_id>

Example
Delete the global database record for the user whose WebCT ID is jcase. Note: The student will be denied
access to all the courses listed in their global database record. Depending on the User Data setting in the
administrator interface, the student’s data can also be deleted from the student database.

Enter the command:

UNIX ./webctdb delete global xxxx jcase ","

Windows webctdb delete global xxxx jcase ","

DELETING A SINGLE USER FROM THE STUDENT DATABASE
Operation = delete
• user_id is the ID of the student to be deleted from the student database.

© 2003 WebCT, Inc. 30

Example
Delete the record for the student in the cs100 course whose User ID is bwick.

Enter the command:

UNIX ./webctdb delete student cs100 bwick ","

Windows webctdb delete student cs100 bwick ","

DELETING MULTIPLE USERS FROM THE GLOBAL DATABASE
Operation = filedelete
• filename is the either a full absolute path or a relative path from the current directory to the file.

For example, if the file is located in the current directory, then filename is simply the name of the
file. A file extension, such as .txt, is recommended.

• If the user does not exist in the database, filedelete will send an error message to
STDOUT. The process will skip to the next record in the file.

Syntax
filedelete
<db> <course> <filename>

Example
Delete users from the global database using a text file deleteusers.txt.

SAMPLE DELETEUSERS.TXT FILE:
jsmith
jbrown
bfawlty
arigsby

Enter the command:

UNIX ./webctdb filedelete global xxxx deleteusers.txt “,”

Windows webctdb filedelete global xxxx deleteusers.txt “,”

DELETING MULTIPLE USERS FROM THE STUDENT DATABASE
Operation = filedelete

© 2003 WebCT, Inc. 31

Operation = filedelete
• filename is the either a full absolute path or a relative path from the current directory to the file.

For example, if the file is located in the current directory, then filename is simply the name of the
file. A file extension, such as .txt, is recommended.

• If the user does not exist in the database, filedelete will send an error message to STDOUT
The process will skip to the next record in the file.

Syntax
filedelete
<db> <course> <filename>

Example
Delete students whose records are stored in the file delete.txt from the course cs100.

SAMPLE DELETE.TXT FILE:
jsmith
jbrown
bfawlty
arigsby

Enter the command:

UNIX ./webctdb filedelete student cs100 delete.txt

Windows webctdb filedelete student cs100 delete.txt

FINDING USERS

FINDING A USER IN THE GLOBAL DATABASE
Operation = find
• WebCT ID is the WebCT ID of the user in the global database.
• Separator is the separator of the output data, which is sent to STDOUT in the same format as the

fieldsData_pair_list.
• If the field name user_type is specified in a global database query, the user type (S,D,TA) will

be included in the result.

Syntax
find
<db> <course> <WebCT_ID | user_id> <separator> [user_type]

Example
Find the global database record, including user type, for the user with the WebCT ID of jcase.

Enter the command:

© 2003 WebCT, Inc. 32

UNIX ./webctdb find global xxxx jcase "," user_type

Windows webctdb find global xxxx jcase "," user_type

If the command is successfully executed:

Success: WebCT ID=jcase,First Name=Justin,
Last Name=Case,Courses=cs100;D:cs200;TA:cs810;S

FINDING A USER IN THE STUDENT DATABASE
Operation = find
• user_id is the User ID of the student in the student database.
• Separator is the separator of the output data, which is sent to STDOUT in the same format as the

fieldsData_pair_list.

Syntax
find
<db> <course> <WebCT_ID | user_id> <separator> [user_type]

Example
Find the student in the course cs100 whose User ID is bwick.

Enter the command:

UNIX ./webctdb find student cs100 bwick ","

Windows webctdb find student cs100 bwick ","

If the command is successfully executed:

Success:First Name=Bailie,Last Name=Wicke,User ID=bwick

CHANGING WEBCT IDS

CHANGING A SINGLE USER’S WEBCT ID
Operation = changeid
• changeid can only be used on the global

database.
• old_id is the WebCT ID to be changed.
• new_id is the new WebCT ID.

Syntax
changeid
<db> <course> <fieldsData_pair_list> <separator>

© 2003 WebCT, Inc. 33

Example
Change Justin Case’s WebCT ID from jcase to jicase.

Enter the command:

UNIX ./webctdb changeid global xxxx "Old ID=jcase,New ID=jicase” ","

Windows webctdb changeid global xxxx "Old ID=jcase,New ID=jicase” ","

CHANGING MULTIPLE USERS’ WEBCT IDS
Operation = filechangeid
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is simply the name of the
file. A file extension, such as .txt, is recommended.

• The first line of the data file should be the field names Old ID and New ID, separated by the
separator_file string. The rest of the file contains the data, one record per line. Data should be in
the same order as the field names, separated by the separator value. Note: The field name Old ID
does not exist in the databases.

• If the user does not already exist in the database, filechangeid will send an error message
to STDOUT. The process will skip to the next record in the file.

Syntax
filechangeid
<db> <course> <filename> <separator>

Example
Change the WebCT IDs of a group of users contained in a file changeusers.txt.

SAMPLE CHANGEUSERS.TXT FILE:
Old ID,New ID
jsmith,jtsmith
jbrown,jkbrown
bfawlty,befawlty
arigsby,aurigsby

Enter the command:

UNIX ./webctdb filechangeid global xxxx changeusers.txt “,”

Windows webctdb filechangeid global xxxx changeusers.txt “,”

WEB-BASED INTERFACE (SERVE_WEBCTDB)
The Web-based Standard API allows data in the WebCT global database and student databases to be queried
and manipulated by remote servers. For example, the Web-based interface can be used to make changes to
global database records based on registration changes driven by events on another system. It can also be used to
create a custom administrator interface.

© 2003 WebCT, Inc. 34

Important:

• Some system administrators have created scripts that automatically import data files from outside
systems to WebCT and export data file from WebCT to outside systems on a regular basis. By
default, these scripts rely on the character set, a setting available through the system administrator
interface, to determine the file character set of the file to be imported or exported. Imported files
will be converted to this character set; exported files will be converted from this character set. You
should change all automatic scripts to explicitly specify the character set of the files being
imported to match the actual character set of the source data. This will ensure that background
scripts import data smoothly, no matter the changes made to the setting for character set for
imported and exported administrator files. For more information, see the International Support
chapter of this guide.

Implementing the Web-based interface involves two steps.

1. Setting the API shared secret value
2. Developing a program to generate an HTTP request

Step 1 can be carried out by a WebCT administrator who has basic knowledge of the WebCT file system. Step
2 requires an experienced Web developer.

1. SETTING THE API SHARED SECRET VALUE
The shared secret value is used to ensure only authorized external servers are able to access the Web-based
API. Once set, the shared secret value is used to create a Message Authentication Code (MAC) from the
submitted data. When WebCT receives a request, it decodes the shared secret value from MAC using the
submitted data. If the decoded shared secret value is the same as the one stored locally, the request is
considered authentic and is processed. You can set the shared secret value by performing the following steps:

1. Using a text editor, open the file
<webct_install_directory>/webct/webct/generic/api/api_secret

2. Change the first line of the file to your desired secret. (For security reasons, the default value secret
does not work). You should note the following about the shared secret value.

• It cannot exceed 256 characters.
• It cannot contain tab, or other control characters.
• It should not contain end-of-line characters. Note: By default, the UNIX text editors vi and pico

automatically add end-of-line characters. Check the file size to ensure that the number of characters
equals the number of bytes.

• It is case-sensitive

3. Save the file.

Because the shared secret value has such a critical role, choose it carefully.

Tips for
Shared
Secrets

¾ Make your shared secret value difficult to guess by making it
lengthy and by including a combination of numbers and upper and
lower case characters.

¾ Change your shared secret value at regular intervals.
¾ On remote systems, place shared secret values in secure directories.

© 2003 WebCT, Inc. 35

2. DEVELOPING A PROGRAM TO GENERATE AN HTTP REQUEST
Developing a program to generate an HTTP request is the most substantive part of implementing the Web-
based standard API. The program must:

• Generate a Message Authentication Code (MAC)
• Assemble a properly formatted HTTP request
• Process any data being returned

CREATING MESSAGE AUTHENTICATION CODES
Because the Web interfaces to the Standard API reside in public directories, Message Authentication Codes
(MACs) are required to ensure that only messages from trusted servers are processed.

WebCT provides three options to assist you in creating MACs:

1. A C function that you can integrate and compile into your C program
2. An executable file to which you make a system call from your program
3. Instructions for generating a MAC using a language of your choice

OPTION 1: USING THE GET_AUTHENTICATION C FUNCTION
The get_authentication function generates a MAC from an array of data and a shared secret value.

The source code necessary to use the C function is located in
<webct_install_directory>/webct/webct/generic/api/security/

A test program, which contains a Makefile for UNIX based systems, is also provided.

The file api_security.c contains the get_authentication function.

© 2003 WebCT, Inc. 36

get_authentication Generates a MAC from an array of data and a shared
secret value

Syntax char* get_authentication (int i, char* data[], char* secret,

char* encrypted_data)

Returns 32-byte alphanumeric MAC

Parameter Description

I The number of elements in the array data[].

Data Array of all values to be used in generating the MAC.

The data should not be URL encoded.

Secret The shared secret value.

encrypted_data The memory location of the MAC. It must be at least 32 bytes

long.

OPTION 2: USING THE MESSAGE AUTHENTICATION CODE GENERATOR (GET_MD5 EXECUTABLE)
The Message Authentication Code generator generates a MAC from a shared secret value and a string
consisting of the IMS ID, a timestamp, and a destination URL.

Use the Message Authentication Code generator (an executable called get_md5) if you are not working in the C
language, or do not want to create a function to create the MAC. You can make a system call to get_md5 from
your program and have the authentication string returned. The get_md5 executable has no dependencies on
WebCT and can be copied to other servers as required. If you need a get_md5 executable for an operating
system other than the one your WebCT server is running on, you can download several pre-compiled binaries
for other operating systems from http://download.webct.com

get_md5

Generates a MAC from a shared secret value and
a string to be encrypted (consisting of the IMS ID, a
timestamp, and a destination URL).

Syntax

get_md5 <shared_secret_filename>
<string_to_encrypt>

Returns 32-byte alphanumeric MAC

Parameter Description

shared_secret_filename The filename where the shared secret value is stored.

string_to_encrypt The string to be encrypted. The string should not be
URL encoded.

An example of using the get_md5 program to generate a MAC from a shared secret value and the data string
described as follows:

© 2003 WebCT, Inc. 37

Enter the command:

UNIX ./get_md5 api_secret 2A508D8EB5EB2D596DD937E2B8835100 982187291

http://webct.institution.edu:8900/ SCRIPT/ENGL100-
001/scripts/serve_home

Windows get_md5 api_secret 2A508D8EB5EB2D596DD937E2B8835100 982187291

http://webct.institution.edu:8900/ SCRIPT/ENGL100-
001/scripts/serve_home

OPTION 3: CREATE A MAC USING A LANGUAGE OF YOUR OWN CHOICE
If you want to create MACs within your code, (e.g. you are writing your code in Java and don’t want to make a
system call), you can create a MAC with the following procedure:

1. Calculate the total of the ASCII values of all the characters in the data.

2. Convert the total of the ASCII values into a string.

3. Append the shared secret value.

4. Encrypt the string into a 16-byte string using the MD5 algorithm.

5. Convert the 16-byte string into a 32-byte alphanumeric string to make it URL-friendly.

HOW THE SERVE_WEBCTDB MAC IS GENERATED
The MAC is generated by using key/value pairs in the request. The serve_webctdb API uses the value from all
key/value pairs except the ones listed below:

• AUTH
• ENCRYPTED
• USER_TYPE
• USER TYPE
• CHARSET

ASSEMBLING THE HTTP REQUEST
There are several options for assembling an HTTP request to the Web-based standard API. The option you
choose will be based on your programming language of choice and how you want to communicate with the
Web server. You can issue API commands in several ways, including:

• Socket programming directly with the Web server
• Using a library which simulates a user agent
• Assembling a GET request and refreshing a browser window with the query string.

In Perl, you have the option of communicating directly with the Web server using the IO::Socket module
included with most basic distributions, or installing and using a module such as LWP which simulates a user
agent (e.g. a Web browser). Similar modules are available for most popular languages such as C or Java.

© 2003 WebCT, Inc. 38

If you wish to refresh a user’s browser window with a query string, you can do so using the “Location” HTTP
header, HTML meta tags, or using JavaScript’s location.replace method.

SYNTAX
The general syntax for a Web-based request to the Standard API is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=<operation>&DB=<db>
&COURSE=<course_id | placeholder>&AUTH=<32_byte_mac>
[&User%20ID=<user_id> | &WebCT%20ID=<webct_id>][&IMS%20ID=<ims_id>]
[&USER_TYPE=<1_or_0>][&ENCRYPTED=<1_or_0>][&field1=<field1>]
[&fieldn=<fieldn>]HTTP/1.0

where:

Key Value Description
add Adds a user to the global or student database.

If the user already exists, an error is returned.

update Updates an existing user in the global or student database.

If the user does not exist, this operation returns an error.

delete Deletes a single user from the global or student database.

find Finds the user record based on the User ID (if searching the

student database) or WebCT ID (if searching the global
database).

changeid Changes a WebCT ID.

homearea_xml Exports a user’s myWebCT in XML format.

OPERATION

Notes:

• The Standard API can accept GET or POST requests. POST requests can put their key/value pairs
in the query string or in the body of the message in the appropriate format (see the W3C HTML
4.01 Specification at http://www.w3.org/TR/html401/interact/forms.html#h-
17.13.4

• Requests must be URL encoded (e.g. spaces should be replaced with %20)
• Key/value pairs can appear in any order
• Syntax examples represent HTTP requests directly to the Web server. If you are using a

programming module to create your requests (such as LWP in Perl), many details of the request
can be transparent to you.

© 2003 WebCT, Inc. 39

FUNCTIONS

ADDING USERS

ADDING A USER TO THE GLOBAL DATABASE
Important: If you are adding a user to a cross-listed course, see Adding Users to Cross-Listed Courses, page
95 for rules governing user roles.

Add operations have the following syntax:

<GET | POST> /webct/public/serve_webctdb?OPERATION=add&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&WebCT%20ID=<webct_id>
&Password=<password>[&field1=<field1>][&fieldn=<fieldn>]
[&ENCRYPTED=<1_or_0>]HTTP/1.0

where:

Key Value Description
COURSE Any alphanumeric

string
This is a required placeholder value. You can use any
alphanumeric value, but ensure that you use it in the
calculation of the MAC.

AUTH 32-byte MAC

This is the 32-byte hexadecimal string generated using
the get_authentication C code, the Message
Authentication Code (MAC) generator, or using custom
code.

WebCT ID WebCT ID The WebCT ID of the user being added.

WebCT IDs can contain alphanumeric strings,
underscores, and periods.

Password Password The password to be used for the user being added.

Passwords can consist of any alphanumeric string. The
API does not enforce minimum password lengths.

Field1
…
Fieldn
(optional)

Data associated with the
column specified as a
key.

Any of the default columns within the global database
(First Name, Last Name, Courses, Registered Courses)
can be modified using the syntax ColumnName=Value.
Administrator-created columns can also be modified
using this method.

1 Enables pre-encrypted password support. With the

encrypted argument set to 1, you should pass passwords
encrypted with the standard UNIX DES method when
using this setting.

ENCRYPTED
(optional)

0 (default) Disables pre-encrypted password support (default). In
this mode, passwords should be submitted as clear-text.

© 2003 WebCT, Inc. 40

Note: The Courses field uses a colon as a delimiter between courses and a semicolon as a delimiter between
user types. Thus the string “HKIN100;D:HKIN200;TA:HKIN300;S” indicates that a user is to be added to
HKIN100 as a designer, HKIN200 as a teaching assistant and HKIN300 as a student. If no user type is
specified, WebCT will default to adding the user as a student. Similarly, the Registered Courses field is colon
delimited. For more information on the Courses and Registered courses field, see the appropriate version of the
System Administrator’s Guide: WebCT Campus Edition.

Example
Add a user to the global database, and enroll them in the course ENGL100 as a designer, ENGL560 as a
student, and ENGL477 as a teaching assistant.

GET /webct/public/serve_webctdb?OPERATION=add&DB=global&COURSE=xxxx
&AUTH= EB1A09F0BB299C23E99A5978587F49C1&WEBCT%20ID=pinto
&PASSWORD=an1mal&FIRST%20NAME=Larry&LAST%20NAME=Kroger&
COURSES=ENGL100;D:ENGL560:ENGL477;TA HTTP/1.0

ADDING A USER TO THE STUDENT DATABASE
Students can be added to the student database using the following syntax:

<GET | POST> /webct/public/serve_webctdb?OPERATION=add&DB=student
&COURSE=<course_id>&AUTH=<32_byte_mac>&User%20ID=<user_id>
&Password=<password>[&field1=<field1>][&fieldn=<fieldn>]
[&ENCRYPTED=<1_or_0>]HTTP/1.0

where:

Key Value Description
COURSE WebCT Course ID The WebCT course to which the user will be added.

AUTH 32-byte MAC

This is the 32-byte hexadecimal string generated
using the get_authentication C code, the get_md5
program, or using custom code.

User ID User ID The User ID of the user being added.

Password Password The password to be used for the user being added.

The API does not enforce minimum password
lengths.

Field1
…
Fieldn
(optional)

Data associated with the
column specified as a
key.

Any of the default columns within the global database
(First Name, Last Name, Courses, Registered
Courses) can be modified using the syntax
ColumnName=Value. Administrator-created columns
can also be modified using this method.

ENCRYPTED
(optional)

1 Enables pre-encrypted password support. With the
encrypted argument set to 1, you should pass
passwords encrypted with the standard UNIX DES
method when using this setting

© 2003 WebCT, Inc. 41

Key Value Description

0 (default) Disables pre-encrypted password support (default). In

this mode, passwords should be submitted as clear

Example
Add a student to the student database of the course ENGL588. In addition, add data to a pre-existing column
“StudentNumber” (This is a custom column created by the designer). Because this user is being added to the
student database only, they are considered an “orphan user” until a WebCT ID is associated with this User ID:

GET /webct/public/serve_webctdb?OPERATION=add&DB=student
&COURSE=ENGL588&AUTH=EB1A09F0BB299C23E99A5978587F49C1
&User%20ID=flounder&Password=an1mal&First%20Name=Kent
&Last%20Name=Dorfman&StudentNumber=123456789 HTTP/1.0

UPDATING USERS

UPDATING A USER IN THE GLOBAL DATABASE
Important: If you are adding a user to a cross-listed course, see Adding Users to Cross-Listed Courses, page
95 for rules governing user roles.

Updating users in the global database is very similar to adding users. The syntax is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=update&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&WebCT%20ID=<webct_id>
[&FIELD1=<field1>][&FIELDN=<fieldn>][&ENCRYPTED=<1_or_0>]HTTP/1.0

where:

Key Value Description
COURSE Any alphanumeric

string
This is a required placeholder value. You can use any
alphanumeric value, but ensure that you use it in the
calculation of the MAC.

AUTH 32-byte MAC

This is the 32-byte hexadecimal string generated using
the get_authentication C code, the get_md5 program, or
using custom code.

WebCT ID Existing WebCT ID The WebCT ID of the user being added.

WebCT IDs can contain alphanumeric strings,
underscores, and periods.

Password
(optional)

Password The password to be used for the user being updated. The
API does not enforce minimum password lengths.

Data associated with the
column specified as a
key.

Any of the default columns within the global database
(First Name, Last Name, Courses, Registered Courses)
can be modified using the syntax ColumnName=Value.
Administrator-created columns can also be modified
using this method.

Field1
…
Fieldn
(optional)

© 2003 WebCT, Inc. 42

Key Value Description
DELETE The “_DELETE_” keyword deletes the data from the

field specified in the key and sets it to undefined.

1 Enables pre-encrypted password support. With the
encrypted argument set to 1, you should pass passwords
encrypted with the standard UNIX DES method when
using this setting

ENCRYPTED
(optional)

0 (default) Disables pre-encrypted password support (default). In
this mode, passwords should be submitted as clear-text.

Notes:

• The User Data setting in the WebCT administrator interface affects how updating the Courses column
will modify the student database when unlinking WebCT IDs from User IDs. If the User Data setting is
selected, user data is left in the student database.

• The Standard API always overwrites the Courses and Registered Course fields when updating. If you
supply a Courses field in your update, the user’s WebCT ID will be linked to the courses that you
specify and unlinked from any pre-existing courses that you do not specify.

• The Courses field uses a colon as a delimiter between courses and a semicolon as a delimiter between
user types. Thus the string “HKIN100;D:HKIN200;TA:HKIN300;S” indicates that a user is to be
added to HKIN100 as a designer, HKIN200 as a teaching assistant and HKIN300 as a student. If no
user type is specified, WebCT will default to adding the user as a student. Similarly, the Registered
Courses field is colon delimited. For more information on the Courses and Registered courses field, see
the appropriate version of the System Administrator’s Guide: WebCT Campus Edition.

Example
A user is currently enrolled in three courses: ENGL101 as a designer, ENGL560 as a student, and ENGL477 as
a teaching assistant. This example unlinks the WebCT ID from the User ID for ENGL 560 and ENGL 477, and
adds the WebCT ID to the course ENGL101 as designer.

GET /webct/public/serve_webctdb?OPERATION=update&DB=global&COURSE=xxxx&AUTH=EB1A
09F0BB299C23E99A5978587F49C1&WebCT%20ID=pinto&Courses=ENGL101;D:ENGL101;D
HTTP/1.0

The user is unlinked from the two courses because API updates always overwrite fields.

UPDATING A USER IN THE STUDENT DATABASE
Updating students in the student database is very similar to adding students. The syntax is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=update&DB=student
&COURSE=<course_id>&AUTH=<32_byte_mac>&User%20ID=<user_id>
[&field1=<field1>][&fieldn=<fieldn>][&ENCRYPTED=<1_or_0>]HTTP/1.0

where:

Key Value Description
COURSE WebCT Course ID The WebCT course in which the user’s data is

updated.

© 2003 WebCT, Inc. 43

Key Value Description

AUTH 32-byte MAC

This is the 32-byte hexadecimal string generated
using the get_authentication C code, the get_md5
program, or using custom code.

User ID User ID The User ID of the user being added.

Password
(optional)

Password The password to be used for the user being added.
The API does not enforce minimum password
lengths.

Data associated with the
column specified as a
key.

Any of the default columns within the global database
(First Name, Last Name, Courses, Registered
Courses) can be modified using the syntax
ColumnName=Value. Administrator-created columns
can also be modified using this method.

Field1
…
Fieldn
(optional)

DELETE The “_DELETE_” keyword deletes the data from the
field specified in the key and sets it to undefined.

1 Enables pre-encrypted password support. With the
encrypted argument set to 1, you should pass
passwords encrypted with the standard UNIX DES
method when using this setting.

ENCRYPTED
(optional)

0 (default) Disables pre-encrypted password support (default). In
this mode, passwords should be submitted as clear-
text.

Example
In the following example, a student record is updated with information for the instructor-added numeric
columns “Student Participation" and "Bonus" in the course MATH100.

GET webct/public/serve_webctdb?OPERATION=update&DB=student&

COURSE=MATH100&AUTH=EB1A09F0BB299C23E99A5978587F49C1
&User%20ID=otter&Student%20Participation=100&Bonus=34 HTTP/1.0

© 2003 WebCT, Inc. 44

DELETING USERS

DELETING A USER FROM THE GLOBAL DATABASE
The syntax for deleting a user from the global database is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=delete&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&WebCT%20ID=<webct_id>
HTTP/1.0

where:

Key Value Description
COURSE Any alphanumeric string This is a required placeholder value. You can use any

alphanumeric value, but ensure that you use it in the
calculation of the MAC.

AUTH 32-byte MAC

This is the 32-byte hexadecimal string generated using the
get_authentication C code, the get_md5 program, or using
custom code.

WebCT ID WebCT ID The WebCT ID of the user being deleted.

Note: The User Data setting in the WebCT administrator interface affects whether user data is left in a course
when a user record is deleted from the global database. If the User Data setting is selected, user data is left in
the student database.

Example
In this example, the user record for the user with the WebCT ID neidermeyer is deleted from the global
database:

GET /webct/public/serve_webctdb?OPERATION=delete&DB=global&COURSE=xxxx
&AUTH=EB1A09F0BB299C23E99A5978587F49C1&WebCT%20ID=neidermeyer
HTTP/1.0

DELETING A USER FROM THE STUDENT DATABASE
The syntax for deleting a student from the student database is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=delete&DB=student
&COURSE=<course_id>&AUTH=<32_byte_mac>&User%20ID=<user_id>
HTTP/1.0

where:

Key Value Description
COURSE WebCT Course ID The WebCT course from which the user will be deleted.

AUTH 32-byte MAC

This is the 32-byte hexadecimal string generated using the
get_authentication C code, the get_md5 program, or using custom
code.

© 2003 WebCT, Inc. 45

User ID User ID The User ID of the user being deleted.

Example
In this example, the student with the User ID stork is deleted from the course PSYCH204-23:

GET /webct/public/serve_webctdb?OPERATION=delete&DB=student
&COURSE=PSYCH204-23&AUTH=EB1A09F0BB299C23E99A5978587F49C1
&User%20ID=stork HTTP/1.0

FINDING USERS

FINDING A USER IN THE GLOBAL DATABASE
To find a user’s global database record, the following syntax is used:

<GET | POST> /webct/public/serve_webctdb?OPERATION=find&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&WebCT%20ID=<webct_id>
[USER_TYPE=<1_or_0>]HTTP/1.0

where:

Key Value Description
OPERATION find Finds the user record for a given WebCT ID

COURSE Any alphanumeric string This is a required placeholder value. You can use any

alphanumeric value, but ensure that you use it in the
calculation of the MAC.

AUTH 32_byte_mac This is the 32-byte hexadecimal string generated using

the get_authentication C code, the get_md5 program,
or using custom code.

WebCT ID WebCT_ID The WebCT ID of the record you want to display.

1 With the User_Type option enabled, the global
database record generated includes user type
information that indicates whether a user is a designer,
student, or teaching assistant for the course.

USER_TYPE
(optional)

0 (default) No user type information is generated.

© 2003 WebCT, Inc. 46

Example
In this example, the complete record including user type information is returned for the user with the WebCT
ID pinto, who is enrolled in three courses.

GET /webct/public/serve_webctdb?OPERATION=find&DB=global&COURSE=xxxx
&AUTH=EB1A09F0BB299C23E99A5978587F49C1&WebCT%20ID=pinto
&USER_TYPE=1 HTTP/1.0

The Web server returns the following, not including HTTP headers:

Success: WebCT ID=pinto,First Name=Larry,Last Name=Kroger,Courses=
ENGL100;D:ENGL560;S:ENGL477;TA

FINDING A USER IN THE STUDENT DATABASE
To find a student’s student database record, the following syntax is used:

<GET | POST> /webct/public/serve_webctdb?OPERATION=find&DB=student
&COURSE=<course_id>&AUTH=<32_byte_mac>&User%20ID=<user_id> HTTP/1.0

where:

Key Value Description
OPERATION find Finds a user’s record from a WebCT ID.

COURSE Any alphanumeric string The course that you are searching.

AUTH 32_byte_mac This is the 32-byte hexadecimal string generated using

the get_authentication C code, the get_md5 program,
or using custom code.

User ID User ID The User ID of the record you wish to display.

Example
In this example, a complete student database record is displayed for the user with User ID chip in the course
HKIN455:

GET /webct/public/serve_webctdb?OPERATION=find&DB=student
&COURSE=HKIN455=AUTH=EB1A09F0BB299C23E99A5978587F49C1&User%20ID=chip
HTTP/1.0

The Web server returns the following, not including HTTP headers:

Success: First Name=Chip,Last Name=Diller,User ID=chip,Quiz1=36,Assignment1=10

© 2003 WebCT, Inc. 47

CHANGING WEBCT IDS

CHANGING A USER’S WEBCT ID
To change a WebCT ID for a user, use the syntax:

<GET | POST> /webct/public/serve_webctdb?OPERATION=changeid&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&Old%20ID=<old_webct_id>
&New%20ID=<new_webct_id> HTTP/1.0

where:

Key Value Description
OPERATION changid Changes the WebCT ID of a user.

COURSE Any

alphanumeric
string

This is a required placeholder value. You can use any
alphanumeric value, but ensure that you use it in the calculation
of the MAC.

AUTH 32_byte_mac This is the 32-byte hexadecimal string generated using the

get_authentication C code, the get_md5 program, or using
custom code.

Old ID Old WebCT ID The WebCT ID of the record you want to change.

New ID New WebCT

ID
The WebCT ID that you want to assign to the user.

Example
In this example, the WebCT ID flounder is changed to dorfmank:

GET /webct/public/serve_webctdb?OPERATION=changeid&DB=global&COURSE=xxxx
&AUTH=EB1A09F0BB299C23E99A5978587F49C1&Old%20ID=flounder
&New%20ID=dorfmank HTTP/1.0

The Web server returns the following, not including HTTP headers:
Success:

© 2003 WebCT, Inc. 48

SECTION 2: CAMPUS EDITION INSTITUTION
LICENSE

© 2003 WebCT, Inc. 49

CHAPTER 1 USER AUTHENTICAT ION
WebCT Campus Edition 4.0 provides two major methods for user authentication:

Browser Based
Authentication

• Users are authenticated through a browser dialog box that prompts
for a username and password. The username and password are
verified against WebCT internal databases. If the user is
authorized, a Basic Authentication Header is provided. Subsequent
page accesses to WebCT are authorized according to the browser
header.

• This authentication method is used in previous versions of
WebCT.

Ticket Based
Authentication

• Users are authenticated through a login page that prompts for a
username and password. The username and password are verified
against either WebCT internal databases or against an external
password database. If the user is authenticated, the user is issued a
browser cookie that serves as a ticket. Subsequent page accesses to
WebCT are authorized according to the ticket.

• Institutions that choose ticket-based authentication have the option
of implementing automatic signon to WebCT. With this feature
implemented, institutions that have portal solutions or other secure
environments can create a seamless environment for users by pre-
authenticating them into WebCT.

CH O O S I N G AN AU T H E N T I C A T I O N ME T H O D
Many of the features of WebCT CE 4.0 require ticket-based authentication, including:

External password database authentication using LDAP, Kerberos, Windows 2000 Domain Controller, or a
custom implementation

• Logout
• Server lockdown
• Automatic signon
• Session timeout
• Customizable login page

Browser based authentication is primarily provided in WebCT 4.0 as a legacy option. Choose this method of
authentication if:

• Your institution has an information technology policy forbidding the use of applications that
employ browser cookies.

• It is critical that the user interface of WebCT remain the same as previous versions.

BROWSER BASED AUTHENTICATION PROCESS
Browser-based authentication has served as the standard authentication method for all previous versions of
WebCT. When a user a requests a URL, authentication of the user occurs as follows:

© 2003 WebCT, Inc. 50

1. The Web server checks to see if the requested URL requires authorization.

2. If none is required (e.g., a user requests a course Welcome Page), then the Web server delivers the page
to the browser.

3. If authorization is required, the Web server checks to see if the user has already provided a username
and password by checking to see if a valid Basic Authentication Header was provided in the request. If
the header is valid, the page is delivered.

4. If the Basic Authentication Header is invalid, or no header is provided, the user is prompted with a
username and password dialog box. The cycle is then repeated.

TICKET BASED AUTHENTICATION PROCESS
When a user requests a URL, authentication of the user occurs as follows:

1. The Web server checks to see if the requested URL requires authorization.

2. If none is required, the Web server delivers the page to the browser.

3. If authorization is required, WebCT checks for a valid ticket.

4. If a valid ticket is found (i.e. the user has been authenticated and is authorized for the resource), the
page is delivered to the browser.

5. If a ticket is not found, a login form is delivered to the browser. The user submits the form and WebCT
authenticates the user, issuing their browser a cookie. The URL is re-requested and the cycle repeats.

HOW WEBCT GENERATES TICKETS
WebCT tickets (in the form of browser cookies) contain the following information:

• Username
• Encrypted Password (DES encryption)
• Timestamp (UNIX Epoch format)
• Message Authentication Code (MAC)

The MAC is generated in three steps:

1. The username, encrypted password, timestamp, user agent information (if sent),
and a shared secret value are concatenated.

2. The concatenated string is encrypted with the MD5 algorithm.

3. The encrypted string is encrypted a second time with the MD5 algorithm.

IM P L E M E N T I N G T I C K E T BA S E D AU T H E N T I C A T I O N
With ticket-based authentication, you can use one or more authentication sources. WebCT supports the
following authentication sources:

© 2003 WebCT, Inc. 51

• WebCT’s internal database (default)
• LDAP
• Kerberos
• Windows 2000 Domain Controller
• a custom authentication source.

CHOOSING AN AUTHENTICATION SOURCE
The authentication source(s) that you choose should be based on what your institution has already
implemented. If your institution is using a centralized password management or single signon solution that is
not directly supported, you can want to consider a custom implementation using WebCT’s open source
authentication code, written in C. For more information on custom authentication, see the section Implementing
Custom Authentication.

The following table describes each type of authentication source.

WebCT Internal
Database

• This is the best option for institutions that do not have a single signon
solution.

• This is the easiest option to deploy as there are no external systems to
manage.

LDAP • This is the open standard for providing directory services such as e-mail

addresses, telephone numbers, addresses, etc. to the Internet.
• Many institutions have discovered that LDAP can also serve as an

authentication database as part of a single signon environment.
• LDAP is not a true authentication source, so it lacks many of the features

seen in purpose-built authentication sources.

Kerberos/Windows
2000 Domain
Controller

• Kerberos is an authentication system that enables two parties to exchange
private information across a network. A unique key, called a ticket, is
assigned to each user who logs in to the network.

Custom
Authentication

• If your institution uses a single signon solution that is not directly
supported, (e.g. Radius, IMAP), your institution can modify WebCT’s open
source authentication code by using the WebCT Open Authentication Kit.

• To obtain the WebCT Open Authentication Kit (WOAK), contact your
account representative.

• You will need an experienced C programmer to write the authentication
function.

USING ONE AUTHENTICATION SOURCE
1. From the Admin toolbar, click Server Mgmt. The Server Mgmt toolbar appears.

2. From the Server Mgmt toolbar, click Settings. The Administrator Settings screen appears.

3. Under User Authentication, select Use ticket based authentication.

4. Choose whether the Logout link should appear in the course Menu Bar:

• To display the Logout link, select Display Logout link in course Menu Bar.

© 2003 WebCT, Inc. 52

• To hide the Logout link, deselect Display Logout link in course Menu Bar. Note: If you run
WebCT in a framed environment (such as a portal) where a logout link or Return to Portal link
already exists, you can hide the Log Out link.

5. In the Ticket shared secret value text box, either leave the shared secret value that was automatically

generated by WebCT or enter a new shared secret value. For security reasons, the value secret does not
work. The secret value

• is case-sensitive
• cannot exceed 256 characters
• cannot contain tab or other control characters
• should not contain end-of-line characters.

6. In the Tickets remain valid for text box, enter the number of minutes until ticket time-out. This value
controls the expiry time of the ticket based on the user’s last access and therefore affects how long a user
can stay logged in while inactive. The default is 180 minutes.

7. If you want to specify a screen to display when users log out using WebCT’s Log Out link, in the URL to
redirect users to after logging out text box, enter the URL for the screen you want to display. Note: If
you do not enter anything in this text box, WebCT’s Entry Page will be displayed when users log out.

8. If you want to specify an authentication screen to appear when a session expires, in the URL to redirect
users to when authentication is required text box, enter the URL for the authentication screen. Note: If
you run WebCT in a framed environment (such as a portal), you can enter a URL to the authentication
screen for the framed environment. If you do not specify a URL, WebCT’s Entry Page will be displayed
when a session expires and users will be prompted for a WebCT ID and password.

9. Choose whether to allow WebCT authentication across a domain. Authentication across a domain allows
users to access all servers in the domain, without having to re-authenticate for each one.

• To allow authentication across a domain:
c) Select Allow WebCT authentication across a domain.
d) In the Please specify your domain text box, enter the domain name. The domain name

must have a period in front of it. Example: .webct.com

• To disallow authentication across a domain, select Do not allow WebCT authentication across a
domain.

10. Under User is authenticated using, from the drop-down list for the authentication source that you are
using, select First.

11. For all other authentication sources, select Never.

12. Scroll to the bottom of the screen and click Update.

USING MULTIPLE AUTHENTICATION SOURCES
You can integrate third-party authentication sources, such as LDAP, Kerberos, or a custom authentication
source with WebCT. For example, use multiple authentication sources if your institution requires a failover
authentication scheme to authenticate users who do not have an account in the primary authentication database.
Users who are not authenticated by the primary authentication source can be authenticated by secondary
sources, such as the internal WebCT database.

1. From the Admin toolbar, click Server Mgmt. The Server Mgmt toolbar appears.

2. From the Server Mgmt toolbar, click Settings. The Administrator Settings screen appears.

© 2003 WebCT, Inc. 53

3. Under User Authentication, select Use ticket based authentication.

4. Choose whether the Logout link should appear in the course Menu Bar:

• To display the Logout link, select Display Logout link in course Menu Bar.
• To hide the Logout link, deselect Display Logout link in course Menu Bar. Note: If you run

WebCT in a framed environment (such as a portal) where a logout link or Return to Portal link
already exists, you can hide the Logout link.

5. In the Ticket shared secret value text box, either leave the shared secret value that was automatically

generated by WebCT or enter a new shared secret value. For security reasons, the value secret does not
work. The secret value

• is case-sensitive
• cannot exceed 256 characters
• cannot contain tab or other control characters
• should not contain end-of-line characters.

6. In the Tickets remain valid for text box, enter the number of minutes until ticket time-out. This value
controls the expiry time of the ticket based on the user’s last access and therefore affects how long a user
can stay logged in while inactive. The default is 180 minutes.

7. If you want to specify a screen to display when users log out using WebCT’s Log Out link, in the URL to
redirect users to after logging out text box, enter the URL for the screen you want to display. Note: If
you do not enter anything in this text box, WebCT’s Entry Page will be displayed when users log out.

8. If you want to specify an authentication screen to appear when a session expires, in the URL to redirect
users to when authentication is required text box, enter the URL for the authentication screen. Note: If
you run WebCT in a framed environment (such as a portal), you can enter a URL to the authentication
screen for the framed environment. If you do not specify a URL, WebCT’s Entry Page will be displayed
when a session expires and users will be prompted for a WebCT ID and password.

9. Choose whether to allow WebCT authentication across a domain. Authentication across a domain allows
users to access all servers in the domain, without having to re-authenticate for each one.

• To allow authentication across a domain:
a) Select Allow WebCT authentication across a domain.
b) In the Please specify your domain text box, enter the domain name. The domain name

must have a period in front of it. Example: .webct.com
• To disallow authentication across a domain, select Do not allow WebCT authentication across a

domain.

10. Under User is authenticated using, specify when to use the authentication source(s):

• If you are using the internal WebCT password database, from the corresponding drop-down list,
select when it should be used in the authentication sequence. Important: If you are using the
internal WebCT database in a failover authentication scheme, it is strongly recommended that you
¾ use the WebCT database last in the authentication sequence.
¾ do not use passwords that can be easily guessed (for example: webct or password).

• If you are using LDAP:
a) From the LDAP server drop-down list, select when it should be used in the authentication

sequence.
b) Specify the LDAP settings. See the Specifying the LDAP Settings section in this guide.

© 2003 WebCT, Inc. 54

• If you are using Kerberos or Windows 2000 Domain Controller:
a) From the MIT Kerberos V5 KDC or Windows 2000 Domain Controller drop-down list,

select when it should be used in the authentication sequence.
b) Specify the Kerberos settings or Windows 2000 Domain Controller settings. See the

Specifying the Kerberos Settings section in this guide. If you are using a custom
authentication source, from the corresponding drop-down list, select when it should be
used in the authentication sequence.

11. Scroll to the bottom of the screen and click Update.

SPECIFYING THE LDAP SETTINGS
1. Under LDAP settings, in the LDAP Server Name text box, enter the name of your LDAP server.

2. In the LDAP Port text box, enter the port of your LDAP server.

3. In the Base DN text box, enter the root directory on your LDAP server where your WebCT user records
are stored. This directs the authentication program to search in the appropriate directory on your LDAP
server.

4. In the WebCT ID Attribute text box, enter the attribute or field of the user record where the WebCT ID is
stored.

5. In the Manager DN text box, enter the LDAP server manager's distinguished name.

6. In the Manager Password text box, enter the LDAP server manager's password.

7. Click Update.

Important: If you are using LDAP in a multiple authentication scheme, you must also specify the sequence in
which it should be used.

SPECIFYING THE KERBEROS SETTINGS
Note:

• Unix users: Kerberos requires a properly configured krb5.conf file in the generic/ticket directory.
• Windows users: Kerberos requires a properly configured krb5.ini file in the

<webct_install_dir>\webct\webct\generic\ticket folder.

1. Under Kerberos/Domain Controller settings, in the Realm/Domain Name text box, enter the Kerberos
Realm name. Note: Each entry in the KDC is called a principal and has the format:
username/instance@Kerberos Realm
Example: johnsmith/admin@MYINSTITUTE.EDU
In this example, the Realm is MYINSTITUTE.EDU.

2. In the Instance text box, enter the Kerberos Instance name. In the example above, the instance is admin.

3. Click Update.

Important: If you are using Kerberos in a multiple authentication scheme, you must also specify the sequence
in which it should be used.

SPECIFYING THE WINDOWS 2000 DOMAIN CONTROLLER SETTINGS
1. Under Kerberos/Domain Controller settings, in the Realm/Domain Name text box, enter the Windows

domain name.

© 2003 WebCT, Inc. 55

2. Leave the Instance text box empty.

3. Click Update.

Important: If you are using Windows 2000 Domain Controller in a multiple authentication scheme, you must
also specify the sequence in which it should be used.

IM P L E M E N T I N G CU S T O M AU T H E N T I C A T I O N
For institutions that use external password databases that are not directly supported (e.g. Radius, IMAP),
WebCT allows modification of the WebCT open source authentication code by using the WebCT Open
Authentication Kit (WOAK). To obtain the WebCT Open Authentication Kit for your operating system, contact
your account representative. In addition, you will need an experienced C programmer to write the
authentication function.

UNIX/LINUX
To compile the WOAK, ensure that you have the Free Software Foundation’s GCC compiler installed
http://www.gnu.org/software/gcc/. Other C compilers are not recommended.

It is beyond the scope of this guide to describe an exact procedure for code development. You should follow
basic rules such as not developing on live servers, make appropriate backups of important files, and do as much
testing as possible with your custom code. The following is provided as a general guide:

1. Extract the WebCT Open Authentication Kit to a working directory.

2. In the [woak_directory]/compile directory of the WOAK, modify the Makefile with a text
editor so that your system architecture is uncommented (e.g. A Solaris developer should uncomment
the configure/solaris-sparc line and make sure that both the configure/linux-libc6
and configure/aix lines are commented out.) The Makefile is set up for Linux systems by
default.

3. In the [woak_directory]/ticket directory, open the file custom_auth.c.

4. In the file custom_auth.c, implement the function user_is_authentic_other so that it returns
AUTH_DECLINED if the user does not exist in the password database, AUTH_VALID if the
password is valid, and AUTH_FAILED if the password is not valid.

5. Make any changes necessary to your Makefile in order for it to compile with your code.

6. Compile the custom_auth.so shared object by issuing the make command within the
custom_auth/compile directory.

7. Install your custom authentication module custom_auth.so by copying custom_auth.so to the
directory [installdir]/webct/webct/generic/bin/ of your WebCT installation and
enabling custom authentication in the administrator interface.

Note: Be sure to read the README_compile file included in the WOAK distribution. It will contain the latest
instructions on how to build the custom authentication module.

© 2003 WebCT, Inc. 56

WINDOWS 2000
To compile the WebCT Open Authentication Kit (WOAK), ensure that you have Microsoft Visual Studio 6
installed and have applied the latest service packs. You can download these from
http://msdn.microsoft.com/vstudio. Other C compilers are not recommended.

It is beyond the scope of this guide to describe an exact procedure for code development. The following is
provided as a general guide.

1. Extract the WOAK into a working directory.

2. In the <woak_directory>/ticket directory, open the file custom_auth.c.

3. In the file custom_auth.c, implement the function user_is_authentic_other so that it
returns AUTH_DECLINED if the user does not exist in the password database, AUTH_VALID if the
password is valid, and AUTH_FAILED if the password is not valid.

4. Build the project with the command:
msdev custom_auth.dsp /make "custom_auth - Win32 Release"

5. Install your custom authentication module by copying custom_auth.dll into the
<installdir>/webct/webct/generic/bin/ directory of your test installation of WebCT
and enabling custom authentication in WebCT's administrator interface.

Note: Be sure to read the README_compile file included in the WOAK distribution. It will contain the latest
instructions on how to build the custom authentication module.

© 2003 WebCT, Inc. 57

CHAPTER 2 AUTOMATIC SIGNON FROM OTHER
SYST EMS
Automatic signon allows institutions to create seamless computing environments. Users can move from an
application where they are authenticated to WebCT without retyping usernames and passwords. For example,
automatic signon can allow users to log in to their campus portal, browse campus events, and then click a link
to their WebCT course, upon which they are automatically logged in, without being prompted for a username
or password.

AU T O M A T I C S I G N O N PR O C E S S
The automatic signon process will vary depending on the type of system with which you are integrating
WebCT. For an institution that has a campus portal, the process can occur as follows:

1. A user accesses their campus portal account, using their portal username and password.

2. The portal obtains the user’s myWebCT and/or WebCT course information either by

• obtaining the information from an external source, such as a student information system.
• executing a local program that makes a Standard API call to obtain the information. The local

program can use one of the following API commands:
� Standard API command homearea_xml, which uses the WebCT ID and server base

address to export a user’s myWebCT in XML format. See Chapter 5: Standard API.
� Standard API command find, which uses the WebCT ID to find a user’s global database

record. See Chapter 5: Standard API.

3. The user clicks a link to the WebCT server either to their myWebCT or directly into a course.

4. The portal executes a local program that makes an IMS API call to find the user’s IMS ID and IMS
source.

5. WebCT returns the IMS ID and IMS source.

6. (Optional) The portal stores the IMS ID and IMS source locally with the user’s record so that
subsequent requests to the WebCT server are faster.

7. The portal executes a local program that creates a Message Authentication Code (MAC) from the data
(the IMS ID and IMS source, a timestamp, and a destination URL) and the shared secret value. The
local program assembles the data and MAC into an HTTP request and then sends the HTTP request via
the user’s browser.

8. WebCT verifies the validity of the HTTP request and issues a ticket in the form of a browser cookie.

9. The user is redirected to the URL provided in the request (e.g., the course Homepage or their
myWebCT).

© 2003 WebCT, Inc. 58

IM P L E M E N T I N G AU T O M A T I C S I G N O N
Implementing automatic signon involves two steps:

1. Setting shared secret values and enabling ticket based authentication
2. Developing a program to automatically authenticate a user

Step 1 can be accomplished by a WebCT administrator who has basic knowledge of the WebCT file system.
Step 2 requires an experienced Web developer.

SETTING SHARED SECRET VALUES AND ENABLING TICKET BASED AUTHENTICATION
Shared secret values are key security components for automatic signon as they are used for authenticating
messages from external servers. Implementing automatic signon requires setting two shared secret values,
which ensure that only messages from trusted servers are processed:

• the automatic signon secret
• the API secret

First, set the shared secret value for automatic signon:

1. Using a text editor, open the file
<webct_install_dir>/webct/webct/generic/autosignon/autosignon_secret

2. Change the first line of the file to your desired secret. For security reasons, the value secret does not
work.

• It cannot exceed 256 characters.
• It cannot contain tab or other control characters.
• It should not contain end-of-line characters. Note: By default, the UNIX text editor vi and pico

automatically add end-of-line characters. Check the file size to ensure that the number of characters
equals the number of bytes.

• It is case-sensitive

3. Change the first line of the file to your desired secret. For security reasons, the default value secret does
not work. Save the file.

Now, set the API shared secret value:

4. Open the file <webct_install_dir>/webct/webct/generic/api/api_secret

5. Change the first line of the file to your desired secret, following the guidelines in step 2.

6. Save the file.

Now, log in to the administrator interface, and enable ticket-based authentication:

7. From the Admin toolbar, click Server Mgmt. The Server Mgmt toolbar appears.

8. From the Server Mgmt toolbar, click Settings. The Administrator Settings screen appears.

9. Under User Authentication, select Use ticket based authentication.

© 2003 WebCT, Inc. 59

DEVELOPING A PROGRAM TO AUTOMATICALLY AUTHENTICATE A USER
The most substantive part of implementing automatic signon is developing a program that automatically
authenticates users into WebCT. The program must:

• find a user’s IMS ID and IMS source via the IMS API
• make a request to the Automatic Signon CGI

Each of these requests requires the creation of a MAC to ensure the authenticity of the request.

CREATING MESSAGE AUTHENTICATION CODES
Because the Web interfaces to the Standard API and automatic signon reside in public directories, Message
Authentication Codes (MACs) are required to ensure that only messages from trusted servers are processed.

WebCT provides three options to assist you in creating MACs:

1. A C function that you can integrate and compile into your C program.
2. An executable file to which you make a system call from your program.
3. Instructions for generating a MAC using a language of your choice.

OPTION 1: USING THE GET_AUTHENTICATION C FUNCTION
The get_authentication function generates a MAC from an array of data and a shared secret value.

The source code necessary to use the C function is located in
<webct_install_directory>/webct/webct/generic/api/security/

A test program, which contains a Makefile for UNIX based systems, is also provided.

The file api_security.c contains the get_authentication function.

get_authentication Generates a MAC from an array of data and a shared
secret value

Syntax char* get_authentication (int i, char* data[], char* secret,

char* encrypted_data)

Returns 32-byte alphanumeric MAC

Parameter Description

i The number of elements in the array data.

data Array of all values to be used in generating the MAC.

The data should not be URL encoded.

secret The shared secret value.

encrypted_data The memory location of the MAC. It must be at least 32 bytes

long.

© 2003 WebCT, Inc. 60

OPTION 2: USING THE MESSAGE AUTHENTICATION CODE GENERATOR (GET_MD5 EXECUTABLE)
The Message Authentication Code (MAC) generator generates a MAC from a shared secret value and a string
consisting of the IMS ID, a timestamp, and a destination URL.

If you are not working in the C language or do not want to create a function to create the MAC, use the
Message Authentication Code (MAC) generator (an executable called get_md5). You can make a system call to
the get_md5 executable from your program and have the authentication string returned. The get_md5
executable has no dependencies on WebCT and can be copied to other servers as required. If you need a
get_md5 executable for an operating system other than the one your WebCT server is running on, you can
download several pre-compiled binaries for other operating systems from http://download.webct.com

get_md5

Generates a MAC from a shared secret value
and a string to be encrypted (consisting of the
IMS ID, a timestamp, and a destination URL).

Syntax

get_md5 <shared_secret_filename>
<string_to_encrypt>

Returns 32-byte alphanumeric MAC

Attribute Description

shared_secret_filename The filename where the shared secret value is stored.

data_to_encrypt The data to be encrypted. Data should not be URL
encoded.

An example of using the get_md5 program to generate a MAC from a shared secret value and the data string
described as follows:

Enter the command:

UNIX ./get_md5 api_secret 2A508D8EB5EB2D596DD937E2B8835100 982187291

http://webct.institution.edu:8900/SCRIPT/ENGL100-
001/scripts/serve_home

Windows get_md5 api_secret 2A508D8EB5EB2D596DD937E2B8835100 982187291

http://webct.institution.edu:8900/SCRIPT/ENGL100-
001/scripts/serve_home

OPTION 3: CREATE A MAC USING A LANGUAGE OF YOUR CHOICE
If you want to create MACs within your code, (e.g. you are writing your code in Java and don’t want to make a
system call), you can create a MAC with the following procedure:

1. Calculate the total of the ASCII values of all the characters in the passed data.

2. Convert the total of the ASCII values into a string.

3. Append the shared secret value.

© 2003 WebCT, Inc. 61

4. Encrypt the string into a 16-byte string using the MD5 algorithm.

5. Convert the 16-byte string into a 32-byte alphanumeric string to make it URL-friendly.

FINDING THE IMS ID FOR AUTOMATIC SIGNON
To send a request to autosignon, the program must first find a user’s IMS ID and IMS source. The program can
find the IMS ID and IMS source by making an IMS API call using the get_person_ims_info operation.
Optionally, after finding the IMS ID and IMS source, the program can store the IMS ID and IMS source locally
so that the next time they are required, the program can read them locally and then pass them to the automatic
signon CGI without having to make an API call.

FINDING THE IMS ID USING THE WEB-BASED IMS API
The syntax for a Web-based request to the IMS API to find an IMS ID is as follows:

<GET | POST> /webct/ims/serve_ep_api.pl?ACTION=configure&OPTION=get_person_ims_i
nfo&GLOBALID=<WEBCTID>&TIMESTAMP=<unix_epoch_time>
&AUTH=<32_byte_mac>

OPTION get_person_ims_info Finds a user’s IMS ID and IMS source from a

WebCT ID

GLOBALID An existing WebCT ID An existing WebCT ID is required when using

the get_person_ims_info option

TIMESTAMP UNIX epoch timestamp Time stamp in UNIX epoch format (seconds

since midnight GMT, Jan 1, 1970)

AUTH A valid MAC This is the 32-byte hexadecimal string generated

using the get_authentication C code, the
get_md5 program, or using custom code.

When developing a program for a Web-based API, you should keep the following points in mind:

• You can use either GET or POST methods to submit requests
• Requests must be URL encoded (e.g. spaces should be replaced with %20)
• Key/value pairs must be separated by ampersands (&) signs
• Key/value pairs can appear in any order

FINDING THE IMS ID USING THE COMMAND LINE IMS API
The IMS API executable ep_api.pl is in the following directory:
<webct_install_dir>/webct/generic/ims

The syntax for a command line request to the IMS API to find an IMS ID is as follows:

UNIX ./ep_api.pl configure get_person_ims_info <WEBCTID>

Windows ep_api.pl configure get_person_ims_info <WEBCTID>

© 2003 WebCT, Inc. 62

where:

Argument Input Description
WEBCTID An existing WebCT ID A WebCT ID is required when using the

get_person_ims_info option.

Example
Find the IMS ID for the WebCT ID jdoe:

UNIX ./ep_api.pl configure get_person_ims_info jdoe

Windows ep_api.pl configure get_person_ims_info jdoe

The IMS API returns:

Success:

IMS id=2A508D8EB5EB2D596DD937E2B8835100

IMS source=WebCT

FINDING WUUIS

FINDING THE WUUI USING THE WEB-BASED STANDARD API
Important: Since the release of WebCT 3.6, the use of the WebCT Unique Universal Identifier
(WUUI) for automatic signon and the find_wuui operation are deprecated. With WebCT moving towards the
use of the IMS specifications, which are becoming standards in the learning community, the IMS ID and IMS
source are now preferred over the WUUI. Although the use of the WUUI is deprecated, the functionality will
still be supported for 4.0.

The syntax for a Web-based request to the Standard API is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=<operation>&DB=global
&field1=<value>&COURSE=<placeholder>&AUTH=<32_byte_mac>
HTTP/1.0

Key Value Notes

find_wuui Finds a user’s WUUI for a given a WebCT ID

OPERATION

find_ims_id_wuui Finds a user’s WUUI for a given an IMS ID

DB global Although this value can also be student, for the

application of finding WUUIs, you will always use
global

WebCT ID Use if the operation is find_wuui field1
IMS ID Use if the operation is find_ims_id_wuui

© 2003 WebCT, Inc. 63

Key Value Notes

COURSE Any alphanumeric

string
This is a generic placeholder value. You can use any
value, but ensure that you use it in the calculation of
the MAC.

AUTH 32-byte MAC

This is the 32-byte hexadecimal string generated using
the get_authentication C code, the get_md5 program,
or using custom code.

FIND A USER’S WUUI FROM AN IMS ID
Find the WUUI for the IMS ID (person→sourcedid→id) 123456789:

GET /webct/public/serve_webctdb?OPERATION=find_ims_id_wuui
&DB=global&IMS%20ID=123456789&COURSE=xxxx
&AUTH=EB1A09F0BB299C23E99A5978587F49C1 HTTP/1.0

The Web server returns the following, not including HTTP headers:

Success: #WUUI = 6321BB2537BE7F1E26375D4E1687EE1F

FINDING THE WUUI USING THE COMMAND LINE STANDARD API
Important: Since the release of WebCT 3.6, the use of the WUUI for automatic signon and the find_wuui
operation are deprecated. With WebCT moving towards the use of the IMS specifications, which are becoming
standards in the learning community, the IMS ID and IMS source are now preferred over the WUUI. Although
the use of the WUUI is deprecated, the functionality will still be supported for 4.0.

The Standard API executable webctdb is in the following directory:
<webct_install_dir>/webct/webct/generic/api

The general syntax using the command line Standard API to find WUUIs is as follows:

UNIX ./webctdb <find_ims_id_wuui> global xxxx <WEBCTID | IMSID>

Windows webctdb <find_ims_id_wuui> global xxxx <WEBCTID | IMSID>

Where:

• find_ims_id_wuui is the operation to find a WUUI using an IMS ID
• global is the name of the database you are accessing
• xxxx is a required placeholder
• WEBCTID is the WebCT ID of the user whose WUUI you are trying to find
• IMSID is the IMS ID of the user whose WUUI you are trying to find

© 2003 WebCT, Inc. 64

MAKING A REQUEST TO THE AUTOMATIC SIGNON CGI
Once the program has determined the IMS ID and IMS source, it must pass the IMS ID and IMS source to the
Autosignon CGI, which then logs the user on to WebCT.

HOW THE AUTOMATIC SIGNON MAC IS GENERATED
The MAC is generated by using key/value pairs in the request. The automatic signon CGI uses the value from
the key/value pairs listed below:

• WUUI
• TIME STAMP
• URL (before URL encoding)
• IMS id (before URL encoding)
• IMS SOURCE (before URL encoding)

Note: The MAC will only use those keys provided in the request, as not all requests will include all keys.

The general syntax for an automatic signon request is as follows:

http://<webctserver>:<port>/webct/public/autosignon?IMS%20id=<IMS id>
&Time%20Stamp=<unix_epoch_time>&URL=<url>&MAC=<32_byte_mac>

Key Value Notes
IMS id An IMS id This is the IMS ID that has either been found using an IMS

API call or is stored locally.

Time Stamp unix_epoch_time Time stamp in UNIX epoch format (seconds since midnight

GMT, Jan 1, 1970).

URL URL The destination URL.

The URL parameter can be one of:
• a url
• “homearea”
• “coursepage://ims <sourcedid.id of course>”
• “courseid://webct courseid of course”

MAC 32-byte mac

This is the 32-byte hexadecimal string generated using the
get_authentication C code, the get_md5 program, or using
custom code.

Example 1:

The following example describes a user being logged into the course Homepage of the course ID ENGL100-
001:

http://webct.institution.edu:8900/webct/public/autosignon?
IMS%20id=2A508D8EB5EB2D596DD937E2B8835100&Time%20Stamp=982187291

© 2003 WebCT, Inc. 65

&URL=http://webct.institution.edu:8900/SCRIPT/ENGL100-
001/scripts/serve_home&MAC=0A0D776506D70AE16537560CBDE4EE1

The server responds by issuing the browser a cookie and sending the user to the URL, in this case the
homepage for ENGL100-001.

Example 2:

Using the previous example, the URL consists of the courseid:

http://webct.institution.edu:8900/webct/public/autosignon?
IMS%20id=2A508D8EB5EB2D596DD937E2B8835100&Time%20Stamp=982187291
&URL=courseid://ENGL100-001&MAC=0A0D776506D70AE16537560CBDE4EE1

The server responds by issuing the browser a cookie and sending the user to the URL, in this case the
homepage for ENGL100-001.

© 2003 WebCT, Inc. 66

CHAPTER 3 OVERVIEW OF TH E APPLICAT ION
PROGRAMMING INTERFACES
Application Programming Interfaces (APIs) allow users and other systems to directly interface with WebCT
without the graphical user interface. WebCT 4.0 CE provides two APIs: the proprietary Standard API and the
IMS Enterprise API. The IMS Enterprise API is exclusive to WebCT Campus Edition 4.0 and is compliant
with the IMS Global Learning Consortium, Inc. (http://www.imsproject.org) enterprise API
specification. Both APIs have two interfaces: a command line interface and a Web-based interface.

Some functions are available in both the IMS API and Standard API. The following table summarizes the
functionality of each API.

FUNCTIONAL DIFFERENCES
Function

D I F F E R E N C E S B E T W E E N T H E I M S E N T E R P R I S E A P I A N D T H E S T A N D A R D
A P I

IMS API Standard API
 Command

Line
Web- Command

Line Based
Web-

Based
√ √ Export Midterm/Final Grades from

Course

Add/Update/Delete Multiple Courses √ √

Add/Update/Delete Multiple Terms √ √

Add/Update/Delete Single Users

from/to global database √ √ √ √
from/to the student database 1
(Manage Students in courses)

 √ √

Add/Update/Delete Multiple Users

from/to global database √ √ √
from/to the student database 1
(Manage Students in courses)

 √

Set IMS IDs and IMS sources for users
and courses

√ √

Find Users √ √ √ √
Find WUUIs (deprecated) √ √
Find IMS IDs √ √

1 Indirectly, the IMS API can modify the student database when importing membership objects. However, direct
modification is only available via the Standard API.

© 2003 WebCT, Inc. 67

Change WebCT IDs √ √
Export myWebCT in XML format √ √

OPERATIONAL DIFFERENCES
The IMS API relies on the exchange of XML data files to perform its functions. The Standard API relies on a
variety of operations to carry out its functions, including the processing of delimited text files for batch
operations, entering command line statements for single operations, and creating HTTP query-strings for Web-
based operations.

For features unique to each API, the choice of which to use is obvious. However, for managing user accounts in
WebCT, the choice is more difficult since there is an overlap in functionality. In general, whenever your goal is
to communicate with an IMS-compliant application, you should use the IMS API. Some advantages and
disadvantages of each API for user management are summarized below:

 Advantages Disadvantages

IMS API • Allows you to set IMS IDs and IMS
sources within WebCT

• Facilitates two way communication
between IMS-compliant systems
(which rely on the IMS ID and IMS
source)

• XML files must be created

Standard API • Allows the modification of

administrator-created columns
• Can be simpler to use for user

management since it is command
driven and does not require XML
files

• Difficult to integrate with
IMS-compliant systems

C H O O S I N G T H E A P P R O P R I A T E I N T E R F A C E F O R Y O U R R E Q U I R E M E N T S
WebCT provides two interfaces to each of its APIs: a command line interface and a Web-based interface.
Choosing an interface is not a one-time decision; it will vary depending on the task that you need to
accomplish. For example, if you want to process real-time updates from your institution’s student information
system (SIS), the Web-based interface may be more suitable. However, if you have to debug a problem, using
the command line interface may be more suitable.

Use the following table as a guide for choosing the best interface.

Task/
Situation

Suggested
Interface

Processing multiple records simultaneously
(e.g. you want to populate the global database based on a batch extract from
your institution’s SIS)

command line

Processing a single record command line

© 2003 WebCT, Inc. 68

Task/ Suggested
Situation Interface
Integrating systems that are on the same physical server and run as the same
user as WebCT

command line

Debugging command line

Integrating external system with WebCT
(e.g., you want to integrate your institution’s SIS with WebCT)

Web-based

© 2003 WebCT, Inc. 69

CHAPTER 4 IMS ENTERPRISE API
The IMS Enterprise API in WebCT Campus Edition 4.0 complies with version 1.1 and 1.01 of the IMS
Enterprise Specification (available at http://www.imsproject.org/enterprise), the latest version
of the specification at the time of release. The IMS API allows you streamline integration of WebCT with other
products that also conform to the IMS specification.

IMS API AD A P T O R S
The IMS API adaptors allow you to integrate your IMS-compliant systems with WebCT. These built-in
adaptors take vendor-specific IMS Enterprise XML and translate it using Extensible Stylesheet Language
Transformations (XSLT) for import into WebCT. The XSLT translations handle both inbound XML data and
outbound grade exchange transformations.

Typical adaptor implementations include: integrating a student information system (SIS) with WebCT and
importing content from earlier versions of WebCT CE. By selecting your vendor-specific adaptor, the IMS API
translates your XML objects, courses and memberships, using the IMS Enterprise Specification, into WebCT-
specific XML. The IMS API adaptors are described in the following table:

IMS API Adaptors
Adaptor Definition
IMS The IMS adaptor is the default adaptor. If you do not specify an adaptor at the

command line, then the IMS adaptor is applied. The IMS adaptor complies with
version 1.1 and 1.01 of the IMS Enterprise Specification. All inbound XML is run
through XSLT normalization to ensure correct object order, removal of ignored
elements, and conversion of deprecated extensions into the newly supported
elements.

webct38 The webct38 adaptor complies with version 1.1 and 1.01 of the IMS Enterprise
Specification. Specifying the webct38 adaptor allows you to import WebCT 3.8
content into WebCT 4.0.

datatel The datatel adaptor complies with Datatel specific XML. The adaptor provides
XSLT transformation for Datatel XML and allows for Datatel specific responses.
Outbound grade export (membership objects) complies with the required Datatel
format. Administrators can disable grade exchange.

SCT The SCT adaptor complies with SCT XSLT transformations and handles SCT-style
imported data. Outbound grade export (membership objects) complies with the
required SCT format. Administrators can disable grade exchange.

For more information on Extensible Stylesheet Language Transformations, see www.xslt.com.

© 2003 WebCT, Inc. 70

SIS GRADE EXPORT
Only one adaptor can have grade export enabled at a time. You can enable and disable midterm and final grade
export independent of each other.

FU N C T I O N A L I T Y I N T H E IMS EN T E R P R I S E API
The IMS API has functionality that can be divided into three basic categories.

Import • Create, modify, and delete term and course instances. Both term and course
instances are group objects in IMS terminology.

• Create, modify, and delete users. Users are person objects in IMS terminology.
• Register and deregister users from courses. Associates person with group objects

using the membership object in IMS terminology,

Export • Create an XML file of all user, course, and course membership information.
• Create an XML file containing basic information for a single student record.
• Create an XML file containing a list of users with midterm and/or final grades for a

given course.

Configure • Add or update the IMS source for a single course.
• Add or update the IMS id for a single course.
• Add or update the IMS source for a single user.
• Add or update the IMS id for a single user.
• Find the IMS id and IMS source for a single user.

TE R M I N O L O G Y
The IMS Enterprise Information Model describes data structures that are used to provide interoperability of
instructional management systems like WebCT with other enterprise systems. The information model defines
several data objects, and WebCT maps the appropriate internal data to these objects. You should become
familiar with the IMS data objects and their relation to WebCT. The following table summarizes some of the
important terminology relevant to WebCT.

© 2003 WebCT, Inc. 71

Important IMS Terminology for WebCT Users
Term Definition
Group
Object

An object describing a group such as a course or term instance. WebCT matches data
in this object with data associated with courses such as the Course ID and Course
Description.

Person
Object

An object describing a user, such as a designer, student, or teaching assistant. IMS
data elements map to WebCT elements as follows: User ID maps to WebCT ID;
Family maps to Last Name; and Given maps to First Name.

Membership
Object

An object describing the membership of a person or group within a group. WebCT
uses the membership object to modify the Courses field within the global database
and to add instructors, students, and teaching assistants to their appropriate course
databases.

Properties
Object

An object containing general bookkeeping information for an IMS-compliant XML
file. WebCT has no equivalent to the properties object.

IMS id The IMS id is a unique identifier for an IMS object. All group, person, and

membership objects have an associated IMS id. Within an IMS-compliant XML file,
the IMS id refers to the <object>→sourcedid→id

IMS source The IMS source identifies the organization or system that assigned the IMS id to the

object. group, person, and membership objects all have IMS sources
Within an IMS-compliant XML file, the IMS source refers to the
<object>→sourcedid→source.

IM P L E M E N T I N G T H E IMS API
To implement the IMS API, consider the tasks that you need to perform and the systems that you want WebCT
to interact with. A typical implementation of the IMS API with a student information system (SIS) might
include the following steps.

1. Creation of an XML extract from a SIS that has group, person, and Member data objects within it.

2. Bulk population of the WebCT global database using the command line IMS API to import the XML
extract. This creates the courses, creates the terms, creates the users, and assigns users to courses.

3. Setup of an interface between the SIS and WebCT that sends periodic updates to WebCT via the Web-
based IMS API. Updates can include students dropping and adding courses, the addition of new
students, and the creation of courses that have a WebCT component.

4. Transfer of midterm and/or final grades from WebCT to the SIS via the Web-based IMS API. The
transfer can occur when an instructor fills out a Web form indicating that grades are ready to be
released to the registrar.

© 2003 WebCT, Inc. 72

COMMAND LINE INTERFACE (EP_API.PL)
The IMS Best Practice and Implementation Guide describes a robust and easy-to-implement interface that
involves the creation and passing of a complete “snapshot” of the person, group, and group membership data
from one system to another. For example, at the beginning of a school year, an institution can export a snapshot
of all student and course information from their SIS for the term. The “snapshot” can then be transferred and
imported to the WebCT server.

The command line interface provides an effective way of importing “snapshots” into WebCT.

The command line interface also provides an effective way of exporting and configuring WebCT data without
the development effort required for a Web-based implementation.

Note: The IMS Best Practice and Implementation Guide is available from
http://www.imsproject.org/enterprise/

SYNTAX
The command line interface has the following general syntax:

UNIX ./ep_api.pl <ACTION> <OPTION> <FILENAME | COURSEID | GLOBAL ID>
[--ims_id=<ID>] [--ims_source=<SOURCE>] [--ims_target=<TARGET>]
[--datasource=<DATASOURCE>] [--studentlist=<STUDENTLIST>]
[--charset=<characterset>][--adaptor=<ADAPTOR>]

Windows ep_api.pl <ACTION> <OPTION> <FILENAME | COURSEID | GLOBAL ID>

[--ims_id=<ID>] [--ims_source=<SOURCE>] [--ims_target=<TARGET>]
[--datasource=<DATASOURCE>] [--studentlist=<STUDENTLIST>]
[--charset=<characterset>][--adaptor=<ADAPTOR>]

where:

ACTION OPTION
import restrict

unrestrict

export snapshot

person_record
group_record
group_final_grades
group_midterm_grades

configure set_group_ims_info

import_group_ims_info
set_person_ims_info
import_group_ims_info
get_person_ims_info

© 2003 WebCT, Inc. 73

FUNCTIONS

IMPORT
Important: If you are adding a user to a cross-listed course, see Adding Users to Cross-Listed Courses, page
95, for rules governing user roles.

The syntax for an import is:

UNIX ./ep_api.pl import <OPTION> FILENAME [--adaptor=<ADAPTOR>]

Windows ep_api.pl import <OPTION> FILENAME [--adaptor=<ADAPTOR>]

where:

Argument Input Description
restrict With restrict mode on, the sourcedid.source and sourcedid.id

supplied in the XML file are checked against the IMS sourcedid
elements for similar objects to ensure they exist in the WebCT
database. Objects can be updated or deleted only if the
sourcedid.source element and sourcedid.id elements match.

OPTION

unrestrict No checking of the sourcedid.source element is performed; only
the sourcedid.id is checked.

FILENAME filename File to be imported into WebCT.

IMS The IMS adaptor is the default adaptor. If you do not specify an
adaptor at the command line, then the IMS adaptor is applied. The
IMS adaptor complies with version 1.1 and 1.01 of the IMS Enterprise
Specification. All inbound XML is run through XSLT normalization
to ensure correct object order, removal of ignored elements, and
conversion of deprecated extensions into the newly supported
elements.

webct38 The webct38 adaptor complies with version 1.1 and 1.01 of the IMS
Enterprise Specification. Specifying the webct38 adaptor allows you
to import WebCT 3.8 content into WebCT 4.0.

datatel The datatel adaptor complies with Datatel specific XML. The
adaptor provides XSLT transformation for Datatel XML and allows
for Datatel specific responses.

--adaptor

SCT The SCT adaptor complies with SCT XSLT transformations and
handles SCT-style imported data.

--charset A valid
character set.
See the
Appendix.

The charset parameter overrides the character set element as defined
in the XML header file. As some IMS compliant XML data is
inconsistent with the character set element in the header file, it is
necessary to override the element to ensure data is imported correctly.

Example 1
Import the XML file course.xml in restrict mode using the webct38 adaptor.

UNIX ./ep_api.pl import restrict courses.xml --adaptor=webct38

Windows ep_api.pl import restrict courses.xml --adaptor=webct38

© 2003 WebCT, Inc. 74

Note: For more examples of using import to work with cross-listed courses and to set homearea as required, see
XML File Format Guidelines on page 90.

Example 2
Import the XML file isodata.xml, containing ISO-8859-1 data and override the UTF-8 character set tag
declaration as defined in the XML header. Note: The IMS adaptor is the default adaptor. If you do not specify
an adaptor at the command line, then the IMS adaptor is applied.

UNIX ./ep_api.pl import unrestrict isodata.xml --charset=iso-8859-1

Windows ep_api.pl import unrestrict isodata.xml --charset=iso-8859-1

IMS IMPORT LOGGING
You can track the results of an IMS import by looking at log files written to during each import. A running log
of all events processed can be found in
<webct_install_directory>/webct/generic/logs/ims_log.txt. In addition, detailed log
files for failed imports or imports that completed with warnings are created. The system administrator will also
receive an e-mail for each failed import. The e-mail will refer to log files containing details required to
reprocess an import if required. These detailed log files are referred to in this guide as “working” log files.
More complete information about ims_log.txt, the working log files, and about automatically generated e-
mail is provided in this section.

Note: Throughout this section, the import of multiple files will be termed an “IMS import process.” Each file
imported during an IMS import process will be considered an “IMS import event.” An IMS import process,
then, would consist of several import events.

ims_log.txt
• Located in $webct_root/webct/generic/logs/
• Contains success and error messages related to each IMS import event, as well as export or

configure events.
• Each message logged to the ims_log.txt file appears on a single line and has the following

format:

[<Timestamp>] [Type of call (“Web Interface” | “Console” | “IMSReceiver”)>] [<Process ID
number>] [<ClientMessageKey>]
<Log message>

Example
[Fri Apr 12 09:49:39 2002] [Console] [26671] [WebCT_2002-04-12T09:49:39-
0800_26670_0] Error: Cannot determine globalDB user existence. Global ID cannot be blank.

• Several messages can be related to one import event or to one import process. Each logged
message falls into one of six categories, as shown below. Messages in categories 3 through 6 also
generate an e-mail alert to the system administrator.

© 2003 WebCT, Inc. 75

Category 1: Informative message
Contains comments related to an import, indicating the start of an import, import parameters, etc.

Category 2: Success Message
Starts with a Success: prefix. Success messages are logged when an operation is complete and
usually mark the end of an event. Warnings can occur during a successful import, but would not
interfere with completion.

Category 3: Warning Message
Starts with a Warning: prefix. Warning messages are logged when an import is successful, but did
not complete as expected. In such a case, WebCT would continue processing, but may guess at the
appropriate action and write to the log file so a user can check if the item was processed correctly.
An example where a warning message would be logged is as follows: The XML for an import
specifies that a course should be added to a non-existent term, and the course is instead added to
“Default Term”.

Category 4: Error Message
Starts with an Error prefix. Error messages are logged when an import process begins but an error
occurs which results in an incomplete import. An example where an error message would be
logged is as follows: If during the import of multiple students listed in an XML file, the Global ID
of the third student in the list were not found, that particular student would not be imported.
However, the import process can continue, skipping to the fourth student in the list.

Category 5: Fatal Error Message
Starts with a Fatal Error prefix. Fatal error messages are logged when an import begins but
something is encountered during the process that makes it impossible to continue the processing to
completion. In such a case, the import process would have begun but would immediately stop upon
encountering the fatal error. An example where a fatal error message would be logged is as
follows: If during an import a tag were encountered in the XML file that WebCT did not know how
to deal with, the import process would stop.

Category 6: Fatal Failure Message
Starts with a Fatal Failure prefix. Fatal failure messages are logged when an import process can
not begin for some reason. An example where a fatal failure message would be logged is as
follows: In attempting to import a list of students, the XML file named in the import command can
not be found, the processing of the XML file can not begin.

Important: The ims_log.txt file should be archived and deleted periodically so the file does not
grow too large.

Working log files
• Located in generic/temp/ims_files/
• Two log files are saved for each failed IMS import, containing details to allow reprocessing as

required. An e-mail message is also sent to the system administrator as an alert. Note: These files
are created only for import events, not export or configure events.

• The log files are named using the Client Message Key (CMK), a unique identifier for an IMS
event (also known as the “Event ID”). The two files are:
CMK.xml, which contains the XML data used in the import.

© 2003 WebCT, Inc. 76

CMK.pairs, which contains multi-lines consisting of the processing parameters used in the
import.

For example, the two files created for a failed event with the Client Message Key “WebCT_2002-
04-03T17:05:02-0800_20496_0” would be:
WebCT__-2002-04-03T17_05_02-0800__-20496__-0_1.xml
WebCT__-2002-04-03T17_05_02-0800__-20496__-0_1.pairs

• These log files are known as “working” files because they are created automatically at the start of
an import, named CMK.work_xml and CMK.work_pairs, and deleted automatically upon
successful completion of the import. Only in case of process warnings or failure will the files be
saved and renamed to <CMK>.xml and CMK.pairs.

Content and Layout of Working Log Files
The content of the CMK.pairs log file differs depending upon if the event being logged is a console or Web
interface event, or an IMS Receiver event.

Console or Web Interface
Messages logged as a result of a failed console or Web Interface event run over multiple lines and have the
format shown in the following example:
CLIENT_MESSAGE_KEY ::: WebCT_2002-04-12T11:15:16-0800_3195_0

INTERFACE_TYPE ::: Console

INLINEMODE ::: Off

INTERFACE_TYPE ::: IMS

ACTION ::: Import

IO_CHARSET :::

FILENAME ::: XML/out.xml

OPTION ::: Unrestrict

E-mail Alerts
E-mail messages are generated to alert system administrators to check the working log files in three different
cases:

During or at the end of an import:

1. If there is a warning during an import. A warning will not cause an import to fail; however, the import
may not have completed as expected and so may require investigation by a system administrator to
ensure the outcome is acceptable. For example, an administrator may want to reprocess an import after
seeing a message such as "Warning: STATUS value is inappropriate for a
deletion. Request is treated as an update for designer (John) in
course (WebCT101)."

2. If an import does not complete because of an Error, a Fatal Error, or a Fatal Failure, as defined in the
ims_log.txt section above.

© 2003 WebCT, Inc. 77

Upon system startup:

3. If an import fails to complete for some reason other than described in cases 1 and 2.

In cases 1 and 2, the content of the e-mail message will be as follows, with the Subject line indicating a
warning or an incomplete import:

Subject: IMS Import Process Incomplete

Importing file (<filename>) through <type of interface> failed.

(WebCT Installation on <server name>:<server port>)

The following errors (warnings) are reported:

<IMS error log for this process>

Please check the work files of that process at:

<work file path>

In case 3, the incomplete process will have been found upon system startup, when the working files directory is
checked for temporary work files that are not owned by an active process. If such files are found, this indicates
an import may not have completed. The system administrator is alerted with an e-mail. The content of the e-
mail message are as follows:

Subject: Incomplete IMS Import Process Discovered

Possible incomplete process with Client Message Key (<Client
Message Key>) discovered.

Please check <ims_log file> for more details

(WebCT Installation on <server name>:<server port>)

Please check the work files of that process at:

<work file path>

In each case, after checking the work files and possibly reprocessing an import, the system administrator should
delete the work files from generic/temp/ims_files/ so they do not collect in this directory.

EXPORT
This argument exports data from WebCT’s global database. The syntax for an export is:

UNIX ./ep_api.pl export <OPTION> <FILENAME>
[--datasource=<DATASOURCE>][--ims_target=<TARGET>][--type=<TYPE>]
[--ims_id=<ID>][--studentlist=<STUDENTLIST>]
[--charset=<characterset>] [--adaptor=<ADAPTOR>]

Windows ep_api.pl export <OPTION> <FILENAME>

[--datasource=<DATASOURCE>][--ims_target=<TARGET>][--type=<TYPE>]
[--ims_id=<ID>][--studentlist=<STUDENTLIST>]
[--charset=<characterset>] [--adaptor=<ADAPTOR>]

© 2003 WebCT, Inc. 78

where:

Argument Input Description
Snapshot Create an XML file of all person, group, and

membership objects.
person_record Create an XML file containing basic

information for a single student record.
group_record Create an XML file containing a list of users

with midterm and final grade information for a
given course.

group_final_grades Create an XML file containing a list of users
with final grade information for a given course.

OPTION

group_midterm_grades Create an XML file containing a list of users
with midterm grade information for a given
course.

FILENAME Any valid filename Filename to be used for the XML file.

--datasource Any alphanumeric string up to
256 characters.
Enclose strings containing
spaces in quotation marks.

Sets the datasource element within the
properties element. Defaults to WebCT if
none is specified.

--ims_target Any alphanumeric string up to
256 characters.
Enclose strings containing
spaces in quotation marks.

Sets the target element within the
properties element.

--type Any alphanumeric string up to
256 characters.
Enclose strings containing
spaces in quotation marks.

Sets the type element within the properties
object.

--ims_id Any person or group object id
from the sourcedid data
element.

When exporting with the person_record,
group_record, group_final_grades, or
group_midterm_grades options, use this
optional field to specify the person or group
object that you want to export.

--studentlist Any valid filename When exporting using group_record,
group_final_grades, or group_midterm_grades
options, this optional file allows you to export a
subset of the data. The file must be in plain text
format with one IMS id per line.

© 2003 WebCT, Inc. 79

Argument Input Description

--adaptor webct38 Specifying the webct38 adaptor allows you to
generate WebCT 3.8 compliant XML.

 IMS The IMS adaptor is the default adaptor. If you
do not specify an adaptor at the command line,
then the IMS adaptor is applied. The IMS
adaptor complies with version 1.1 and 1.01 of
the IMS Enterprise Specification.

--charset A valid character set. See the
Appendix.

The charset parameter converts all export data
into the specified character set. On export, the
specified character set is tagged in the XML
header file for correct identification. Character
set conversion will be applied to all outgoing
data.

If the charset parameter is not specified the
administrator file character set will be used as
the export default. Administrators can set a
default through the WebCT administrator
Settings screen. Under the Set character set for
administrator file upload/download as option,
select a default character set. Character set
conversion will be applied to all outgoing data.

Example 1
Export a snapshot of the WebCT global database to the file dbsnap.xml with the datasource set to WebCT -
Faber College and the target set to BigSIS:

UNIX ./ep_api.pl export snapshot dbshot.xml --datasource=”WebCT -
Faber College” --ims_target=”BigSIS”

Windows ep_api.pl export snapshot dbshot.xml --datasource=”WebCT - Faber

College” --ims_target=”BigSIS”

Example 2
Specifying the webct38 adaptor, export the content from Example 1 to generate WebCT 3.8 compliant XML:

UNIX ./ep_api.pl export snapshot dbshot.xml --datasource=”WebCT -
Faber College” --ims_target=”BigSIS” --adaptor=webct38

Windows ep_api.pl export snapshot dbshot.xml --datasource=”WebCT - Faber

College” --ims_target=”BigSIS” --adaptor=webct38

Example 3
Export a person_record to the file person.xml for the user with the IMS id 612:

UNIX ./ep_api.pl export person_record person.xml --ims_id=612

© 2003 WebCT, Inc. 80

Windows ep_api.pl export person_record person.xml --ims_id=612

Example 4
Export a group_record to the file group.xml for a subset of students whose IMS ids are stored in the file
students.txt for a course with the IMS id C101.

Note: The file containing the IMS ids must be in plain text format, with one IMS id per line.

UNIX ./ep_api.pl export group_record group.xml --
studentlist=students.txt –-ims_id=C101

Windows ep_api.pl export group_record group.xml --

studentlist=students.txt –-ims_id=C101

Example 5
Export a person_record to the file person.xml for the user with the IMS ID 612. On export, use the charset
parameter to set person.xml as an ISO-8859-1 file with the header <?xml version="1.0" encoding="iso-
8859-1"?>:

Note: The same command with –charset=utf-8 would set person.xml as a UTF-8 file with the header
<?xml version="1.0" encoding="utf-8"?>

UNIX ./ep_api.pl export person_record person.xml --ims_id=612 –-
charset=iso-8859-1

Windows ep_api.pl export person_record person.xml --ims_id=612 –-

charset=iso-8859-1

IMS EXPORT LOGGING
You can track the results of an IMS export by looking at ims_log.txt, which contains a running log of all
export events processed, as well as import and configure events.

Note: Throughout this section, the export of multiple files will be termed an “IMS export process.” Each file
exported during an IMS export process will be considered an “IMS export event." An IMS export process, then,
would consist of several export events.

ims_log.txt
• Located in $webct_root/webct/generic/logs/
• Contains success and error messages related to each IMS export event, as well as import or

configure events.
• Several messages can be related to one export event, or to one export process. Each logged

message falls into one of six categories: informative, success, warning, error, fatal error, or fatal
failure. For details about each category of message, see IMS Import Logging, ims_log.txt, page 75.

• Each message logged to the ims_log.txt file appears on a single line and has the following
format:

© 2003 WebCT, Inc. 81

[<Timestamp>] [Type of call (“Web Interface” | “Console” | “IMSReceiver”)>] [<Process ID
number>] [<ClientMessageKey>]
<Log message>

Example
[Fri Apr 12 09:49:39 2002] [Console] [26671] [WebCT_2002-04-12T09:49:39-
0800_26670_0] Error: Cannot determine globalDB user existence. Global ID cannot be blank.

Important: The ims_log.txt file should be periodically archived and then deleted so the file does
not grow too large.

CONFIGURE
Configure is used to set the IMS id for group objects and person objects. The syntax for a configure action is:

UNIX ./ep_api.pl configure <OPTION> <FILENAME | COURSEID | WEBCTID >
[--ims_id=<ID>] [--ims_source=<SOURCE>]

Windows ep_api.pl configure <OPTION> <FILENAME | COURSEID | WEBCTID >

[--ims_id=<ID>] [--ims_source=<SOURCE>]

where:

Argument Input Description
set_group_ims_info Sets the IMS id for a group object (course)
import_group_ims_info Sets the IMS id for multiple group objects from a file.
set_person_ims_info Sets the IMS id for a person object (user).
import_person_ims_info Sets the IMS id for multiple person objects from a file.

OPTION

get_person_ims_info Finds a user’s IMS id and IMS source with the
WebCT ID.

FILENAME Any valid filename A filename must be supplied for

import_group_ims_info or import_person_ims_info.
The file must be plain text, in the format:
<webct_id>,<ims_id>,<ims_source_new>

COURSEID An existing Course ID A WebCT Course ID is required when using the

set_group_ims_info option.

WEBCTID An existing WebCT ID A WebCT ID is required when using the

set_person_ims_info option and the
get_person_ims_info option.

--ims_id Any valid IMS id

sourcedid.id
For the set_group_ims_info and set_person_ims_info
options, this argument allows you to set the
group→sourcedid→id or
person→sourcedid→id, respectively

--ims_source Any valid IMS source For the set_group_ims_info and set_person_ims_info

© 2003 WebCT, Inc. 82

sourcedid.source options, this argument allows you to specify the
desired group→sourcedid→source or
person→sourcedid→id, respectively.

Example 1
Set the sourcedid→id 0390-ENGL-101-2345 for a group object with the course ID ENGL101-2345:

UNIX ./ep_api.pl configure set_group_ims_info ENGL101-2345
--ims_id=0390-ENGL-101-2345

Windows ep_api.pl configure set_group_ims_info ENGL101-2345

--ims_id=0390-ENGL-101-2345

Example 2
Set the sourcedid→id’s for three person objects contained in the file person_ims.txt.

Note: When viewed with a text editor, the person_ims.txt file looks like the following:

bluto,blutarsky123,InstitutionSIS
pinto,kroger34,InstitutionSIS
flounder,dorfman53,InstitutionSIS

ep_api.pl configure import_person_ims_info person_ims.txt

IMS CONFIGURATION LOGGING
You can track the results of an IMS configure event by looking at
<webct_install_directory>/webct/generic/logs/ims_log.txt, which contains a running
log of all configure events processed, as well as import and export events.

Note: Throughout this section, the configuration of multiple files will be termed an “IMS configuration
process.” Each file exported during an IMS export process will be considered an “IMS configuration event.”
An IMS configuration process, then, would consist of several configuration events.

ims_log.txt
• Located in $webct_root/webct/generic/logs/
• Contains success and error messages related to each IMS configure event, as well as import or

export events.
• Several messages can be related to one configuration event or to one configuration process. Each

logged message falls into one of six categories: informative, success, warning, error, fatal error, or
fatal failure. For details about each category of message, see IMS Import Logging, ims_log.txt on
page 75.

• Each message logged to the ims_log.txt file appears on a single line and has the following
format:

[<Timestamp>] [Type of call (“Web Interface” | “Console” | “IMSReceiver”)>] [<Process ID
number>] [<ClientMessageKey>]
<Log message>

© 2003 WebCT, Inc. 83

Example
[Fri Apr 12 09:49:39 2002] [Console] [26671] [WebCT_2002-04-12T09:49:39-
0800_26670_0] Error: Cannot determine globalDB user existence. Global ID cannot be blank.

Important: The ims_log.txt file should be periodically archived and then deleted so the file does
not grow too large.

WEB-BASED INTERFACE (SERVE_EP_API.PL)
The IMS Best Practices and Implementation Guide defines an event driven interface as an effective method of
communicating periodic updates. The event-driven interface, in which events trigger the transmission of IMS
data objects to the target system (e.g. WebCT), can be implemented effectively through the Web-based
interface. For example, a student adding a course can trigger an event on an SIS which then sends an IMS data
object to WebCT, updating the WebCT database.

Note: The IMS Best Practices and Implementation Guide is available from
http://www.imsproject.org/enterprise

Important:

• Some system administrators have created scripts that automatically import data files from outside
systems to WebCT and export data file from WebCT to outside systems on a regular basis. By
default, these scripts rely on character set for imported and exported administrator files, which is
set in the WebCT administrator interface. Both imported and exported files will be converted to
this character set. You should change all automatic scripts to explicitly specify the character set of
the files being imported to match the actual character set of the source data. This will ensure that
background scripts import data smoothly, no matter the changes made to the character set for
imported and exported administrator files. See the International Support chapter of this guide for
more information.

• For details about how to set the CHARSET parameter, see Section 2: Campus Edition Institution
License, Chapter 4 IMS Enterprise API, Import, Example 2 in this guide.

Implementing the Web-based interface involves two steps.

1. Setting the API shared secret value
2. Developing a program to generate an HTTP request

Step 1 can be accomplished by a WebCT administrator who has basic knowledge of the WebCT file system.
Step 2 requires an experienced Web developer.

SETTING THE API SHARED SECRET VALUE
The shared secret value is a key component of allowing external servers to automatically sign on users to
WebCT. The shared secret is used to create a Message Authentication Code (MAC) from the submitted data.
When WebCT receives a request, it decodes the shared secret from MAC using the submitted data. If the
decoded shared secret is the same as the one stored locally, the request is considered authentic and is processed.
Because the shared secret value has such a critical role, choose it carefully. You can set the shared secret by
performing the following steps:

© 2003 WebCT, Inc. 84

1. Using a text editor, open the file
<webct_install_directory>/webct/webct/generic/api/api_secret

2. Change the first line of the file to your desired secret. For security reasons, the default value secret does
not work. The shared secret value

• is case-sensitive

• cannot exceed 256 characters.

• cannot contain tab, or other control characters.

• should not contain end-of-line characters. Note: By default, the UNIX text editor vi and pico
automatically add end-of-line characters. Check the file size to ensure that the number of characters
equals the number of bytes.

3. Save the file.

Tips for
Shared
Secrets

¾ Make your shared secret value difficult to guess by making it
lengthy and by including a combination of numbers and upper and
lower case characters.

¾ Change your shared secret value at regular intervals.
¾ On remote systems, place shared secret values in secure directories.

DEVELOPING A PROGRAM TO GENERATE AN HTTP REQUEST
Developing a program to generate an HTTP request is the most substantive part of implementing the Web-
based IMS API. The program must:

• generate a Message Authentication Code (MAC)
• generate a checksum for submitted XML extracts
• assemble a properly formatted HTTP request
• process any data being returned

Note: Log files are generated for all IMS import, export and configure events. For log file details, see Section2,
Chapter 4 IMS Enterprise API, Implementing the IMS API, Command Line Interface: IMS Import Logging.

CREATING MESSAGE AUTHENTICATION CODES
Because the Web interfaces to the Standard API and automatic signon resides in public directories, Message
Authentication Codes (MACs) are required to ensure that only messages from trusted servers are processed.

WebCT provides three options to assist you in creating MACs:

1. A C function that you can integrate and compile into your C program
2. An executable file to which you make a system call from your program
3. Instructions for generating a MAC using a language of your choice

OPTION 1: USING THE GET_AUTHENTICATION C FUNCTION
The get_authentication function generates a MAC from an array of data and a shared secret value.

© 2003 WebCT, Inc. 85

The source code necessary to use the C function is located in
<webct_install_directory>/webct/webct/generic/api/security/

A test program, which contains a Makefile for UNIX based systems, is also provided.

The file api_security.c contains the get_authentication function.

get_authentication Generates a MAC from an array of data and a
shared secret value

Syntax char* get_authentication (int i, char* data[], char*
secret, char* encrypted_data)

Returns 32-byte alphanumeric MAC

Parameter Description

i The number of elements in the array data.

data Array of all values to be used in generating the MAC.

The data should not be URL encoded.

secret The shared secret value.

encrypted_data The memory location of the MAC. It must be at least

32 bytes long.

OPTION 2: USING MESSAGE AUTHENTICATION CODE GENERATOR (GET_MD5 EXECUTABLE)
The Message Authentication Code (MAC) generator generates a MAC from a shared secret value and a string
consisting of the IMS id, a timestamp, and a destination URL.

If you are not working in the C language or do not want to create a function to create the MAC, use the
Message Authentication Code (MAC) generator (an executable called get_md5). You can make a system call to
get_md5 from your program and have the authentication string returned. The get_md5 executable has no
dependencies on WebCT and can be copied to other servers as required. If you need a get_md5 executable for
an operating system other than the one your WebCT server is running on, you can download several pre-
compiled binaries for other operating systems from http://download.webct.com

get_md5

Generates a MAC from a shared secret value
and a line of data

Syntax get_md5 <shared_secret_filename>

<data_to_encrypt>

© 2003 WebCT, Inc. 86

Returns 32-byte alphanumeric MAC

Attribute Description

shared_secret_filename The filename where the shared secret value is stored.

string_to_encrypt The string to be encrypted. The string should not be

URL encoded.

OPTION 3: CREATE A MAC USING A LANGUAGE OF YOUR OWN CHOICE
If you want to create MACs within your code, (e.g. you are writing your code in Java and don’t want to make a
system call), you can create a MAC with the following procedure:

1. Calculate the total of the ASCII values of all the characters in the data.

2. Convert the total of the ASCII values into a string.

3. Append the shared secret value.

4. Encrypt the string into a 16-byte string using the MD5 algorithm.

5. Convert the 16-byte string into a 32-byte alphanumeric string to make it URL-friendly.

Note: The FILENAME field should not be passed as data.

HOW THE SERVE_EP_API.PL MAC IS GENERATED
The MAC is generated by using key/value pairs in the request. The serve_ep_api.pl API uses the value from the
key/value pairs listed below:

• ACTION
• OPTION
• TIMESTAMP
• TYPE
• SCTMODE
• DATASOURCE
• TARGET
• ID
• SOURCE
• COURSEID
• GLOBALID
• INSTRUCTOR
• INLINEMODE
• CHECKSUM (of the imported data itself)

Note: Because not all requests will include all keys, the MAC will only use those keys provided in the request.

© 2003 WebCT, Inc. 87

GENERATING A CHECKSUM
To ensure the integrity of XML files being transferred, WebCT uses a checksum. The checksum is created by
summing the ASCII values of each character in the file (including line feeds and other control characters). As
with other data, the checksum is used in the generation of the MAC. However, unlike other data, the checksum
is not passed in the request to the Web server.

For example, the string a dog\n (where \n represents a line feed) has ASCII values of 97, 16, 100, 111, 103,
and 10. The checksum for this string is 437, calculated by summing the values.

If you are programming in Perl, you can use the ord() function to get the ASCII value for a single character
and then loop through the entire file. In C, you can accomplish the same task by casting each character to an
integer.

ASSEMBLING THE HTTP REQUEST
Your choice of language will determine the method that you use to assemble your HTTP request. In general,
you have two basic options:

• Socket programming with the Web server
• Using a library which simulates a user agent

In Perl, you have the option of communicating directly with the Web server using the IO::Socket module
included with most basic distributions, or installing and using a module such as LWP which simulates a user
agent (e.g. a Web browser). Similar modules are available for most popular languages such as C or Java.
Although no language is recommended over others, the examples in this guide use Perl and the IO::Socket
module to communicate with the Web server.

The serve_ep_api.pl CGI will accept both GET and POST requests. However, anytime that you need to submit
a file to the server, a POST request will be necessary in since GET requests are limited in length. Actions that
require you to use POST are:

• Import actions
• Export actions that utilize the STUDENTLIST option
• The import_group_ims_info and import_person_ims_info actions.

The following example, written in Perl, imports an XML extract into WebCT. It generates a MAC for the data,
generates a checksum for the XML extract, posts an HTTP request to the serve_ep_api.pl CGI via sockets, and
prints out the response from the Web server.

#!/usr/bin/perl

use strict;

use LWP;
use HTTP::Request::Common;

my $remote_host = 'http://webct.institution.com';
my $SECRET_FILE = 'api_secret';

© 2003 WebCT, Inc. 88

my %params;

Uncommon to hard code the following values. This
example simply demonstrates communication with the API.
$params{'FILENAME'} = 'export.xml';
$params{'ACTION'} = 'import';
$params{'OPTION'} = 'restrict';

Calculate a timestamp
$params{'TIMESTAMP'} = time();

Generate a checksum
$params{'CHECKSUM'} = &calculate_checksum($params{'FILENAME'});

Concatenate the data into a single string so we can
create the MAC
my $data_string = $params{'ACTION'};
$data_string .= $params{'OPTION'};
$data_string .= $params{'TIMESTAMP'};
$data_string .= $params{'CHECKSUM'};

Make a system call to the program that generates MACs
$params{'AUTH'} = `./get_md5 $SECRET_FILE $data_string`;

Send the request
my $ua = LWP::UserAgent->new;
my $request = POST "$remote_host/webct/systemIntegrationApi.dowebct",
 Content_Type => 'form-data',
 Content => [ACTION => $params{'ACTION'},
 OPTION => $params{'OPTION'},
 TIMESTAMP => $params{'TIMESTAMP'},
 AUTH => $params{'AUTH'},
 FILENAME => [$params{'FILENAME'}]];

my $response = $ua->request($request);
my $content = $response->content();
if (!$content)
{
 print "Connection to $remote_host failed\n";
}
else
{
 print $content;
}

sub read_file
{
 my ($filename) = @_;
 my $file_content = '';

 # Read the entire contents of the requested file
 local(*FH);

© 2003 WebCT, Inc. 89

 open(FH, $filename) || return undef;
 while (my $line = <FH>)
 {
 $file_content .= $line;
 }
 close(FH);

 return $file_content;
}

sub calculate_checksum
{
 my ($filename) = @_;
 my $checksum = 0;

 # Read in the XML extract and assign it to a variable
 my $data = &read_file($filename);

 # Sum up the ASCII values of all the characters in $data
 while (defined($data) && $data ne '')
 {
 $checksum = $checksum + ord($data);
 $data = substr($data, 1);
 }

 return $checksum;
}
1;

XML FILE FORMAT GUIDELINES
The IMS Enterprise API is based on the exchange of XML files between IMS Enterprise-compliant systems.
Each XML file contains one or more data objects, which each represent an operation that should occur (e.g. add
a user to the database or create a new course instance). All IMS Enterprise documents have the following
general structure:

<?xml version=”1.1” encoding=”UTF-8”?>

<!doctype enterprise system “ims_epv1p1.dtd” >

<enterprise>

 <object1>
 </object1>

 <object2>
 </object2>

 <objectn>
 </objectn>

</enterprise>

© 2003 WebCT, Inc. 90

This example demonstrates a “shell” file that does not perform any actions. In this example, the three
<object> tags represent placeholders that would be filled with properties, group, person, or membership data
objects. You can place as many data objects as you want within the file.

IMS OBJECTS AND WEBCT RELATIONSHIPS
All objects in an IMS-compliant XML file are based on the IMS Enterprise Information Model (available at
http://www.imsproject.org/enterprise). Because the IMS Information Model is very broad and
can cover a wide range of needs, WebCT only uses a subset of information from the model. The following
sections outline the relationship between the IMS data objects and WebCT data. The IMS data object in each
title in this section is followed by the WebCT data object of that type.

PROPERTIES OBJECT: SYSTEM IDENTIFIER
The properties object contains some general packaging and control data for use by the target system (WebCT).
The following is a fragment from an XML file showing a properties object:

 <properties>
 <datasource>Faber College SIS</datasource>
 <datetime>2000-12-21</datetime>
 </properties>

The following table describes data elements relevant to WebCT:

Data Element Required Description
datasource Yes The properties→datasource element is the identifier of the

system that generated the XML file.

datetime Yes Although not used by WebCT, a datetime element with date and
time in ISO 8601 standard format is required for IMS-compliance.

GROUP OBJECT: COURSE
The following XML example describes a group object:

<group recstatus="1">
 <sourcedid>
 <source>Faber College SIS</source>
 <id>0390COMPSCI697CSec1-1164</id>
 </sourcedid>
 <description>
 <short>Security In Computing</short>
 </description>
 <extension>
 <template>Blank</template>
 </extension>
</group>

The following table describes data elements that are relevant to WebCT:

© 2003 WebCT, Inc. 91

Data Element Required Description
recstatus No This describes the type of action to be performed on an object.

Numbers are used for language independence:
1 = Add, 2 = Update, and 3 = Delete.
If no recstatus is supplied, the API will default to 1 (Add) if the
record does not already exist, or 2 (Update) if the record does exist.

source Yes The group→sourcedid→source element is used when
importing in restrict mode. This value is compared against the IMS
sourcedid.source element for the item on the WebCT server to
determine if an object will be processed.

id Yes The group→sourcedid→id element is used as the WebCT
Course ID.

short Yes The group→description→short element is used as the
Course Title within WebCT.

template No The group→extension→template element allows you to

specify a course template or course ID as the basis for another
course. It is processed in the following order:
1. If no template element is specified, use your adaptor-defined

template.

2. If this element has the text “Blank,” a blank template is used.

3. If a valid Course ID is supplied, the course is created based on it.

4. If a valid course template ID is supplied, it is used. Valid course
template IDs are “blank”, “photo_basic”(basic),
“photo”(intermediate), and “photo_comprehensive”(advanced)

5. If an invalid value is supplied, use the default template.

ORGUNIT OBJECT: CATEGORIES
The IMS API provides a means to add a course to a category.

Assigning a course to a category
The following XML example describes the placement of a course in a category:

<group>
 <sourcedid>
 <source>Faber College SIS</source>
 <id>0390COMPSCI697CSec1-1164</id>

 </sourcedid>
 <description>

 <short>CS-697</short>
 <long>Security In Computing</long>

© 2003 WebCT, Inc. 92

 </description>
 <org>
 <orgunit>Physics</orgunit>
 </org>

<group>

The following table describes data elements that are relevant to WebCT:

Data Element Required Description
source The group→sourcedid→source element is used when

importing in restrict mode. This value is compared against the
IMS sourceid.source element for the item on the WebCT
server to determine if an object will be processed.

id The group→sourcedid→id element is used as the WebCT
ID and is stored internally. The WebCT ID can be overridden
by the userid element.

short Yes This is the course title.

long No, but
recommended

This is the course description.

org No Needed when assigning a course to a category.

orgunit Yes The course will be assigned to the Category with this name. If
your institution is organized by departments, the orgunit can
be Physics or Psychology.

RELATIONSHIP OBJECT: CROSS-LISTED COURSES
A cross-listed course is associated with another course or other courses and is taught at the same time, with the
same instructor, and in the same location. One course is designated as the master course and it contains all of
the course content and user information. All course activity takes place in the master course. The other course is
designated as an alias course and it contains only a reference to the master course. For example, Math 211 can
be listed as Math 217 and Math 245. The courses would be taught as one by the same instructor. When users
access a cross-listed course, WebCT will re-direct them to the master course. The IMS treats cross-listed
courses as also known as (aka) relationships.

In the administrator interface, a master course is marked with an “M” and an alias course is marked with an
“A”. Each course has a different Course ID. It is recommended that you keep a list of cross-listed courses. The
list allows you to keep track of cross-listed courses and distinguish them from standalone courses.

On myWebCT, designers will see courses in which they are registered as follows:

• If the designer is registered in only one course in a cross-listed set, that course (whether the master
course or an alias course) is displayed.

• If the designer is registered in more than one course in a cross-listed set, the course in which the
designer was first registered (whether the master course or an alias course) is displayed with the
alias courses listed below it. The alias courses are marked Also known as.

You can use the IMS API to create, delete, and get information about cross-listed courses.

© 2003 WebCT, Inc. 93

Creating Cross-Listed Courses
To create cross-listed courses, you must first create the courses, cross list them, and then add students to the
courses. If you want to use content from a course backup, you must first restore the backup file into what will
become the master course before you cross-list it. Important: You must cross list courses before students start
any course activities, such as taking a quiz or submitting an assignment. You must also place all courses in the
same cross-listed set in the same term.

There are two methods for creating cross-listed courses:

• Create the courses through the WebCT administrator interface, and cross list the courses through
the IMS API. Example XML to cross list courses is provided in this section.

• Create and cross list the courses through the IMS API only. Example XML to create courses is
found in this guide on page 74. Example XML to cross list courses is provided in this section.

We recommend that you create cross-listed courses in the following order as it allows information to be
processed faster:
1. Create the courses
2. If applicable, restore the course backup into the course that will become the master course.
3. Cross list the courses
4. Add students to the courses.

The following XML example describes how to cross list three courses: Math 211, Math 217, and Math 245.
The first cross-listed course in the XML, which is Math 211, becomes the master course.

<group>
 <sourcedid>
 <source>crosslist test</source>
 <id>MATH211</id>
 </sourcedid>
 <description>
 <short>MATH 211</short>
 </description>
 <relationship relation="3">
 <sourcedid>
 <source>crosslist test</source>
 <id>MATH217</id>
 </sourcedid>
 </relationship>
 <relationship relation="3">
 <sourcedid>
 <source>crosslist test</source>
 <id>MATH245</id>
 </sourcedid>
 </relationship>
 </group>

Data Elements Relevant to WebCT
The following table describes data elements that are relevant to WebCT.

© 2003 WebCT, Inc. 94

Data Element Required Description
recstatus No This describes the type of action to be performed

on an object. Numbers are used for language
independence:
1 = Add, 2 = Update, and 3 = Delete.
If no recstatus is supplied, the API will default
to 1 (Add) if the record does not already exist, or
2 (Update) if the record does exist.

source Yes The group→sourcedid→source element is
used when importing in restrict mode. This value
is compared against the IMS sourceid.source
element for the item on the WebCT server to
determine if an object will be processed.

If the course was created through the WebCT
administrator interface, the IMS source of the
course will be WebCT. To find the IMS source of
a WebCT course, export the group_record for the
course and examine the resulting XML.

id Yes The group→relationship→sourcedid→id
element refers to the group→sourcedid→id of
this course.

The IMS ID is required to identify the course to
be cross-listed. To find the IMS ID, export the
group_record for the course and examine the
resulting XML.

short Yes The sourceid→description→short element
is the course title and is a mandatory field in the
group object.

relationship Yes The group→relationship element defines
when a section is related to another section or
term.

Attributes:
• relation (optional): defines the nature of

the relationship. Where, relation=”3”
indicates that the course will become a
member of a cross-listed group.

Adding Users to Cross-Listed Courses
You can add users to cross-listed courses through the WebCT administrator interface, the Standard API, or the
IMS API. We strongly recommend that you cross list the courses before you add users to them.

Important: The following rules apply to user roles in cross-listed courses:

• A student can be added to one and only one course in a cross-listed set.
• A teaching assistant (TA) who is added to one or more courses in a cross-listed set cannot be a

student or designer in any other course in the set. When a TA is added to one cross-listed course,
they also have TA access to all courses in the set, with access to all student records.

© 2003 WebCT, Inc. 95

• A designer who is assigned to one or more courses in a cross-listed set cannot be a student or
teaching assistant in any other course in the set. When a designer is assigned to one cross-listed
course, they also have designer access to all courses in the set, with access to all student and TA
records.

Instructions for adding users to courses are available in the following:

• To use the WebCT administrator interface, see the appropriate version of the System
Administrator’s Guide: WebCT Campus Edition.

• To use the Standard API, see this guide, Section 1, Chapter 2,Functions: Adding users.
• To use the IMS API, see this guide, Section 2, Chapter 4, Functions: Import

Deleting Cross-Listed Courses
You can delete either a master course or an alias course from a set of cross-listed courses either through the
WebCT administrator interface or through the IMS API. If you delete an alias course, it will no longer be
associated with the master course or other alias courses. If you delete a master course, all course content and
user information is moved to an alias course, which becomes the master course. Important: If you want to
delete all the courses in a cross-listed set, it is strongly recommended that you delete alias courses before the
master course, as this requires less data migration. Use the Course Profile screen in the administrator interface
to determine the master course.

Instructions for deleting a course and its students are available in the following:
• To use the WebCT administrator interface, see the appropriate version of the System

Administrator’s Guide: WebCT Campus Edition.
• To use the IMS API, see this guide, Section 2, Chapter 4, XML File Format Guideline: Group

object: Course.

Deleting Cross-listed Relationships
If you want to delete the cross-listed relationship between a course and other courses in a cross-listed stand
maintain the course as a standalone course, you use the IMS API. Warning: Do not delete cross-listed
relationships after students have started course activities, such as taking a quiz or submitting an assignment.

The following XML examples show the deletion of cross-listed relationships in a set consisting of master
course Math 211 and alias courses Math 217 and Math 245:

Example 1
The following XML describes the deletion of Math 217 from the cross-listed set. Math 217 becomes a
standalone course.

<group>
 <sourcedid>
 <source>crosslist test</source>
 <id>MATH217</id>
 </sourcedid>
 <description>
 <short>Mathematics 217</short>
 </description>
 <extension>
 <deleted_relationships>
 <relationship relation="3">
 <sourcedid>
 <source>crosslist test</source>

© 2003 WebCT, Inc. 96

 <id>MATH217</id>
 </sourcedid>
 </relationship>
 </deleted_relationships>
 </extension>
</group>

Example 2:
The following XML fragment describes the deletion of Math 217 and Math 245 from the cross-listed set. Math
217 and Math 245 become standalone courses.

<group>
 <sourcedid>
 <source>crosslist test</source>
 <id>MATH211</id>
 </sourcedid>
 <description>
 <short>Mathematics 211</short>
 </description>
 <extension>
 <deleted_relationships>
 <relationship relation="3">
 <sourcedid>
 <source>crosslist test</source>
 <id>MATH217</id>
 </sourcedid>
 <relationship relation="3">
 <sourcedid>
 <source>crosslist test</source>
 <id>MATH245</id>
 </sourcedid>
 </relationship>
 </deleted_relationships>
 </extension>
</group>

Data Elements Relevant to WebCT
The following table describes data elements that are relevant to WebCT.

Data Element Required Description
recstatus No This describes the type of action to be performed on

an object. Numbers are used for language
independence:
1 = Add, 2 = Update, and 3 = Delete.
If no recstatus is supplied, the API will default to
1 (Add) if the record does not already exist, or 2
(Update) if the record does exist.

source Yes The group→sourcedid→source element is used
when importing in restrict mode. This value is
compared against the IMS sourceid.source
element for the item on the WebCT server to
determine if an object will be processed.

© 2003 WebCT, Inc. 97

If the course was created through the WebCT
administrator interface, the IMS source of the course
will be WebCT. To find the IMS source of a WebCT
course, export the group_record for the course and
examine the resulting XML.

id Yes The group→sourcedid→id element refers to the
group→sourcedid→ims id of this course.

short Yes The sourceid→description→short element is
the course title and is a mandatory field in the group
object.

relationship Yes The relationship element must contain the
source and id of the course to be cross-listed.

The IMS ID is required to identify the course to be
cross-listed. To find the IMS ID, export the
group_record for the course and examine the
resulting XML.

deleted_relatio
nships

No The
group→extension→deleted_relationships
element is used to specify the course relationships to
be deleted. Note: deleted_relationships is a
new WebCT extension to the IMS specification.

Attributes:
relation (optional): defines the nature of the
relationship. Where relation=”3” indicates that
the course will become a member of a cross-listed
group.

Backing up and Restoring Cross-Listed Courses
For information on backing up and restoring cross-listed courses, see the appropriate version of the System
Administrator’s Guide: WebCT Campus Edition, Chapter 3, Course Management, “Backing Up and
Restoring Courses.”

PERSON OBJECT: USER
The following XML example describes a person object:

<person recstatus="1">
 <sourcedid>
 <source>Faber College SIS</source>
 <id>39450210223</id>
 </sourcedid>
 <userid password=”ToughPassword”>HooverR</userid>
 <name>
 <fn>Robert Hoover</fn>
 <n>
 <family>Hoover</family>
 <given>Robert</given>
 </n>

© 2003 WebCT, Inc. 98

 </name>
</person>

The following table describes data elements relevant to WebCT:

Data Element Required Description
recstatus No This describes the type of action to be performed on an object.

Numbers are used for language independence.
1 = Add, 2 = Update, and 3 = Delete.
If no recstatus is supplied, the API will default to 1 (Add) if
the record does not already exist, or 2 (Update) if the record
does exist.

source Yes The person→sourcedid→source element is used when
importing in restrict mode. This value is compared against the
IMS sourceid.source element for the item on the WebCT
server to determine if an object will be processed.

id Yes The person→sourcedid→id element is used as the WebCT
ID and is stored internally. The WebCT ID can be overridden
by the userid element.

userid No The person→userid element specifies a WebCT ID.

Attributes:
• password (optional). The password assigned to the user

for accessing WebCT.
• pwencryptiontype (optional). DES encryption is applied

to the password.

fn Yes The person→name→fn (Formatted Name) element is
required by the IMS Specification and is stored internally. It is
only used for compliance.

family No The person→name→n→family element maps to the Last
Name field within the WebCT global database.

given No The person→name→n→given element maps to the First
Name field within the WebCT global database.

MEMBERSHIP OBJECT: USER TYPE
The following XML example describes a membership object with two member elements underneath it (one
student and one designer).

© 2003 WebCT, Inc. 99

To set the status of a user (designer, TA, or student), use the STATUS tag. If the user’s status is inactive, enter
a value of 0. If the user’s status is active, enter a value of 1. The default status of a user is active. The status of
a user can be set only through the IMS API.

Setting the status of a user to inactive results in the following:

• The course does not display in the user’s myWebCT.

• The user’s data remains in the course.

• The ID relationship is kept.

• The user is not counted by the license server as only actives users are counted.

• The user in a cross-listed course will be made inactive in all courses in the cross-listed set.

Students or TAs who are denied access to a course by the designer retain an active status.

 <membership>
 <sourcedid>
 <source>Faber College SIS</source>
 <id>0390COMPSCI697CSec1-1164</id>
 </sourcedid>
 <member>
 <sourcedid>
 <source>Faber College SIS</source>
 <id>39450210223</id>
 </sourcedid>
 <idtype>1</idtype>
 <role recstatus="1" roletype="01">
 <userid>39450210223</userid>
 <status>1</status>
 <finalresult>
 <result>B</result>
 </finalresult>
 <interimresult>
 <result>A</result>
 <interimresult>

</role>
 </member>
 <member>
 <sourcedid>
 <source>Faber College SIS</source>
 <id>012345678910</id>
 </sourcedid>
 <idtype>1</idtype>
 <role recstatus="1" roletype="02">
 <userid>12345678910</userid>
 <subrole>Primary</subrole>
 <status>1</status>
 </role>
 </member>
 </membership>

© 2003 WebCT, Inc. 100

The following table describes data elements relevant to WebCT:

Data Element Required Description
membership→sourcedid→id Yes This membership→sourcedid→id should match

an existing group→sourcedid→id element.
Users will be manipulated in the WebCT course
instance that this matches.

member No The membership→member element can be
repeated multiple times to associate multiple users
with the group specified in
membership→sourcedid→id.

membership→member
→sourcedid→source

Yes The
membership→member→sourcedid→source
element is used when importing in restrict mode.
This value is compared against the IMS
sourceid.source element for the item on the
WebCT server to determine if an object will be
processed.

membership→member
→sourcedid→id

Yes This id should match an existing
person→sourcedid→id. This is the person
object being added, updated, or deleted within the
course.

idtype Yes The membership→member→idtype element is
required according to the IMS specification and
indicates if the member is a person (indicated by a
“1”) or a group object (indicated by a “2”). WebCT
only supports person objects.

recstatus No This describes the type of action to be performed on
an object. Numbers are used for language
independence.
1 = Add, 2 = Update, and 3 = Delete.
If no recstatus is supplied, the API will default to
1 (Add) if the record does not already exist, or 2
(Update) if the record does exist.

roletype Yes The membership→member→role→roletype
determines what type of user this person object
should be. 01 = Learner/Student, 02 = Instructor.

© 2003 WebCT, Inc. 101

Data Element Required Description
Other numbers listed in the IMS Specification are
not currently supported.

userid Conditional The membership→member→role→userid is a
required element if the associated person object has
a userid associated with it. The userid in both
objects must match or an error will be returned.

subrole No For instructors/designers, a
membership→member→role→subrole can be
specified as “Primary” or “Subordinate” that maps
to primary and secondary designers in WebCT. The
IMS specifications also suggest that “teaching
assistant” can be used as a subrole. However,
WebCT’s IMS API does not yet support teaching
assistants.

status

Yes This membership→member→role→status
element affects all users (and must be included for
IMS-compliance). “1” indicates that a user is active,
and “0” indicates inactive. Users with inactive status
will not see the course listed in their myWebCT but
their data will remain in the course. The license
server only counts users with an active status.

membership→member→role
→finalresult→result

No The
membership→member→role→finalresult
→result element maps to the Final Grade column
in Manage Students.

membership→member
→role
→interimresult→result

No This element maps to the Midterm column in
Manage Students.

SPECIFIC GROUP OBJECT: TERMS
The IMS API provides a means to add, update, and delete terms, as well as to add a course to a term.
Functionality related to terms is also provided through the administrator interface. Note that terms initially
created through the IMS API cannot be deleted through the administrator interface; deletion must be performed
using the IMS API.

Adding a Term
The following XML example describes two term objects. To add a term, prepare an XML file using these
guidelines and add to the database using the ‘import’ command.

© 2003 WebCT, Inc. 102

<group>
 <sourcedid>
 <source>Faber College SIS</source>
 <id>2002-Summer</id>
 </sourcedid>
 <grouptype>
 <typevalue level="2">Term</typevalue>
 </grouptype>
 <description>
 <short>2002 Term 2</short>
 <long>Summer 2002</long>
 </description>
</group>
<group>
 <sourcedid>
 <source>Faber College SIS</source>
 <id>2002-Fall</id>
 </sourcedid>
 <grouptype>
 <typevalue level="2">Term</typevalue>
 </grouptype>
 <description>
 <short>2002 Term 3</short>
 <long>Fall 2002</long>
 </description>
</group>

The following table describes data elements that are relevant to WebCT:

Data Element Required Description
source Yes The group →sourcedid→source element is used when

importing in restrict mode. This value is compared against the
IMS sourceid.source element for the item on the WebCT
server to determine if an object will be processed.

id The group→sourcedid→id element is used as the WebCT
ID and is stored internally. The WebCT ID can be overridden
by the userid element.

typevalue Yes The group→typevalue element is required to indicate that
the group object is a term. Each typevalue element requires a
level to be defined. Level=“1” specifies this is an instructional
group object. Level=”2” further specifies the instructional
group object (in the example given) as a term object.

short Yes Sorting key for term element. For example, Spring, Summer,
Fall, Winter terms can be assigned values 1, 2, 3, and 4
respectively to ensure the terms are displayed in the correct
order in the WebCT interface.

long No, but
recommended

Term title that will appear in WebCT

Assigning a course to a term

The following XML example describes the placement of a course in a term.

© 2003 WebCT, Inc. 103

<group>
 <sourcedid>

 <source>Faber College SIS</source>
 <id>0390COMPSCI697CSec1-1164</id>

</sourcedid>
<description>
 <short>CS-697</short>
 <long>Security In Computing</long>

</description>
<relationship relation="1">
<sourcedid>
<source>Faber College SIS</source>
<id>2002-Summer</id>

</sourcedid>
 </relationship>
<group>

The following table describes data elements that are relevant to WebCT:

Data Element Required Description
source The group→sourcedid→source element is used when

importing in restrict mode. This value is compared against
the IMS sourceid.source element for the item on the
WebCT server to determine if an object will be processed.

id The group→sourcedid→id element is used to generate
the Course ID and is stored internally.

short Yes This is the course title.

long No, but
recommended

This is the course description.

relationship Yes The group→relationship element defines when a
section is related to another section or term.

Attributes:
• relation (optional): defines the nature of the

relationship. Where, relation=”1” indicates the
course specified should be related to the term indicated.

source The group→relationship→source element is used
when importing in restrict mode. This value is compared
against the IMS sourceid.source element for the term
to which the course is being assigned.

id The group→relationship→sourcedid→id element
refers to the group→sourcedid→id of the term this
course is being assigned to.

© 2003 WebCT, Inc. 104

COMPLETE SPECIFICATIONS
A complete discussion of the IMS Enterprise Information Model is beyond the scope of this guide. You should
refer to the IMS Enterprise Information Model, Version 1.1, available at
http://www.imsproject.org/enterprise.

OTHER XML CONSIDERATIONS
In addition to following the IMS specification for XML, WebCT requires that documents are well formed and
follow XML convention. Any error that causes WebCT’s XML parser to fail will result in the entire API action
failing with errors generated to standard error (on screen for command line operations and to the Apache error
logs for Web-based requests). Applications that generate XML markup should ensure that they are following
the XML 1.0 specification (available from the W3C at http://www.w3.org/TR/REC-xml).

SYNTAX
The general syntax for a Web-based request to the IMS API is as follows:

<GET | POST> /webct/systemIntegrationApi.dowebct
?ACTION=<action>&OPTION=<option>
&TIMESTAMP=<unix_epoch_time>&AUTH=<32_byte_mac>
[&INLINEMODE=<inlinemode>][&COURSE=<course>]
[&DATASOURCE=<datasource>][&TARGET=<target>][&ID=<id>]
[&CHARSET=<characterset>] [&SOURCE=<source>][&ADAPTOR=<adaptor>] HTTP/1.0

Note: WebCT recommends you update your scripts to reflect the new Web-based
IMS API URL. The former URL /webct/ims/serve_ep_api.pl still functions
as documented previously.

[--Boundary_Value_Of_Your_Choosing]
[Content-Disposition: form-data; name=”FILENAME”; filename=”<filename>”
Content-Type: text/xml | Content-Type: text/plain

<file_content>]
[--Boundary_Value_Of_Your_Choosing]
[Content-Disposition: form-data; name=”STUDENTLIST”;

filename=”<studentlistfilename>”
Content-Type: text/plain

<studentlist_file_content>]

where:

ACTION Description
import Imports an XML extract into the WebCT global database.

export Exports an XML extract from the WebCT global database.

configure Configures the IMS ID for a person or group object

© 2003 WebCT, Inc. 105

Notes:

• Although either GET or POST methods can be used, any request that requires the transfer of a file
requires you to use POST

• Requests using the POST method can pass the key/value pairs to the Web server using the
application/x-www-form-urlencoded content type or via the multipart/form-data content type
within the body of the message. If you are uploading a file, the multipart/form-data content-type is
required.

• Syntax examples represent HTTP requests directly to the Web server. If you are using a
programming module to create your requests (such as LWP in Perl), many details of the request
can be transparent to you.

• Because POSTing in multipart/form-data is extremely verbose, syntax examples have been
consolidated so that only files to be uploaded appear in full syntax. Other key/value pairs are
presented in the query string. In practice, your requests must send all data in the message body
when POSTing.

FUNCTIONS

IMPORT
This action imports data to the WebCT global database. The syntax for an import is:

POST /webct/systemIntegrationApi.dowebct?ACTION=import&OPTION=<option>
&TIMESTAMP=<unix_epoch_time>&AUTH=<32_byte_mac>
&CHECKSUM=<checksum>[&ADAPTOR=<adaptor>] HTTP/1.0

--Boundary_Value_Of_Your_Choosing
Content-Disposition: form-data; name=”FILENAME” filename=”<filename>”
Content-Type: text/xml

<file_content>
--Boundary_Value_Of_Your_Choosing--

where:

Key/
Parameter

Value Description

restrict With restrict mode on, the sourcedid.source and
sourcedid.id supplied in the XML file are checked against
the IMS sourcedid elements for similar objects to ensure they
exist in the WebCT database. Objects can be updated or deleted
only if the sourcedid.source element and sourcedid.id
elements match.

OPTION

unrestrict No checking of the sourcedid.source element is performed;
only the sourcedid.id is checked.

TIMESTAMP UNIX epoch

timestamp
Time stamp in UNIX epoch format (seconds since midnight
GMT, Jan 1, 1970)

AUTH A valid MAC This is the 32-byte hexadecimal string generated using the

get_authentication C code, the get_md5 program, or using
custom code.

© 2003 WebCT, Inc. 106

Key/
Parameter

Value Description

IMS The IMS adaptor is the default adaptor. If you do not specify an

adaptor at the command line then the IMS adaptor is applied.
The IMS adaptor complies with version 1.1 and 1.01 of the IMS
Enterprise Specification. All inbound XML is run through
XSLT normalization to ensure correct object order, removal of
ignored elements, and conversion of deprecated extensions into
the newly supported elements.

webct38 The webct38 adaptor complies with version 1.1 and 1.01 of the
IMS Enterprise Specification. Specifying the webct38 adaptor
allows you to import WebCT 3.8 content into WebCT 4.0.

datatel The datatel adaptor complies with Datatel specific XML. The
adaptor provides XSLT transformation for Datatel XML and
allows for Datatel specific responses.

ADAPTOR

SCT The SCT adaptor complies with SCT XSLT transformations and
handles SCT-style imported data.

<filename> A valid

filename
Filename to be imported into WebCT.

<file_content> Contents of

XML extract.
The contents of an IMS-compliant XML file.

Example
This example imports an XML file that includes a single person object.

POST /webct/systemIntegrationApi.dowebct HTTP/1.0
Content-length: 1253
Content-type: multipart/form-data; boundary=WebCT_Enterprise_API_Boundary

--WebCT_Enterprise_API_Boundary
Content-Disposition: form-data; name="ACTION"

import
--WebCT_Enterprise_API_Boundary
Content-Disposition: form-data; name="OPTION"

restrict
--WebCT_Enterprise_API_Boundary
Content-Disposition: form-data; name="TIMESTAMP"

984693507
--WebCT_Enterprise_API_Boundary
Content-Disposition: form-data; name="AUTH"

68056FBF19C2C5FE3B7AB63A06B9A009
--WebCT_Enterprise_API_Boundary

Content-Disposition: form-data; name="FILENAME"; filename="event.xml"
Content-Type: text/xml

© 2003 WebCT, Inc. 107

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE ENTERPRISE SYSTEM "IMS-EP01.dtd" >

<enterprise>
 <properties lang="en">
 <datasource>Faber College SIS</datasource>
 <datetime>2001-03-04</datetime>
 </properties>

 <person>
 <sourcedid>
 <source>Faber College SIS</source>
 <id>Hoover26</id>
 </sourcedid>
 <userid password=”ToughPassword”>rhoover</userid>
 <name>
 <fn>Robert Hoover</fn>
 <n>
 <family>Hoover</family>
 <given>Robert</given>
 </n>
 </name>
 <datasource>Faber College SIS</datasource>

 </person>
</enterprise>

--WebCT_Enterprise_API_Boundary—

The Web server returns (not including HTTP headers):

Success: Data successfully imported.
Success: Import complete.

EXPORT
This action exports data from the WebCT global database. The syntax for an export is:

<GET | POST> /webct/systemIntegrationApi.dowebct?ACTION=export&OPTION=<option>
&TIMESTAMP=<unix_epoch_time>&AUTH=<32_byte_mac>
[&DATASOURCE=<datasource>]
[&TARGET=<target>][&TYPE=<type>][&ID=<id>]
[&STUDENTLIST=<studentlist>]
[&STUDENTLISTCHECKSUM=<studentlistchecksum>]

 [&CHARSET=<characterset>]
[&ADAPTOR=<adaptor>] HTTP/1.0

[--Boundary_Value_Of_Your_Choosing
Content-Disposition: form-data; name=”STUDENTLIST”;

filename=”<studentlist_filename>”
Content-Type: text/plain

<studentlist_file_content>
--Boundary_Value_Of_Your_Choosing--]

where:

© 2003 WebCT, Inc. 108

Key/Parameter Input Description

snapshot Creates an XML file of all person, group and
membership objects.

person_record Creates an XML file containing basic
information for a single student record.

group_record Creates an XML file containing a list of users
with midterm and final grade information for a
given course.

group_final_grades Creates an XML file containing a list of users
with final grade information for a given
course.

option

group_midterm_grades Creates an XML file containing a list of users
with midterm grade information for a given
course.

timestamp UNIX epoch

timestamp
Time stamp is in UNIX epoch format (seconds
since midnight GMT, Jan 1, 1970).

auth A valid MAC This is the 32-byte hexadecimal string

generated using the get_authentication C code,
the get_md5 program, or using custom code.

webct38 Specifying the webct38 adaptor allows you to

generate WebCT 3.8 compliant XML.
adaptor

IMS The IMS adaptor is the default adaptor. If you
do not specify an adaptor at the command line
then the IMS adaptor is applied. The IMS
adaptor complies with version 1.1 and 1.01 of
the IMS Enterprise Specification.

datasource Any alphanumeric

string up to 256
characters. Strings
containing spaces can
be enclosed in
quotation marks.

Sets the datasource element within the
properties element. Defaults to “WebCT”
if none is specified.

target Any alphanumeric
string up to 256
characters. Strings
containing spaces can
be enclosed in
quotation marks.

Sets the target element within the
properties object

type Any alphanumeric

string up to 256
characters. Strings
containing spaces can

Sets the type element within the
properties object

© 2003 WebCT, Inc. 109

Key/Parameter Input Description
be enclosed in
quotation marks.

id

Any person or group
object
sourcedid→id.

When exporting with the person_record,
group_record, group_final_grades, or
group_midterm_grades options, you use this
optional field to specify the person or group
object that you want to export

<studentlist_filename> Any valid filename This optional element is provided when using

the group_record, group_final_grades, or
group_midterm_grades options when you wish
to export a subset of data.

<studentlist_file_content> Contents of file This optional element is provided when using

the group_record, group_final_grades, or
group_midterm_grades options when you wish
to export a subset of data.
The file must be in plain text, with one IMS id
per line.

Example
The following request generates an XML file for a person object with the person→sourcedid→id of
“Hoover26”:

GET /webct/systemIntegrationApi.dowebct?ACTION=export&OPTION=person_record
&TIMESTAMP=984694373&ID=Hoover26
&AUTH=1F2E7CA6B6EBCE62D3FC089CA42E80FB HTTP/1.0

The server returns the following (not including HTTP headers):

<?xml version="1.1" encoding="UTF-8"?>

<enterprise>
 <properties>
 <datasource>WebCT</datasource>
 <datetime>2001-03-15T14:15:18-0800</datetime>
 </properties>
 <person>
 <sourcedid>
 <source>Faber College SIS</source>
 <id>Hoover26</id>
 </sourcedid>
 <userid>rhoover</userid>
 <name>
 <fn>Robert Hoover</fn>
 <n>
 <family>Hoover</family>
 <given>Robert</given>
 </n>
 </name>
 <datasource>WebCT</datasource>
 </person>
</enterprise>

© 2003 WebCT, Inc. 110

CONFIGURE
Configure sets the IMS ID for group objects and person objects. The syntax for configure is:

<GET | POST> /webct/systemIntegrationApi.dowebct?ACTION=configure&OPTION=<option>
&TIMESTAMP=<unix_epoch_time>&AUTH=<32_byte_mac>
[&COURSE=<course>][&GLOBALID=<WebCTID>][&ID=<id>][&SOURCE=<source>]

[--Boundary_Value_Of_Your_Choosing
Content-Disposition: form-data; name=”FILENAME”; filename=”<filename>”
Content-Type: text/plain

<file_content>
--Boundary_Value_Of_Your_Choosing--]

where:

Argument Input Description
set_group_ims_info Sets the IMS id for a group object (course).
import_group_ims_info Sets the IMS id for multiple group objects (courses)

from a file.
set_person_ims_info Sets the IMS id for a person object (user).
import_person_ims_info Sets the IMS id for multiple person objects (users)

from a file.

option

get_person_ims_info Finds the IMS id and IMS source for a single user.

timestamp UNIX epoch timestamp Time stamp in UNIX epoch format (seconds since

midnight GMT, Jan 1, 1970).

auth A valid MAC This is the 32-byte hexadecimal string generated

using the get_authentication C code, the get_md5
program, or using custom code.

course An existing Course ID An existing WebCT Course ID is required when

using the set_group_ims_info option.

globalid An existing WebCT ID An existing WebCT ID is required when using the

set_person_ims_info option and the
get_person_ims_info option.

id Any valid IMS id This argument sets the group→sourcedid→id or

person→sourcedid→id for the
set_group_ims_info and set_person_ims_info
options, respectively.

source Any valid IMS source This argument sets the

group→sourcedid→source or
person→sourcedid→source for the
set_group_ims_info and
set_person_ims_info options, respectively.

<filename> A valid filename A filename must be supplied for

© 2003 WebCT, Inc. 111

Argument Input Description
import_group_ims_info or
import_person_ims_info.

<file_content> Contents of text file The file must be plain text, in the format:

<webct_id>,<ims_id>,<ims_source_new>.

Example
This example sets the person→sourced→id to “Pepperidge23” and the person→sourcedid→source to
“Faber College SIS” for the WebCT ID “mpepperidge”:

GET /webct/systemIntegrationApi.dowebct?ACTION=configure
&OPTION=set_person_ims_info&TIMESTAMP=984701570
&GLOBALID=mpepperidge&ID=Pepperidge23
&SOURCE=Faber%20College%20SIS
&AUTH=95F5858984AB4D1571DC5BE9BD8E21DB HTTP/1.0

The Web server returns (not including HTTP headers):

<RESPONSE responsetext="optional">SUCCESS</RESPONSE>
Success: IMS info updated for mpepperidge.

© 2003 WebCT, Inc. 112

CHAPTER 5 STANDARD API
The Standard API gives administrators and developers access to the WebCT databases via command line or
Web-based interfaces. The Standard API can be used to integrate external applications with WebCT. For
example, it can be used for integrating WebCT with a student information system (SIS).

FU N C T I O N A L I T Y I N T H E ST A N D A R D API
The Standard API allows you to manipulate two separate databases within WebCT: the global database and the
student database.

The global database contains the central listing of users for all users on the WebCT server. By default, the
global database contains the WebCT ID, Password, First Name, Last Name, Courses, and Registered Courses
fields. All users must have an entry in this database in order to access a course.

The student database is a term for a collection of databases specific to a course. Every WebCT course has its
own student database that contains, by default, the User ID, Password, First Name, and Last Name fields. The
information in the student database can be viewed in the designer interface of the Manage Students feature in
each WebCT course.

Generally, a WebCT ID is linked to a User ID for each course that a user is enrolled in. Users can have
different User IDs from their WebCT IDs, as well as different First Name and Last Name data in the student
and global databases.

The functionality of the Standard API can be divided into the following basic categories:

Adding Users • Adding a single user to the global database or student database.
• Adding multiple users to the global database or student database.

Updating Users • Updating a single user in the global database or student database.

• Updating multiple users in the global database or student database.
• Updating user types .

Deleting Users • Deleting a single user from the global database or student database.

• Deleting multiple users from the global database or student database.

Finding WUUIs • Finding the WebCT Unique Universal Identifier in the global database,

either by WebCT ID or IMS ID.

Important: Since the release of WebCT 3.6, the use of the WUUI for
automatic signon and the find_wuui operation are deprecated. With
WebCT moving towards the use of the IMS specifications, which are
becoming standards in the learning community, the IMS ID and IMS
source are now preferred over the WUUI. Although the use of the WUUI
is deprecated, the functionality remains.

Finding Users • Finding a user in the global database or student database.

Changing • Changing a single user’s WebCT ID.

© 2003 WebCT, Inc. 113

WebCT IDs • Changing multiple users’ WebCT IDs.

Exporting myWebCT
in XML format

• Exporting a user’s myWebCT in XML format.

IM P L E M E N T I N G T H E ST A N D A R D API

COMMAND LINE INTERFACE (WEBCTDB)
The command line interface to the standard API provides a simple interface to the WebCT API. The executable
file webctdb, is located in the directory <webct_install_dir>/webct/webct/generic/api/.

Important: WebCT strongly recommends you run the Standard API as the WebCT user. Operating the API as
the Root user can prevent students and designers from logging into WebCT.

SYNTAX
The general syntax for each of the Standard API operations is as follows:

Operation Field Names
add <db> <course> <fieldsData_pair_list> <separator> [encrypted] [charset]

delete <db> <course> <WebCT_ID | user_id> [charset]

changeid <db> <course> <fieldsData_pair_list> <separator> [charset]

update <db> <course> <fieldsData_pair_list> <separator> [encrypted] [charset]

find <db> <course> <WebCT_ID | user_id> <separator> [user_type] [charset]

find_wuui <db> <course> <WebCT_ID> [charset]

find_ims_id_wuui <db> <course> <IMS_ID> [charset]

fileadd <db> <course> <filename> <separator> [encrypted] [charset]

fileupdate <db> <course> <filename> <separator> [encrypted] [charset]

filedelete <db> <course> <filename> [charset]

filechangeid <db> <course> <filename> <separator> [charset]

homearea_xml <db> <course> <WebCT ID> <separator pair> <server base address>

[charset]

© 2003 WebCT, Inc. 114

Field Name: db
Value: global or student
Example: global

Description: This is the name of the database, either global database or student database.

Field Name: course
Value: Course ID
Example: cs100

Description: - Required for student database operations.
- For global database operations, enter the placeholder value xxxx.

Field Name: fieldsData_pair_list
Value: A double quote-enclosed list of field-data pairs in the form:

field_name=data_value.
Example: WebCT ID=student1

Description: - The field names must exist in the WebCT global database or student
database. The separator must be inserted between each of the field-data
pairs.

- For the global database, the optional fields Courses and Registered
Courses are available for adding and/or modifying courses and registered
courses to which a global user belongs. The values for these fields can be
a colon-separated list of course IDs for Courses or course names for
Registered Courses. For example,
Courses=cs100:psyc100:math100. If you also specify a user
type with the course, this is separated from the course ID by a semicolon,
for example, Courses=cs100;D:psyc100;TA. Note: The default
user type is (S)tudent.

- A user can be added as a primary designer or as a secondary designer.
The first WebCT ID added to the course as a designer becomes the
primary designer; every subsequent designer becomes a secondary
designer.

© 2003 WebCT, Inc. 115

Field Name: fieldsData_pair_list (cont.)
Description: - Note: The following are reserved words in the fieldsData_pair_list:

- Login ID (this is old terminology and is supported for backward
compatibility only. It has the same meaning as User ID).

- User ID (the User ID of a student in a course)
- Password (the password of the global user or the student)
- Global ID (this is old terminology and is supported for backward

compatibility only. It has the same meaning as WebCT ID).
- WebCT ID (WebCT ID of a global user)
- First Name (first name of the global user or the student. It is one of the

reserved columns in both the global and student databases)
- Last Name (last name of the global user or the student. It is one of the

reserved columns in both the global and student databases)
- Courses (the list of WebCT courses for a global user). If you populate this

field through the API, the course must already exist on the WebCT server.
- Registered Courses (the list of courses maintained by the registrar for a

global user. These courses may or may not have a WebCT course.)
- Thumbprint (internal data and cannot be modified)
- LockPID (internal data and cannot be modified)
- #User Type (internal data. This can be modified through the API)
- #E-mail (internal data and cannot be modified)
- #Password Question (internal data and cannot be modified)
- #Password Answer (internal data and cannot be modified)
Note: The reserved words are case sensitive.

Field Name: separator
Value: Any alphanumeric string representing the separator between data pairs in the

fieldsData_pair_list.
Example: "," (comma)
Description: Delimiter used to separate data items. You must declare what value you will

be using as a delimiter for the operations add, delete, changeid, update, and
find.
Note: For the global database, the colon and semi-colon are not allowed as
separators.

Field Name: user_type
Value: user_type
Example: user_type

Description: Only used with the find operation on the global database; return value of
user_type is one of three users types: S for student, D for designer, and TA for
teaching assistant.

© 2003 WebCT, Inc. 116

Field Name: encrypted
Value: encrypted
Example: encrypted

Description: - Only used with the add, update, fileadd and fileupdate operations.
- The password must be encrypted using the standard UNIX DES

encryption method or the newly added or modified users may not be able
to access WebCT.

- Add to the end of the command line to indicate that the passwords are
passing in encrypted form.

Field Name: charset
Value: A valid character set. See the Appendix.

Example: “--charset=iso-8859-1”

Description: - If specified, charset will override the character set as defined on the
administrator settings page as the file charset.

- Note: The default charset type is UTF-8.

FUNCTIONS

ADDING USERS
Users can be added to the global database or student databases. However, in general, you should add users to
the global database and use the Courses field to add them to each course. This method is simpler and
automatically links the WebCT ID to each User ID.

Warning: WebCT strongly recommends you re-add previously deleted users through the administrator
interface. Re-adding users through the Standard API can prevent preserved records from merging with the user.
See the appropriate version of the System Administrator’s Guide: WebCT Campus Edition, Chapter 5, User
Management.

ADDING A SINGLE USER TO THE GLOBAL DATABASE
Operation = add
• The fieldsData_pair_list must include both the WebCT ID and Password fields.
• You can specify the user type: S for student, D for designer, TA for teaching assistant. If you

don’t specify a user type, the user type defaults to (S)tudent. If the user type is specified as
(D)esigner and there is no existing designer, the user is added as the primary designer. If there is
an existing designer, the user is added as secondary designer.

Example
Add a user named Justin Case to the global database as a designer for cs100; a teaching assistant for cs200; and
as a student in cs810:

Enter the command:

./webctdb add global xxxx "WebCT ID=jcase,Password=1234,First
Name=Justin,Last Name=Case,Courses=cs100;D:cs200;TA:cs810;S" ","

UNIX

© 2003 WebCT, Inc. 117

Windows webctdb add global xxxx "WebCT ID=jcase,Password=1234,First

Name=Justin,Last Name=Case,Courses=cs100;D:cs200;TA:cs810;S" ","

ADDING A SINGLE USER TO THE STUDENT DATABASE
Operation = add
• The fieldsData_pair_list must include both the User ID and Password fields.

Example
Add a user named Bailey Wick to the student database for course cs100:

Enter the command:

UNIX ./webctdb add student cs100 "User ID=bwick,Password=1234,
First Name=Bailey,Last Name=Wick" ","

Windows webctdb add student cs100 "User ID=bwick,Password=1234,

First Name=Bailey,Last Name=Wick" ","

ADDING MULTIPLE USERS TO THE GLOBAL DATABASE
Operation = fileadd
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is only the name of the file. A
file extension, such as .txt, is recommended.

• The file must be in plain text. The first line of the file must be the field names separated by the
separator string. The rest of the file contains the data, one record per line. Data should be in the
same order as the field names, separated by the value of the separator. There must be no spaces
between the data and the separators.

• If the user exists in the database, fileadd will send an error message to STDOUT (prints it to
the screen). The user record will not be changed; the process will skip to the next record in the
file.

• An optional encrypted argument can be added at the end of the command line to indicate that
the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or the newly added or modified users may not be able to
access WebCT.

Example
Add users to the global database from a text file named users.txt.

SAMPLE USERS.TXT FILE:
WebCT ID,Password,Last Name,First Name
jsmith,9876,Smith,John
jbrown,2345,Brown,Jane
bfawlty,8765,Fawlty,Basil

© 2003 WebCT, Inc. 118

arigsby,5432,Rigsby,Arthur

Enter the command:

UNIX ./webctdb fileadd global xxxx users.txt “,”

Windows webctdb fileadd global xxxx users.txt “,”

ADDING MULTIPLE USERS TO THE STUDENT DATABASE
Operation = fileadd
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is only the name of the file. A
file extension, such as .txt, is recommended.

• The file must be in plain text. The first line of the file must be the field names separated by the
separator string. The rest of the file contains the data, one record per line. Data should be in the
same order as the field names, separated by the value of the separator. There must be no spaces
between the data and the separators.

• If the user exists in the database, fileadd will send an error message to STDOUT. The user
record will not be changed in the database; the process will skip to the next record in the file.

• An optional encrypted argument can be added at the end of the command line to indicate that
the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or the newly added users may not be able to access
WebCT.

Example
Add students whose records are stored in the file class.txt to the course cs100.

SAMPLE CLASS.TXT FILE
User ID,Password,Last Name,First Name
jsmith,9876,Smith,John
jbrown,2345,Brown,Jane
bfawlty,8765,Fawlty,Basil
arigsby,5432,Rigsby,Arthur

Enter the command:

UNIX ./webctdb fileadd student cs100 class.txt “,”

Windows webctdb fileadd student cs100 class.txt “,”

© 2003 WebCT, Inc. 119

UPDATING USERS

UPDATING A SINGLE USER IN THE GLOBAL DATABASE
Operation = update
• The fieldsData_pair_list must include the WebCT ID.
• Empty fields are not changed.
• If the field value is “_DELETE_”, the value will be set to null
• When updating the Courses and Registered Courses field, the Standard API always overwrites the

field. If you supply a Courses field in your update, the user’s WebCT ID will be linked to the
courses that you supply and unlinked from any pre-existing courses that you do not supply.

• You can update and change a user type by specifying a different user type. Example, you can
change a designer (D) into a student (S).

• update cannot be used to modify quiz scores.
• An optional encrypted argument can be added at the end of the command line to indicate that

the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or updated users may not be able to access WebCT.

Example
For the student Justin Case, password 1234, with the following courses: cs100(D) cs200(TA) cs810(S), update
the password in the global database and update the courses so that only cs100 remains.

Enter the command:

UNIX ./webctdb update global xxxx "WebCT ID=jcase,Password=abcd,

Courses=cs100" ","

Windows webctdb update global xxxx "WebCT ID=jcase,Password=abcd,

Courses=cs100" ","

Example 2
Using the previous example, update Justin Case so he is now a student in course cs100.

Enter the command:

UNIX ./webctdb update global xxxx "WebCT ID=jcase,Password=abcd,
Courses=cs100;S" ","

Windows webctdb update global xxxx "WebCT ID=jcase,Password=abcd,

Courses=cs100;S" ","

UPDATING A SINGLE USER IN THE STUDENT DATABASE
Operation = update
• The fieldsData_pair_list must include the User ID field.
• Empty fields are not changed.
• If the field value is “_DELETE_”, the value will be set to null.
• When updating the Courses and Registered Courses field, the Standard API always overwrites the

field. If you supply a Courses field in your update, the user’s WebCT ID will be linked to the

© 2003 WebCT, Inc. 120

Operation = update
courses that you supply and unlinked from any pre-existing courses that you do not supply.

• You can update a user type by specifying a different one.
• update cannot be used to modify quiz scores.
• An optional encrypted argument can be added at the end of the command line to indicate that

the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or the updated users may not be able to access WebCT.

Example
To update the student Bailie Wicke, first name, last name, and password of password “abcd”.

Enter the command:

UNIX ./webctdb update student cs100 "User ID=bwick,Password=abcd,

First Name=Bailie,Last Name=Wicke" ","

Windows webctdb update student cs100 "User ID=bwick,Password=abcd,

First Name=Bailie,Last Name=Wicke" ","

UPDATING MULTIPLE USERS IN THE GLOBAL DATABASE
Operation = fileupdate
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is the name of the file. A file
extension, such as .txt, is recommended.

• The file must be in plain text. The first line of the file must be the field names separated by the
separator string. The rest of the file contains the data, one record per line. Data should be in the
same order as the field names, separated by the value of the separator. There must be no spaces
between the data and the separators.

• An optional encrypted argument can be added at the end of the command line to indicate that
the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or the newly added or modified users may not be able to
access WebCT.

• fileupdate will add a user if they do not exist in the database.
• Empty fields will not be changed.
• For fileupdate, if the value field value is “_DELETE_”, the value will be set to null.
• When updating the Courses and Registered Courses field, the Standard API always overwrites the

field. If you supply a Courses field in your update, the user’s WebCT ID will be linked to the
courses that you supply and unlinked from any pre-existing courses that you do not supply.

Example
Change the names of a group of users whose updates are contained in the file updates.txt.

SAMPLE UPDATES.TXT FILE:
WebCT ID,Last Name,First Name
jsmith,Smith,Jerry
jbrown,Brown,Janet
bfawlty,Fawlty,Brian
arigsby,Rigsby,Alan

© 2003 WebCT, Inc. 121

Enter the command:

UNIX ./webctdb fileupdate global xxxx updates.txt “,”

Windows webctdb fileupdate global xxxx updates.txt “,”

© 2003 WebCT, Inc. 122

UPDATING MULTIPLE USERS IN THE STUDENT DATABASE
Operation = fileupdate
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is the name of the file. A file
extension, such as .txt, is recommended.

• The file must be in plain text. The first line of the file must be the field names separated by the
separator string. The rest of the file contains the data, one record per line. Data should be in the
same order as the field names, separated by the value of the separator. There must be no spaces
between the data and the separators.

• An optional encrypted argument can be added at the end of the command line to indicate that
the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or the newly added or modified users may not be able to
access WebCT.

• fileupdate will add a student or user if they do not already exist in the database.
• Empty fields will not be changed.
• For fileupdate, if the field value is “_DELETE_”, the value will be set to null
• fileupdate overwrites the data fields being changed; it does not append.

Example
Change the names of students in the course cs100 using updates contained in the file updates.txt.

SAMPLE UPDATES.TXT FILE:
User ID,Last Name,First Name
jsmith,Smith,Jerry
jbrown,Brown,Janet
bfawlty,Fawlty,Brian
arigsby,Rigsby,Alan

Enter the command:

UNIX ./webctdb fileupdate student cs100 updates.txt “,”

Windows webctdb fileupdate student cs100 updates.txt “,”

© 2003 WebCT, Inc. 123

DELETING USERS

DELETING A SINGLE USER FROM THE GLOBAL DATABASE
Operation = delete
• global_id is the ID of the user to be deleted from the global database.

Note: Depending on the User Data setting in the administrator interface, the student’s data can also
be deleted from the student database.

Example
Delete the global database record for the user whose WebCT ID is jcase. Note: The student will be denied
access to all the courses listed in their global database record. Depending on the User Data setting in the
administrator interface, the student’s data can also be deleted from the student database.

Enter the command:

UNIX ./webctdb delete global xxxx jcase

Windows webctdb delete global xxxx jcase

DELETING A SINGLE USER FROM THE STUDENT DATABASE
Operation = delete
• user_id is the ID of the student to be deleted from the student database.

Example
Delete the record for the student in the cs100 course whose User ID is bwick.

Enter the command:

UNIX ./webctdb delete student cs100 bwick

Windows webctdb delete student cs100 bwick

DELETING MULTIPLE USERS FROM THE GLOBAL DATABASE
Operation = filedelete
• filename is the either a full absolute path or a relative path from the current directory to the file.

For example, if the file is located in the current directory, then filename is simply the name of the
file. A file extension, such as .txt, is recommended.

• If the user does not exist in the database, filedelete will send an error message to STDOUT.
The process will skip to the next record in the file.

© 2003 WebCT, Inc. 124

Example
Delete users from the global database using a text file deleteusers.txt.

SAMPLE DELETEUSERS.TXT FILE:
jsmith
jbrown
bfawlty
arigsby

Enter the command:

UNIX ./webctdb filedelete global xxxx deleteusers.txt “,”

Windows webctdb filedelete global xxxx deleteusers.txt “,”

DELETING MULTIPLE USERS FROM THE STUDENT DATABASE
Operation = filedelete
• filename is the either a full absolute path or a relative path from the current directory to the file.

For example, if the file is located in the current directory, then filename is simply the name of the
file. A file extension, such as .txt, is recommended.

• If the user does not exist in the database, filedelete will send an error message to STDOUT
The process will skip to the next record in the file.

Example
Delete students whose records are stored in the file delete.txt from the course cs100.

SAMPLE DELETE.TXT FILE:
jsmith
jbrown
bfawlty
arigsby

Enter the command:

UNIX ./webctdb filedelete student cs100 delete.txt

Windows webctdb filedelete student cs100 delete.txt

FINDING WUUIS
Important: Since the release of WebCT 3.6, the use of the WUUI for automatic signon and the find_wuui
operation are deprecated. With WebCT moving towards the use of the IMS specifications, which are becoming
standards in the learning community, the IMS ID and IMS source are now preferred over the WUUI. Although
the use of the WUUI is deprecated, the function will still be supported for 4.0.

© 2003 WebCT, Inc. 125

FINDING WUUIS USING IMS IDS
Operation = find_ims_id_wuui
• The WUUI (WebCT Unique Universal Identifier) is a 32-character alphanumeric string that

identifies a global user in WebCT.
• The find_ims_id_wuui operation is for the global database only.
• This operation is similar to the find_wuui operation, except that your campus portal passes

the user’s IMS ID, not their WebCT ID. WebCT returns the user’s WUUI.
• This operation can be used only when WebCT’s global database has been populated using the

IMS Enterprise API, because only in those cases would an IMS ID be present for each user in the
WebCT global database.

• IMS ID is the IMS ID of the user in the global database.
• The WUUI is sent to STDOUT.

Example
Find the WUUI for the user whose IMS ID is jcase.

Enter the command:

UNIX ./webctdb find_ims_id_wuui global xxxx jcase

Windows webctdb find_ims_id_wuui global xxxx jcase

The server returns:

Success: WUUI=abcdefghijklmnopqrstuvwxyz123456

FINDING USERS

FINDING A USER IN THE GLOBAL DATABASE
Operation = find
• WebCT ID is the WebCT ID of the user in the global database.
• Separator is the separator of the output data, which is sent to STDOUT in the same format as the

fieldsData_pair_list.
• If the field name user_type is specified in a global database query, the user type (S,D,TA) will be

included in the result.

Example
Find the global database record, including user type, for the user with the WebCT ID jcase.

Enter the command:

UNIX ./webctdb find global xxxx jcase "," user_type

Windows webctdb find global xxxx jcase "," user_type

If the command is successfully executed:

© 2003 WebCT, Inc. 126

Success: WebCT ID=jcase,First Name=Justin,
Last Name=Case,Courses=cs100;D:cs200;TA:cs810;S

FINDING A USER IN THE STUDENT DATABASE
Operation = find
• user_id is the User ID of the student in the student database.
• Separator is the separator of the output data, which is sent to STDOUT in the same format as the

fieldsData_pair_list.

Example
Find the student in the cs100 course whose User ID is bwick.

Enter the command:

UNIX ./webctdb find student cs100 bwick ","

Windows webctdb find student cs100 bwick ","

If the command is successfully executed:

Success:First Name=Bailie,Last Name=Wicke,User ID=bwick

CHANGING WEBCT IDS

CHANGING A SINGLE USER’S WEBCT ID
Operation = changeid
• changeid can only be used on the global database.
• old_id is the WebCT ID to be changed.
• new_id is the new WebCT ID.

Example
Change Justin Case’s WebCT ID from jcase to jicase.

Enter the command:

UNIX ./webctdb changeid global xxxx "Old ID=jcase,New ID=jicase” ","

Windows webctdb changeid global xxxx "Old ID=jcase,New ID=jicase” ","

CHANGING MULTIPLE USERS’ WEBCT IDS
Operation = filechangeid
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is simply the name of the

© 2003 WebCT, Inc. 127

Operation = filechangeid
file. A file extension, such as .txt, is recommended.

• The first line of the data file should be the field names Old ID and New ID, separated by the
separator string. The rest of the file contains the data, one record per line. Data should be in the
same order as the field names, separated by the value of the separator. Note: The field name Old
ID does not exist in the databases.

• If the user does not already exist in the database, filechangeid will send an error message to
STDOUT. The process will skip to the next record in the file.

Example
Change the WebCT IDs of a group of users contained in a file changeusers.txt.

SAMPLE CHANGEUSERS.TXT FILE:
Old ID,New ID
jsmith,jtsmith
jbrown,jkbrown
bfawlty,befawlty
arigsby,aurigsby

Enter the command:

UNIX ./webctdb filechangeid global xxxx changeusers.txt “,”

Windows webctdb filechangeid global xxxx changeusers.txt “,”

EXPORTING MYWEBCT IN XML FORMAT
This Standard API command exports a user’s myWebCT in XML format, which allows myWebCT information
to be modified and redisplayed in a desired format. For example, the information can be integrated with a
campus portal.

This command can be used in conjunction with automatic signon, allowing for a single point of authentication,
see Chapter 2: Automatic Signon From Other Systems.

Operation = homearea_xml
• homearea_xml can only be used on the global

database.
• WebCT ID is the WebCT ID of the user whose

myWebCT you want to export in XML format.
• Separator is the separator of the output data, which

is sent to STDOUT in the same format as the
fieldsData_pair_list.

• server base address is the address of the WebCT
server.

The returned XML conforms to the DTD located in
<install_dir>/webct/webct/generic/api/xml/mywebct.dtd.

The XML can be parsed to extract the required elements. Link elements that require authentication by WebCT
contain the attribute “secure” with a value of TRUE.

© 2003 WebCT, Inc. 128

Example
Export myWebCT in XML format for the user whose WebCT ID is jsmith and whose server base address is
http://webctserver:port.

Enter the command:

UNIX ./webctdb homearea_xml global xxxx jsmith http://webctserver:port

Windows webctdb homearea_xml global xxxx jsmith http://webctserver:port

WEB-BASED INTERFACE (SERVE_WEBCTDB)
The Web-based Standard API allows data in the WebCT global database and student databases to be queried
and manipulated by remote servers. For example, the Web-based interface can be used to make changes to
global database records based on registration changes driven by events on another system. It can also be used to
create a custom administrator interface.

Log files are created during each import, export and configuration event. E-mail alerts are also generated for
import events that are not processed correctly. See Section 2, Logging, page 75 for details.

Important:

• Some system administrators have created scripts that automatically import data files from outside
systems to WebCT and export data file from WebCT to outside systems on a regular basis. By
default, these scripts rely on the character set for imported and exported administrator files, which
is set in the WebCT administrator interface. Both imported and exported files will be converted to
this character set. You should change all automatic scripts to explicitly specify the character set of
the files being imported to match the actual character set of the source data. This will ensure that
background scripts import data smoothly, no matter the changes made to the character set for
imported and exported administrator files. See the International Support chapter of this guide for
more information.

• See the chapter International Support, Importing data into WebCT section for directions to specify
the file character set for the administrator interface.

• See Section 2: Campus Edition Institution License, Chapter 4 IMS Enterprise API, Import,
Example 2 page 75 in this guide for details about how to set the CHARSET parameter.

Implementing the Web-based interface involves two steps.

1. Setting the API shared secret value
2. Developing a program to generate an HTTP request

Step 1 can be accomplished by a WebCT administrator who has basic knowledge of the WebCT file system.
Step 2 requires an experienced Web developer.

SETTING THE API SHARED SECRET VALUE
The shared secret value is a key component of allowing external servers to automatically sign on users to
WebCT. The shared secret value is used to create a Message Authentication Code (MAC) from the submitted
data. When WebCT receives a request, it decodes the shared secret value from MAC using the submitted data.

© 2003 WebCT, Inc. 129

If the decoded shared secret value is the same as the one stored locally, the request is considered authentic and
is processed. Because the shared secret value has such a critical role, choose it carefully. You can set the shared
secret value by performing the following steps:

1. Using a text editor, open the file
<webct_install_directory>/webct/webct/generic/api/api_secret

2. Change the first line of the file to your desired secret. For security reasons, the default value secret does
not work. The shared secret value

• is case-sensitive
• cannot exceed 256 characters.
• cannot contain tab, or other control characters.
• should not contain end-of-line characters. Note: By default, the UNIX text editor vi and pico

automatically add end-of-line characters. Check the file size to ensure that the number of characters
equals the number of bytes.

3. Save the file.

Tips for
Shared
Secrets

¾ Make your shared secret value difficult to guess by making it
lengthy and by including a combination of numbers and upper and
lower case characters.

¾ Change your shared secret value at regular intervals.
¾ On remote systems, place shared secret values in secure directories.

DEVELOPING A PROGRAM TO GENERATE AN HTTP REQUEST
Developing a program to generate an HTTP request is the most substantive part of implementing the Web-
based standard API. The program must:

• generate a Message Authentication Code (MAC)
• assemble a properly formatted HTTP request
• process any data being returned

CREATING MESSAGE AUTHENTICATION CODES
Because the Web interfaces to the Standard API and automatic signon reside in public directories, Message
Authentication Codes (MACs) are required to ensure that only messages from trusted servers are processed.

WebCT provides three options to assist you in creating MACs:

1. A C function that you can integrate and compile into your C program.
2. An executable file to which you make a system call from your program.
3. Instructions for generating a MAC using a language of your choice.

OPTION 1: USING THE GET_AUTHENTICATION C FUNCTION
The get_authentication function generates a MAC from an array of data and a shared secret value.

The source code necessary to use the C function is located in
<webct_install_directory>/webct/webct/generic/api/security/

A test program, which contains a Makefile for UNIX based systems, is also provided.

© 2003 WebCT, Inc. 130

The file api_security.c contains the get_authentication function.

get_authentication Generates a MAC from an array of data and a
shared secret value

Syntax char* get_authentication (int i, char* data[], char*

secret, char* encrypted_data)

Returns 32-byte alphanumeric MAC

Parameter Description

i The number of elements in the array data[].

data Array of all values to be used in generating the MAC.
The data should not be URL encoded.

secret The shared secret value.

encrypted_data The memory location of the MAC. It must be at least
32 bytes long.

OPTION 2: USING THE MESSAGE AUTHENTICATION CODE GENERATOR (GET_MD5 EXECUTABLE)
The Message Authentication Code (MAC) generator generates a MAC from a shared secret value and a string
consisting of the IMS ID, a timestamp, and a destination URL.

If you are not working in C or do not want to create a function to create the MAC, use the Message
Authentication Code generator (an executable called get_md5) You can make a system call to get_md5 from
your program and have the authentication string returned. The get_md5 executable has no dependencies on
WebCT and can be copied to other servers as required. If you need a get_md5 executable for an operating
system other than the one your WebCT server is running on, you can download several pre-compiled binaries
for other operating systems on www.webct.com.

get_md5

Generates a MAC from a shared secret value
and a line of data

Syntax get_md5 <shared_secret_filename>

<data_to_encrypt>

Returns 32-byte alphanumeric MAC

Attribute Description

shared_secret_filename The filename where the shared secret value is stored.

© 2003 WebCT, Inc. 131

string_to_encrypt The string to be encrypted. The string should not be
URL encoded.

OPTION 3: CREATE A MAC USING A LANGUAGE OF YOUR OWN CHOICE
If you want to create MACs within your code, (e.g. you are writing your code in Java and don’t want to make a
system call), you can create a MAC with the following procedure:

1. Calculate the total of the ASCII values of all the characters in the data.

2. Convert the total of the ASCII values into a string.

3. Append the shared secret value.

4. Encrypt the string into a 16-byte string using the MD5 algorithm.

5. Convert the 16-byte string into a 32-byte alphanumeric string to make it URL-friendly.

HOW THE SERVE_WEBCTDB MAC IS GENERATED
The MAC is generated by using key/value pairs in the request. The serve_webctdb API uses the value from all
key/value pairs except the ones listed below.

• AUTH
• ENCRYPTED
• USER_TYPE
• USER TYPE
• CHARSET

ASSEMBLING THE HTTP REQUEST
There are several options for assembling an HTTP request to the Web-based standard API. The option you
choose will be based on your programming language of choice and how you want to communicate with the
Web server. You can issue API commands in several ways, including:

• Socket programming directly with the Web server
• Using a library which simulates a user agent
• Assembling a GET request and refreshing a browser window with the query string.

In Perl, you have the option of communicating directly with the Web server using the IO::Socket module
included with most basic distributions, or installing and using a module such as LWP which simulates a user
agent (e.g. a Web browser). Similar modules are available for most popular languages such as C or Java.

If you wish to refresh a user’s browser window with a query string, you can do so using the “Location” HTTP
header, HTML meta tags, or using JavaScript’s location.replace method.

SYNTAX
The general syntax for a Web-based request to the Standard API is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=<operation>&DB=<db>
&COURSE=<course_id | placeholder>&AUTH=<32_byte_mac>
[&User%20ID=<user_id> | &WebCT%20ID=<webct_id>][&IMS%20ID=<ims_id>]

© 2003 WebCT, Inc. 132

[&USER_TYPE=<1_or_0>][&ENCRYPTED=<1_or_0>][&field1=<field1>]
[&fieldn=<fieldn>]HTTP/1.0

where:

Key Value Description
add Adds a user to the global or student database.

If the user already exists, an error is returned.

update Updates an existing user in the global or student database.

If the user does not exist, this operation returns an error.

delete Deletes a single user from the global or student database.

find_wuui Finds the WUUI for a user using their WebCT ID as the key.
find_ims_id_wuui Finds the WUUI for a user using their IMS id

(person→sourcedid→id) as the key.

find Finds the user record based on the User ID (if searching the

student database) or WebCT ID (if searching the global
database).

changeid Changes a WebCT ID.

OPERATION

homearea_xml Exports a user’s myWebCT in XML format.

Notes:

• The Standard API can accept GET or POST requests. POST requests can put their key/value pairs
in the query string or in the body of the message in the appropriate format (see the W3C HTML
4.01 Specification at http://www.w3.org/TR/html401/interact/forms.html#h-
17.13.4)

• Requests must be URL encoded (e.g. spaces should be replaced with %20)
• Key/value pairs can appear in any order
• Syntax examples represent HTTP requests directly to the Web server. If you are using a

programming module to create your requests (such as LWP in Perl), many details of the request
can be transparent to you.

© 2003 WebCT, Inc. 133

FUNCTIONS

ADDING USERS

ADDING A USER TO THE GLOBAL DATABASE
Add operations have the following syntax:

<GET | POST> /webct/public/serve_webctdb?OPERATION=add&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&WebCT%20ID=<webct_id>
&Password=<password>[&field1=<field1>][&fieldn=<fieldn>]
[&ENCRYPTED=<1_or_0>]HTTP/1.0

where:

Key Value Description
COURSE Any alphanumeric

string
This is a required placeholder value. You can use any
alphanumeric value, but ensure that you use it in the
calculation of the MAC.

AUTH 32-byte MAC

This is the 32-byte hexadecimal string generated using
the get_authentication C code, the get_md5 program, or
using custom code.

WebCT ID WebCT ID The WebCT ID of the user being added.

WebCT IDs can contain alphanumeric strings,
underscores, and periods.

Password Password The password to be used for the user being added.

Passwords can consist of any alphanumeric string. The
API does not enforce minimum password lengths.

Field1
…
Fieldn
(optional)

Data associated with the
column specified as a
key.

Any of the default columns within the global database
(First Name, Last Name, Courses, Registered Courses)
can be modified using the syntax ColumnName=Value.
Administrator-created columns can also be modified
using this method.

1 ENCRYPTED
(optional)

0 (default) Disables pre-encrypted password support (default). In
this mode, passwords should be submitted as clear-text.

Enables pre-encrypted password support. With the
encrypted argument set to 1, you should pass passwords
encrypted with the standard UNIX DES method when
using this setting.

Note: The Courses field uses a colon as a delimiter between courses and a semicolon as a delimiter between
user types. Thus the string “HKIN100;D:HKIN200;TA:HKIN300;S” indicates that a user is to be added to
HKIN100 as a designer, HKIN200 as a teaching assistant and HKIN300 as a student. If no user type is
specified, WebCT will default to adding the user as a student. Similarly, the Registered Courses field is colon

© 2003 WebCT, Inc. 134

delimited. For more information on the Courses and Registered courses field, see the appropriate version of the
System Administrator’s Guide: WebCT Campus Edition.

Example 1
Add a user to the global database, and enroll them in the course ENGL100 as a designer, ENGL560 as a
student, and ENGL477 as a teaching assistant.

GET /webct/public/serve_webctdb?OPERATION=add&DB=global&COURSE=xxxx
&AUTH=EB1A09F0BB299C23E99A5978587F49C1&WEBCT%20ID=pinto
&PASSWORD=an1mal&FIRST%20NAME=Larry&LAST%20NAME=Kroger&
COURSES=ENGL100;D:ENGL560:ENGL477;TA HTTP/1.0

Example 2
Use UTF-8 characters to add a user to the global database, with WebCT ID “jpena”, password “1234”, first
name "Juán", and last name "Peña".

GET /webct/public/serve_webctdb?OPERATION=add&DB=global&COURSE=xxxx
&WebCT+ID=jpena&Password=1234&First+Name=Ju%C3%A1n&Last+Name=Pe%C3%B1a
&AUTH=E9895DF02FDEE859C8BDF7E0EA0E696F

Note: Accented characters are converted to UTF-8 bytes then are URL-escaped. The accented character "á" is
represented using the byte sequence "C3 A1" in UTF-8, which is then URL-escaped in the string "%C3%A1".

ADDING A USER TO THE STUDENT DATABASE
Students can be added to the student database using the following syntax:

<GET | POST> /webct/public/serve_webctdb?OPERATION=add&DB=student
&COURSE=<course_id>&AUTH=<32_byte_mac>&User%20ID=<user_id>
&Password=<password>[&field1=<field1>][&fieldn=<fieldn>]
[&ENCRYPTED=<1_or_0>]HTTP/1.0

where:

Key Value Description
COURSE WebCT Course ID The WebCT course to which the user will be added.

AUTH 32-byte MAC

This is the 32-byte hexadecimal string generated
using the get_authentication C code, the get_md5
program, or using custom code.

User ID User ID The User ID of the user being added.

Password Password The password to be used for the user being added.

The API does not enforce minimum password
lengths.

© 2003 WebCT, Inc. 135

Key Value Description
Field1
…
Fieldn
(optional)

Data associated with the
column specified as a
key.

Any of the default columns within the global database
(First Name, Last Name, Courses, Registered
Courses) can be modified using the syntax
ColumnName=Value. Administrator-created columns
can also be modified using this method.

1 Enables pre-encrypted password support. With the

encrypted argument set to 1, you should pass
passwords encrypted with the standard UNIX DES
method when using this setting

ENCRYPTED
(optional)

0 (default) Disables pre-encrypted password support (default). In
this mode, passwords should be submitted as clear

Example
Add a student to the student database of the course ENGL588. In addition, add data to a pre-existing column
“StudentNumber” (This is a custom column created by the designer). Because this user is being added to the
student database only, they are considered an “orphan user” until a WebCT ID is associated with this User ID:

GET /webct/public/serve_webctdb?OPERATION=add&DB=student
&COURSE=ENGL588&AUTH=EB1A09F0BB299C23E99A5978587F49C1
&User%20ID=flounder&Password=an1mal&First%20Name=Kent
&Last%20Name=Dorfman&StudentNumber=123456789 HTTP/1.0

UPDATING USERS

UPDATING A USER IN THE GLOBAL DATABASE
Updating users in the global database is very similar to adding users. The syntax is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=update&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&WebCT%20ID=<webct_id>
[&FIELD1=<field1>][&FIELDN=<fieldn>][&ENCRYPTED=<1_or_0>]HTTP/1.0

where:

Key Description
COURSE Any alphanumeric

string
This is a required placeholder value. You can use any
alphanumeric value, but ensure that you use it in the
calculation of the MAC.

AUTH 32-byte MAC

This is the 32-byte hexadecimal string generated using
the get_authentication C code, the get_md5 program, or
using custom code.

WebCT ID Existing WebCT ID The WebCT ID of the user being added.

WebCT IDs can contain alphanumeric strings,
underscores, and periods.

Password Password The password to be used for the user being updated. The

Value

© 2003 WebCT, Inc. 136

Key Description
(optional) API does not enforce minimum password lengths.

Data associated with the
column specified as a
key.

Any of the default columns within the global database
(First Name, Last Name, Courses, Registered Courses)
can be modified using the syntax ColumnName=Value.
Administrator-created columns can also be modified
using this method.

Field1
…
Fieldn
(optional)

DELETE The “_DELETE_” keyword deletes the data from the
field specified in the key and sets it to undefined.

1 Enables pre-encrypted password support. With the

encrypted argument set to 1, you should pass passwords
encrypted with the standard UNIX DES method when
using this setting

ENCRYPTED
(optional)

0 (default) Disables pre-encrypted password support (default). In
this mode, passwords should be submitted as clear-text.

Value

Notes:

• The User Data setting in the WebCT administrator interface affects how updating the Courses
column will modify the student database when unlinking WebCT IDs from User IDs. If the User
Data setting is selected, user data is left in the student database.

• When updating, the Standard API always overwrites the Courses and Registered Course fields. If
you supply a Courses field in your update, the user’s WebCT ID will be linked to the courses that
you specify and unlinked from any pre-existing courses that you do not specify.

• The Courses field uses a colon as a delimiter between courses and a semicolon as a delimiter
between user types. Thus the string HKIN100;D:HKIN200;TA:HKIN300;S indicates that a
user is to be added to HKIN100 as a designer, HKIN200 as a teaching assistant, and HKIN300 as
a student. If no user type is specified, WebCT will default to adding the user as a student.
Similarly, the Registered Courses field is colon delimited. For more information on the Courses
and Registered courses field, see the appropriate version of the System Administrator’s Guide:
WebCT Campus Edition.

Example
A user is currently enrolled in three courses: ENGL101 as a designer, ENGL560 as a student, and ENGL477 as
a teaching assistant. This example unlinks the WebCT ID from the User ID for ENGL 560 and ENGL 477,
and adds the WebCT ID to the course ENGL101 as designer.

GET /webct/public/serve_webctdb?OPERATION=update&DB=global&COURSE=xxxx&AUTH=EB1A
09F0BB299C23E99A5978587F49C1&WebCT%20ID=pinto&Courses=ENGL101;D:ENGL101;D
HTTP/1.0

The user is unlinked from the two courses because API updates always overwrite fields.

© 2003 WebCT, Inc. 137

UPDATING A USER IN THE STUDENT DATABASE

Updating students in the student database is very similar to adding students. The syntax is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=update&DB=student
&COURSE=<course_id>&AUTH=<32_byte_mac>&User%20ID=<user_id>
[&field1=<field1>][&fieldn=<fieldn>][&ENCRYPTED=<1_or_0>]HTTP/1.0

where:

Key Description
COURSE WebCT Course ID The WebCT course in which the user’s data is

updated.

AUTH 32-byte MAC

This is the 32-byte hexadecimal string generated
using the get_authentication C code, the get_md5
program, or using custom code.

User ID User ID The User ID of the user being added.

Password
(optional)

Password The password to be used for the user being added.
The API does not enforce minimum password
lengths.

Data associated with the
column specified as a
key.

Any of the default columns within the global database
(First Name, Last Name, Courses, Registered
Courses) can be modified using the syntax
ColumnName=Value. Administrator-created columns
can also be modified using this method.

Field1
…
Fieldn
(optional)

DELETE The “_DELETE_” keyword deletes the data from the
field specified in the key and sets it to undefined.

1 Enables pre-encrypted password support. With the
encrypted argument set to 1, you should pass
passwords encrypted with the standard UNIX DES
method when using this setting.

ENCRYPTED
(optional)

0 (default) Disables pre-encrypted password support (default). In
this mode, passwords should be submitted as clear-
text.

Value

Example
In the following example, a student record is updated with information for the instructor-added numeric
columns Student Participation and Bonus in the course MATH100.

GET /webct/public/serve_webctdb?OPERATION=update&DB=student&

COURSE=MATH100&AUTH=EB1A09F0BB299C23E99A5978587F49C1
&User%20ID=otter&Student%20Participation=100&Bonus=34 HTTP/1.0

© 2003 WebCT, Inc. 138

DELETING USERS

DELETING A USER FROM THE GLOBAL DATABASE
The syntax for deleting a user from the global database is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=delete&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&WebCT%20ID=<webct_id>
HTTP/1.0

where:

Key Value Description
COURSE Any alphanumeric string This is a required placeholder value. You can use any

alphanumeric value, but ensure that you use it in the
calculation of the MAC.

AUTH 32-byte MAC

This is the 32-byte hexadecimal string generated using the
get_authentication C code, the get_md5 program, or using
custom code.

WebCT ID WebCT ID The WebCT ID of the user being deleted.

Note: The User Data setting in the WebCT administrator interface affects whether user data is left in a course
when a user record is deleted from the global database. If the User Data setting is selected, user data is left in
the student database.

Example
In this example, the user record for the user with the WebCT ID neidermeyer is deleted from the global
database:

GET /webct/public/serve_webctdb?OPERATION=delete&DB=global&COURSE=xxxx
&AUTH=EB1A09F0BB299C23E99A5978587F49C1&WebCT%20ID=neidermeyer
HTTP/1.0

DELETING A USER FROM THE STUDENT DATABASE
The syntax for deleting a student from the student database is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=delete&DB=student
&COURSE=<course_id>&AUTH=<32_byte_mac>&User%20ID=<user_id>
HTTP/1.0

where:

Key Description
COURSE WebCT Course ID The WebCT course from which the user will be deleted.

AUTH 32-byte MAC

This is the 32-byte hexadecimal string generated using the
get_authentication C code, the get_md5 program, or using custom
code.

User ID User ID The User ID of the user being deleted.

Value

© 2003 WebCT, Inc. 139

Example
In this example, the student with the User ID stork is deleted from the course PSYCH204-23:

GET /webct/public/serve_webctdb?OPERATION=delete&DB=student
&COURSE=PSYCH204-23&AUTH=EB1A09F0BB299C23E99A5978587F49C1
&User%20ID=stork HTTP/1.0

FINDING WUUIS
Important: Since the release of WebCT 3.6, the use of the WUUI for automatic signon and the find_wuui
operation are deprecated. With WebCT moving towards the use of the IMS specifications, which are becoming
standards in the learning community, the IMS ID and IMS source are now preferred over the WUUI. Although
the use of the WUUI is deprecated, the functionality remains.

The syntax for finding WUUIs is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=<operation>
&DB=global&field1=<field1>&COURSE=<placeholder>
&AUTH=<32_byte_mac> HTTP/1.0

Key Description

find_wuui Finds a user’s WUUI from a WebCT ID. OPERATION
find_ims_id_wuui Finds a user’s WUUI from an IMS ID.

AUTH 32-byte MAC

This is the 32-byte hexadecimal string generated using
the get_authentication C code, the get_md5 program,
or using custom code.

field1 WebCT ID Use if the operation is find_wuui.
 IMS ID Use if the operation is find_ims_id_wuui.

COURSE Any alphanumeric string This is a required placeholder value. You can use any
alphanumeric value, but ensure that you use it in the
calculation of the MAC.

Value

EXAMPLES

FINDING A USER’S WUUI FROM A WEBCT ID
Find the WUUI for the WebCT ID jdoe.

GET /webct/public/serve_webctdb?OPERATION=find_wuui&DB=global
&WebCT%20ID=jdoe&COURSE=xxxx&AUTH=EB1A09F0BB299C23E99A5978587F49C1
HTTP/1.0

The Web server returns the following (not including HTTP headers):

Success: #WUUI = 6321BB2537BE7F1E26375D4E1687EE1F

© 2003 WebCT, Inc. 140

FINDING A USER’S WUUI FROM AN IMS ID
Find the WUUI for the IMS id (person→sourcedid→id) 123456789:

GET /webct/public/serve_webctdb?OPERATION=find_ims_id_wuui&DB=global
&IMS%20ID=123456789&COURSE=xxxx&
AUTH=EB1A09F0BB299C23E99A5978587F49C1 HTTP/1.0

The Web server returns the following (not including HTTP headers):

Success: #WUUI = 6321BB2537BE7F1E26375D4E1687EE1F

FINDING USERS

FINDING A USER IN THE GLOBAL DATABASE
To find a user’s global database record, the following syntax is used:

<GET | POST> /webct/public/serve_webctdb?OPERATION=find&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&WebCT%20ID=<webct_id>
[USER_TYPE=<1_or_0>]HTTP/1.0

where:

Key Value Description
find Finds the user record for a given WebCT ID.

COURSE Any alphanumeric string This is a required placeholder value. You can use any

alphanumeric value, but ensure that you use it in the
calculation of the MAC.

WebCT ID WebCT_ID The WebCT ID of the record you want to display.

1 With the User Type option enabled, the global database

record generated includes user type information that
indicates whether a user is a designer, student, or
teaching assistant for the course.

USER_TYPE
(optional)

0 (default) No user type information is generated.

OPERATION

AUTH 32_byte_mac This is the 32-byte hexadecimal string generated using
the get_authentication C code, the get_md5 program,
or using custom code.

© 2003 WebCT, Inc. 141

Example
In this example, the complete record including user type information is returned for the user with the WebCT
ID “pinto”, who is enrolled in three courses.

GET /webct/public/serve_webctdb?OPERATION=find&DB=global&COURSE=xxxx
&AUTH=EB1A09F0BB299C23E99A5978587F49C1&WebCT%20ID=pinto
&USER_TYPE=1 HTTP/1.0

The Web server returns the following, not including HTTP headers:

Success: WebCT ID=pinto,First Name=Larry,Last Name=Kroger,Courses=
ENGL100;D:ENGL560;S:ENGL477;TA

FINDING A USER IN THE STUDENT DATABASE
To find a student’s student database record, the following syntax is used:

<GET | POST> /webct/public/serve_webctdb?OPERATION=find&DB=student
&COURSE=<course_id>&AUTH=<32_byte_mac>&User%20ID=<user_id> HTTP/1.0

where:

Key Value Description
OPERATION find Finds a user’s record for a given WebCT ID.

COURSE Any alphanumeric string The course that you are searching.

AUTH 32_byte_mac

This is the 32-byte hexadecimal string generated using
the get_authentication C code, the get_md5 program,
or using custom code.

User ID User ID The User ID of the record you wish to display.

Example
In this example, a complete student database record is displayed for the user with User ID “chip” in the course
“HKIN455”:

GET /webct/public/serve_webctdb?OPERATION=find&DB=student
&COURSE=HKIN455=AUTH=EB1A09F0BB299C23E99A5978587F49C1&User%20ID=chip
HTTP/1.0

The Web server returns the following, not including HTTP headers:

Success: First Name=Chip,Last Name=Diller,User ID=chip,Quiz1=36,Assignment1=10

© 2003 WebCT, Inc. 142

CHANGING WEBCT IDS

CHANGING A USER’S WEBCT ID
To change a WebCT ID for a user, use the syntax:

<GET | POST> /webct/public/serve_webctdb?OPERATION=changeid&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&Old%20ID=<old_webct_id>
&New%20ID=<new_webct_id> HTTP/1.0

where:

Key Value Description
OPERATION changid Changes the WebCT ID of a user.

COURSE Any

alphanumeric
string

This is a required placeholder value. You can use any
alphanumeric value, but ensure that you use it in the calculation
of the MAC.

AUTH 32_byte_mac

This is the 32-byte hexadecimal string generated using the
get_authentication C code, the get_md5 program, or using
custom code.

Old ID Old WebCT ID The WebCT ID of the record you want to change.

New ID New WebCT

ID
The WebCT ID that you want to assign to the user.

Example
In this example, the WebCT ID “flounder” is changed to “dorfmank”:

GET /webct/public/serve_webctdb?OPERATION=changeid&DB=global&COURSE=xxxx
&AUTH=EB1A09F0BB299C23E99A5978587F49C1&Old%20ID=flounder
&New%20ID=dorfmank HTTP/1.0

The Web server returns the following, not including HTTP headers:
Success:

EXPORTING MYWEBCT IN XML FORMAT
This Standard API command exports a user’s myWebCT in XML format, which allows myWebCT information
to be modified and redisplayed in a desired format. For example, the information can be integrated with a
campus portal.

This command can be used in conjunction with automatic signon, allowing for a single point of authentication,
see Chapter 2: Automatic Signon From Other Systems in this guide.

To export a user’s myWebCT in XML format, use the syntax:

<GET | POST> /webct/public/serve_webctdb?OPERATION=homearea_xml&DB=global
&WebCT%20ID=<WebCT ID>&AUTH=<32_byte_mac>

where:

© 2003 WebCT, Inc. 143

Key Value Notes
OPERATION homearea_xml Exports a user’s myWebCT in XML format.

WebCT ID WebCT ID The WebCT ID of the user whose myWebCT you want to export

in XML format.

AUTH 32_byte_mac

This is the 32-byte hexadecimal string generated using the
get_authentication C code, the get_md5 program, or using
custom code.

The returned XML conforms to the DTD located in
<install_dir>/webct/webct/generic/api/xml/mywebct.dtd.

The XML can be parsed to extract the required elements. Link elements that require authentication by WebCT
contain the attribute “secure” with a value of TRUE.

© 2003 WebCT, Inc. 144

RESOURCES

LDAP RE S O U R C E S

WEB SITES
LDAP Guru
http://www.ldapguru.com
Provides a large database of articles and resources

Open LDAP
http://www.openldap.org
Home of the OpenLDAP Project

iPlanet Directory Server
http://developer.iplanet.com/tech/directory/
Information on iPlanet, one of the most commonly used LDAP servers.

KE R B E R O S RE S O U R C E S

WEB SITES
Kerberos: The Network Authentication Protocol
http://web.mit.edu/kerberos/www/
The home of the free MIT Kerberos implementation

The Kerberos FAQ
http://www.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html
Updated monthly and has answers to many common questions

Windows 2000 Kerberos Authentication
http://www.microsoft.com/windows2000/techinfo/howitworks/security/k
erberos.asp
Detailed document about how Kerberos works in a Windows 2000 environment

IMS R E S O U R C E S

WEB SITES
The IMS Enterprise Specifications Site
http://www.imsproject.org/enterprise/
The authoritative resource for the IMS Enterprise Information model, the XML Binding Specification
and the Best Practices and Implementation Guide.

© 2003 WebCT, Inc. 145

http://www.imsproject.org/enterprise/

APPENDIX

SU P P O R T E D CH A R A C T E R SE T S
The following character sets are supported by both the Standard API and the IMS Enterprise API:

• Arabic (Windows-1256)
• Baltic (Windows-1257)
• Central European (ISO-8859-2)
• Central European (Windows-1250)
• Chinese Simplified (GB2312)
• Chinese Traditional (Big5)
• Cyrillic (KO18-R)
• Cyrillic (Windows-1251)
• Greek (Windows-1253)
• Hebrew (Windows-1255)
• Japanese (EUC-JP)
• Japanese (Shift_JIS)
• Thai (Windows-874)
• Turkish (Windows-1254)
• Unicode (UNICODE2)
• Unicode (UTF-8)
• Vietnamese (Windows-1258)
• Western European (ISO-8859-1)
• Western European (Windows-1252)

© 2003 WebCT, Inc. 146

	About this Guide
	
	Section 1: Campus Edition Focus License
	Section 2: Campus Edition Institution License

	International Support
	Overview
	Some background

	How to display multiple languages in the same course in the same WebCT installation
	Creating courses to display multiple languages
	Converting courses from one character set to another
	Importing data into WebCT
	Using the Standard API
	Using the IMS API

	Exporting data from WebCT

	SECTION 1: CAMPUS EDITION FOCUS LICENSE
	Chapter 1 User Authentication
	Choosing An Authentication Method
	Browser-Based Authentication Process
	Ticket Based Authentication Process
	How WebCT Generates Tickets

	Implementing Ticket Based Authentication

	Chapter 2 Standard API
	Overview of the Standard Application Programming Interface
	Choosing the Appropriate Interface for your Requirements
	Functionality in the Standard API
	Implementing the Standard API
	Command Line Interface (webctdb)
	Syntax
	Functions

	Web-based Interface (serve_webctdb)
	1. Setting the API Shared Secret Value
	2. Developing a Program to Generate an HTTP Request
	Syntax
	Functions

	SECTION 2: CAMPUS EDITION INSTITUTION LICENSE
	Chapter 1 User Authentication
	Choosing An Authentication Method
	Browser Based Authentication Process
	Ticket Based Authentication Process
	How WebCT Generates Tickets

	Implementing Ticket Based Authentication
	Choosing an Authentication Source
	Using one authentication source
	Using multiple authentication sources
	Specifying the LDAP settings
	Specifying the Kerberos settings
	Specifying the Windows 2000 Domain Controller settings

	Implementing Custom Authentication
	UNIX/Linux
	WINDOWS 2000

	Chapter 2 Automatic Signon From Other Systems
	Automatic Signon Process
	Implementing Automatic Signon
	Setting Shared Secret Values and Enabling Ticket Based Authentication
	Developing a Program to Automatically Authenticate a User
	Creating Message Authentication Codes
	Finding the IMS ID for Automatic Signon
	Finding WUUIs
	Making a Request to the Automatic Signon CGI

	Chapter 3 Overview of the Application Programming Interfaces
	Differences Between the IMS Enterprise API and the Standard API
	Functional Differences
	Operational Differences

	Choosing the Appropriate Interface for your Requirements

	Chapter 4 IMS Enterprise API
	IMS API Adaptors
	
	SIS Grade Export

	Functionality in the IMS Enterprise API
	Terminology
	Implementing the IMS API
	Command line interface (ep_api.pl)
	Syntax
	Functions

	Web-based interface (serve_ep_api.pl)
	Setting the API Shared Secret Value
	Developing a Program to Generate an HTTP Request
	XML File Format Guidelines
	Syntax
	Functions

	Chapter 5 Standard API
	Functionality in the Standard API
	Implementing the Standard API
	Command Line Interface (webctdb)
	Syntax
	Functions

	Web-based Interface (serve_webctdb)
	Setting the API Shared Secret Value
	Developing a Program to Generate an HTTP Request
	Syntax
	Functions

	Resources
	LDAP Resources
	Web Sites

	Kerberos Resources
	Web Sites

	IMS Resources
	Web Sites

	Appendix
	Supported Character Sets

