
©2002 WebCT

WebCT 3.7 Campus Edition

Technical Reference Guide

Technical Communications

February 28, 2002

©2002 WebCT 2

ABOUT THIS DOCUMENT ... 5
Section 1: Campus Edition Limited Use License __ 5
Section 2: Campus Edition ___ 5

SECTION 1: CAMPUS EDITION LIMITED USE LICENSE .. 7
CHAPTER 1 USER AUTHENTICATION... 8

Choosing An Authentication Method.. 8
Browser Based Authentication Process__ 8
Ticket Based Authentication Process ___ 9
How WebCT Generates Tickets ___ 9

Implementing Ticket Based Authentication .. 9
CHAPTER 2 STANDARD API.. 11

Overview of the Standard Application Programming Interface... 11
Choosing the Appropriate Interface for your Requirements ... 11
Functionality in the Standard API.. 11
Implementing the Standard API ... 12

Command Line Interface (webctdb) ___ 12
Syntax ... 12
Functions .. 15

Adding users ... 15
Updating users .. 18
Deleting users ... 21
Finding users... 23
Changing WebCT IDs .. 24

Web-based Interface (serve_webctdb) ___ 25
1. Setting the API Shared Secret Value .. 25
2. Developing a Program to Generate an HTTP Request ... 26

Creating Message Authentication Codes.. 26
Assembling the HTTP request.. 28

Syntax ... 28
Functions .. 29

Adding users ... 29
Updating users .. 31
Deleting users ... 34
Finding users... 35
Changing WebCT IDs .. 37

SECTION 2: CAMPUS EDITION ... 38
CHAPTER 1 USER AUTHENTICATION.. 39

Choosing An Authentication Method.. 39
Browser Based Authentication Process___ 40
Ticket Based Authentication Process __ 40
How WebCT Generates Tickets __ 40

Implementing Ticket Based Authentication .. 41
Choosing an Authentication Source ___ 41

Using one authentication source... 41
Using multiple authentication sources.. 42
Specifying the LDAP settings .. 43
Specifying the Kerberos settings .. 44
Specifying the Windows 2000 Domain Controller settings ... 44

Implementing Custom Authentication... 44

©2002 WebCT 3

Unix/Linux __ 45
Windows NT/2000 __ 45

CHAPTER 2 AUTOMATIC SIGNON FROM OTHER SYSTEMS... 46
Automatic Signon Process .. 46
Implementing Automatic Signon... 47

1. Setting Shared Secret Values and Enabling Ticket Based Authentication ________________________ 47
2. Developing a Program to Automatically Authenticate a User _________________________________ 48

Creating Message Authentication Codes.. 48
Option 1: Using the get_authentication C function .. 48
Option 3: Create a MAC using a language of your own choice ... 49

Finding the IMS ID for Automatic Signon... 50
Finding the IMS ID using the Web-based IMS API... 50
Finding the IMS ID using the command line IMS API.. 50

Finding WUUIs .. 51
Finding the WUUI using the Web-based Standard API ... 51
Finding the WUUI using the command line Standard API .. 52

Making a Request to the Automatic Signon CGI ... 52
CHAPTER 3 OVERVIEW OF THE APPLICATION PROGRAMMING INTERFACES ... 54

Differences Between the IMS Enterprise API and the Standard API ... 54
Functional Differences ___ 54
Operational Differences___ 55

Choosing the Appropriate Interface for your Requirements ... 55
CHAPTER 4 IMS ENTERPRISE API.. 57

Functionality in the IMS Enterprise API .. 57
Terminology.. 57
Implementing the IMS API ... 58

Command line interface (ep_api.pl) ___ 59
Syntax ... 59
Functions .. 60

Import ... 60
Export ... 61
Configure .. 62

Web-based interface (serve_ep_api.pl) ___ 63
1. Setting the API Shared Secret Value .. 63
2. Developing a Program to Generate an HTTP Request ... 64

Creating Message Authentication Codes.. 64
Generating a checksum... 66
Assembling the HTTP request.. 66

XML File Format Guidelines ... 70
IMS objects and WebCT relationships ... 70
Complete specifications.. 79
Other XML considerations ... 79

Syntax ... 80
Functions .. 81

Import ... 81
Export ... 84
Configure .. 86

CHAPTER 5 STANDARD API.. 88
Functionality in the Standard API.. 88
Implementing the Standard API ... 89

Command Line Interface (webctdb) ___ 89

©2002 WebCT 4

Syntax ... 89
Functions .. 92

Adding users ... 92
Updating users .. 95
Deleting users ... 97
Finding WUUIs .. 99
Finding users... 100
Changing WebCT IDs .. 100
Exporting myWebCT in XML format .. 101

Web-based Interface (serve_webctdb) __ 102
1. Setting the API Shared Secret Value .. 102
2. Developing a Program to Generate an HTTP Request ... 103

Creating Message Authentication Codes.. 103
Assembling the HTTP request.. 105

Syntax ... 105
Functions .. 106

Adding users ... 106
Updating users .. 108
Deleting users ... 111
Finding WUUIs .. 112
Finding users... 113
Changing WebCT IDs .. 115
Exporting myWebCT in XML format .. 115

RESOURCES... 117
LDAP Resources... 117

Web Sites___ 117
Kerberos Resources.. 117

Web Sites___ 117
IMS Resources .. 117

Web Sites___ 117

©2002 WebCT 5

 ABOUT TH IS DOCUMENT
The Technical Reference Guide for WebCT 3.7 Campus Edition users and WebCT 3.7 Campus Edition
Limited Use License holders is a how-to manual for carrying out advanced administration, integration and
reporting tasks not available through the administrator interface. It is written for systems administrators and
Web developers.

This document is separated into two main sections, one for each of the two license types available.

SECTION 1: CAMPUS EDITION LIMITED USE LICENSE
Campus Edition Limited Use License holders have access to the Standard API, which provides advanced
WebCT administrative and reporting functions. Examples in this guide focus primarily on syntax and assume a
strong Web programming background. For more detailed examples, download the Practical Examples
document from the WebCT Documentation, API Guides section at download.webct.com.

An overview of Section 1 follows:

Chapter 1: User Authentication
� Describes methods for providing secure access to WebCT.

Chapter 2: Standard API
� Describes how to add, update, and delete one or multiple users.
� Describes how to find users in the global or student database.
� Describes how to change WebCT IDs.

SECTION 2: CAMPUS EDITION
Campus Edition users have access to the IMS API and the Standard API. The IMS API enables integration with
existing campus systems, such as student information systems and portals. The Standard API allows access to
advanced WebCT administrative and reporting functions.

Examples in this guide focus primarily on syntax and assume a strong Web programming background. For
more detailed examples, download the Practical Examples document from the WebCT Documentation, API
Guides section at download.webct.com.

An overview of Section 2 follows:

Chapter 1: User Authentication
� Describes methods for providing secure access to WebCT, using one or more

authentication sources.

Chapter 2: Automatic Signon from Other Systems
� Describes how to implement automatic signon.

Chapter 3: Overview of the Application Programming Interfaces
� Describes the functional and operational differences between the IMS Enterprise API and

the Standard API.

Chapter 4: IMS Enterprise API

©2002 WebCT 6

� Describes how to import data into the WebCT database, export data from the WebCT
database, and how to set the IMS ID for group and person objects.

Chapter 5: Standard API
� Describes how to add, update, and delete one or multiple users.
� Describes how to find WUUIs and how to find users in the global or student database.
� Describes how to Change WebCT IDs.
� Describes how to export myWebCT in XML format.

©2002 WebCT 7

SECTION 1: CAMPUS EDITION
LIMITED USE LICENSE

©2002 WebCT 8

CHAPTER 1 USER AUTHENTICAT ION
WebCT 3.7 Campus Edition (CE) provides two major methods for user authentication:

Browser Based
Authentication

• Users are authenticated through a browser dialog box that prompts
for a username and password. The username and password are
verified against WebCT’s internal database. If the user is
authorized, a Basic Authentication Header is provided. Subsequent
page accesses to WebCT are authorized according to the browser
header.

• This authentication method is used in previous versions of
WebCT.

Ticket Based
Authentication

• Users are authenticated through a logon page that prompts for a
username and password. The username and password are verified
against WebCT’s internal database. If the authentication is
successful, the user is issued a browser cookie that serves as a
ticket. Subsequent page accesses to WebCT are authorized
according to the ticket.

CH O O S I N G AN AU T H E N T I C A T I O N ME T H O D
Certain features of WebCT 3.7 CE require ticket-based authentication, including:

• Logout
• Server lockdown
• Session timeout
• Customizable logon page

Browser based authentication is primarily provided in WebCT 3.7 as a legacy option. Choose this method of
authentication if:

• Your institution has an information technology policy forbidding the use of applications that
employ browser cookies.

• It is critical that the user interface of WebCT remain the same as previous versions.

BROWSER BASED AUTHENTICATION PROCESS
Browser-based authentication has served as the standard authentication method for all previous versions of
WebCT. When a user a requests a URL, authentication of the user occurs as follows:

1. The Web server checks to see if the requested URL requires authorization.

2. If none is required (e.g., a user requests a course Welcome Page), then the Web server delivers the page
to the browser.

3. If authorization is required, the Web server checks to see if the user has already provided a username
and password by checking to see if a valid Basic Authentication Header was provided in the request. If
the header is valid, the page is delivered.

4. If the Basic Authentication Header is invalid, or no header is provided, the user is prompted with a
username and password dialog box. The cycle is then repeated.

©2002 WebCT 9

TICKET BASED AUTHENTICATION PROCESS
When a user requests a URL, authentication of the user occurs as follows:

5. The Web server checks to see if the requested URL requires authorization.

6. If none is required, the Web server delivers the page to the browser.

7. If authorization is required, WebCT checks for a valid ticket.

8. If a valid ticket is found (i.e. the user has been authenticated and is authorized for the resource), the
page is delivered to the browser.

9. If a ticket is not found, a logon form is delivered to the browser. The user submits the form and WebCT
authenticates the user, issuing their browser a cookie. The URL is re-requested and the cycle repeats.

HOW WEBCT GENERATES TICKETS
WebCT tickets (in the form of browser cookies) contain the following information:

• Username
• Encrypted Password (DES encryption)
• Timestamp (UNIX Epoch format)
• Message Authentication Code (MAC)

The MAC is generated in three steps:

1. The username, encrypted password, timestamp, user agent information (if sent),
and a shared secret value are concatenated.

2. The concatenated string is encrypted with the MD5 algorithm.

3. The encrypted string is encrypted a second time with the MD5 algorithm.

IM P L E M E N T I N G T I C K E T BA S E D AU T H E N T I C A T I O N
With ticket-based authentication, you authenticate using WebCT’s internal database.

1. From the Admin toolbar, click Server Mgmt. The Server Mgmt toolbar appears.

2. From the Server Mgmt toolbar, click Settings. The Administrator Settings screen appears.

3. Under User Authentication, select Use ticket based authentication.

4. Choose whether the Logout link should appear in the course Menu Bar:

• To display the Logout link, select Display Logout link in course Menu Bar.
• To hide the Logout link, deselect Display Logout link in course Menu Bar. Note: If you run

WebCT in a framed environment (such as a portal) where a logout link or "Return to Portal" link
already exists, you may prefer to hide the Logout link.

©2002 WebCT 10

5. In the Ticket shared secret value text box, either leave the shared secret value that was automatically
generated by WebCT or enter a new shared secret value. For security reasons, the default value "secret"
does not work. The secret value

• is case-sensitive
• cannot exceed 256 characters
• cannot contain tab or other control characters
• should not contain end-of-line characters. Note: By default, the UNIX text editors vi and pico

automatically add end-of-line characters. Check the file size to ensure that the number of
characters equals the number of bytes.

6. In the Tickets remain valid for text box, enter the number of minutes until ticket time-out. This value
controls the expiry time of the ticket based on the user’s last access and therefore affects how long a user
can stay logged on while inactive. The default is 180 minutes.

7. Choose whether to allow WebCT authentication across a domain. Authentication across a domain allows
users to access all servers in the domain, without having to re-authenticate for each one.

• To allow authentication across a domain:
a) Select Allow WebCT authentication across a domain.
b) In the Please specify your domain text box, enter the domain name. The domain name must

have a period in front of it. Example: .webct.com
• To disallow authentication across a domain, select Do not allow WebCT authentication across a

domain.
8. Under User is authenticated using, from the drop-down list for the authentication source that you are

using, select First. Note: With a Limited Use License, only the WebCT internal database can be used as
the authentication source.

9. For all other authentication sources, select Never.

10. Scroll to the bottom of the screen and click Update.

©2002 WebCT 11

CHAPTER 2
STANDARD API

The Standard API gives administrators and developers access to the WebCT databases via command line or
Web-based interfaces, to perform a variety of administration and reporting tasks.

OV E R V I E W O F T H E
ST A N D A R D AP P L I C A T I O N PR O G R A M M I N G IN T E R F A C E
Application Programming Interfaces (APIs) allow users and other systems to directly interface with WebCT
without the graphical user interface. This chapter describes the WebCT 3.7 CE (proprietary) Standard API. This
API has two interfaces, a command line interface and a Web-based interface.

CH O O S I N G T H E AP P R O P R I A T E IN T E R F A C E
F O R Y O U R RE Q U I R E M E N T S
WebCT provides two interfaces to of the Standard API: a command line interface, and a Web-based interface.
Choosing an interface is not a one-time decision; it will vary depending on the task that you need to
accomplish.

Use the following table as a guide for choosing the best interface for your task.

Task Suggested
Interface

Processing multiple records simultaneously command line

Processing a single record command line

Integrating systems that are on the same physical server and run as the same
user as WebCT

command line

Debugging command line

Integrating external system with WebCT
(e.g., you want to integrate your institution’s SIS with WebCT)

Web-based

FU N C T I O N A L I T Y I N T H E ST A N D A R D API
The Standard API allows you to manipulate two separate databases within WebCT, the global database and the
student database.

The global database contains the central listing of all users on the WebCT server. By default, the global
database contains the WebCT ID, Password, First Name, Last Name, Courses, and Registered Courses fields.
All users must have an entry in this database in order to access a course.

©2002 WebCT 12

The student database is a term for a collection of databases specific to a course. Every WebCT course has its
own student database that contains, by default, the User ID, Password, First Name, and Last Name fields. The
information in the student database can be viewed most readily by looking at the designer interface of Manage
Students.

Generally, a WebCT ID is linked to a User ID for each course that a user is enrolled in. Users can have
different User IDs from their WebCT IDs, as well as different First Name and Last Name data in the student
and global databases.

The functionality of the Standard API can be divided into the following basic categories:

Adding Users • Adding a single user to the global database or student database
• Adding multiple users to the global database or student database

Updating Users • Updating a single user in the global database or student database

• Updating multiple users in the global database or student database
• Updating user types

Deleting Users • Deleting a single user from the global database or student database

• Deleting multiple users from the global database or student database

Finding Users • Finding a user in the global database or student database

Changing
WebCT IDs

• Changing a single user’s WebCT ID
• Changing multiple users’ WebCT IDs

IM P L E M E N T I N G T H E ST A N D A R D API

COMMAND LINE INTERFACE (WEBCTDB)
The command line interface to the standard API provides a simple interface to the WebCT API. The executable
file webctdb, is located in the directory <install_dir>/webct/webct/generic/api/.

SYNTAX
The general syntax for each of the Standard API operations is as follows:

Operation Field Names
add <db> <course> <fieldsData_pair_list> <separator> [encrypted]

delete <db> <course> <WebCT_ID | user_id>

changeid <db> <course> <fieldsData_pair_list> <separator>

update <db> <course> <fieldsData_pair_list> <separator> [encrypted]

find <db> <course> <WebCT_ID | user_id> <separator> [user_type]

©2002 WebCT 13

Operation Field Names
fileadd <db> <course> <filename> <separator> [encrypted]

fileupdate <db> <course> <filename> <separator> [encrypted]

filedelete <db> <course> <filename>

filechangeid <db> <course> <filename> <separator>

Details about each field name are provided below:

Field Name: db
Value: global or student
Example: global

Description: This is the name of the database, either global database or student database.

Field Name: course
Value: Course ID
Example: cs100

Description: - Required for student database operations.
- For global database operations, enter the placeholder value xxxx.

Field Name: fieldsData_pair_list
Value: A double quote-enclosed list of field-data pairs in the form:

field_name=data_value.
Example: “WebCT ID=student1”

Description: - The field names must exist in the WebCT global database or student
database. The separator must be inserted between each of the field-data
pairs.

- For the global database, the optional fields Courses and Registered
Courses are available for adding and/or modifying courses and registered
courses to which a global user belongs. The values for these fields can be
a colon-separated list of course IDs for Courses or course names for
Registered Courses. For example,
Courses=cs100:psyc100:math100. If you also specify a user
type with the course, this is separated from the course ID by a semicolon,
for example, Courses=cs100;D:psyc100;TA. Note: The default
user type is (S)tudent.

- A user can be added as a primary designer or as a secondary designer.
The first WebCT ID added to the course as a designer becomes the
primary designer; every subsequent designer becomes a secondary
designer.

©2002 WebCT 14

Field Name: fieldsData_pair_list (cont.)
Description: Note: The following are reserved words in the fieldsData_pair_list:

- Login ID (this is old terminology, and is supported for backward
compatibility only. It has the same meaning as User ID).

- User ID (the User ID of a student in a course)
- Password (the password of the global user or the student)
- Global ID (this is old terminology, and is supported for backward

compatibility only. It has the same meaning as WebCT ID).
- WebCT ID (WebCT ID of a global user)
- First Name (first name of the global user or the student. It is one of the

reserved columns in both the global and student databases)
- Last Name (last name of the global user or the student. It is one of the

reserved columns in both the global and student databases)
- Courses (the list of WebCT courses for a global user). If you populate this

field through the API, the course must already exist on the WebCT server.
- Registered Courses (the list of courses maintained by the registrar for a

global user. These courses may or may not have a WebCT course.)
- Thumbprint (internal data and cannot be modified)
- LockPID (internal data and cannot be modified)
- #User Type (internal data. This can be modified through the API)
- #Email (internal data and cannot be modified)
- #Password Question (internal data and cannot be modified)
- #Password Answer (internal data and cannot be modified)
Note: Reserved words are case sensitive.

Field Name: separator
Value: Any alphanumeric string representing the separator between data pairs in the

fieldsData_pair_list.
Example: "," (comma)
Description: Delimiter used to separate data items. You must declare what value you will

be using as a delimiter for the operations add, delete, changeid, update, and
find.
Note: For the global database, the colon and semi-colon are not allowed as
separators.

Field Name: user_type
Value: user_type
Example: user_type

Description: Only used with the find operation on the global database; return value of
user_type is one of three users types, S,D,TA (for Student, Designer,
Teaching Assistant)

©2002 WebCT 15

Field Name: encrypted
Value: encrypted
Example: encrypted

Description: - Only used with the add, update, fileadd and fileupdate operations.
- The password must be encrypted using the standard UNIX DES

encryption method or the newly added or modified users may not be able
to access WebCT.

- Add to the end of the command line to indicate that the passwords are
passing in encrypted form.

FUNCTIONS

ADDING USERS
Users can be added to the global database or student databases. However, in general, you should add users to
the global database and use the Courses field to add them to each course. This method is simpler and
automatically links the WebCT ID to each User ID.

ADDING A SINGLE USER TO THE GLOBAL DATABASE
Operation = add
• The fieldsData_pair_list must include both the WebCT ID and Password fields.
• You can specify the user type (S for student, D for designer, TA for teaching assistant). If you

don’t specify a user type, the user type defaults to (S)tudent. If the user type is specified as
(D)esigner and there is no existing designer, the user is added as the primary designer. If there is
an existing designer, the user is added as secondary designer.

Syntax
add
<db> <course> <fieldsData_pair_list> <separator> [encrypted]

Example
Add a user named Justin Case to the global database as a designer for cs100; a teaching assistant for cs200; and
as a student in cs810:

Enter the command:
webctdb add global xxxx "WebCT ID=jcase,Password=1234,

First Name=Justin,Last Name=Case,Courses=cs100;D:cs200;TA:cs810;S" ","

ADDING A SINGLE USER TO THE STUDENT DATABASE
Operation = add
• The fieldsData_pair_list must include both the User ID and Password fields.

©2002 WebCT 16

Syntax
add
<db> <course> <fieldsData_pair_list> <separator> [encrypted]

Example
Add a user named Bailey Wick to the student database for course cs100:

Enter the command:
webctdb add student cs100 "User ID=bwick,Password=1234,

First Name=Bailey,Last Name=Wick" ","

ADDING MULTIPLE USERS TO THE GLOBAL DATABASE
Operation = fileadd
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is only the name of the file. A
file extension, such as .txt, is recommended.

• The file must be in plain text. The first line of the file must be the field names separated by the
separator value. The rest of the file contains the data, one record per line. Data should be in the
same order as the field names, separated by the separator value. There must be no spaces between
the data and the separators.

• If the user exists in the database, fileadd will send an error message to STDOUT. The user
record will not be changed; the process will skip to the next record in the file.

• An optional encrypted argument can be added at the end of the command line to indicate that
the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or the newly added or modified users may not be able to
access WebCT.

Syntax
fileadd
<db> <course> <filename> <separator> [encrypted]

Example
Add users to the global database from a text file named users.txt.

SAMPLE USERS.TXT FILE:
WebCT ID,Password,Last Name,First Name
jsmith,9876,Smith,John
jbrown,2345,Brown,Jane
bfawlty,8765,Fawlty,Basil
arigsby,5432,Rigsby,Arthur

Enter the command:
webctdb fileadd global xxxx users.txt “,”

©2002 WebCT 17

ADDING MULTIPLE USERS TO THE STUDENT DATABASE
Operation = fileadd
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is only the name of the file. A
file extension, such as .txt, is recommended.

• The file must be in plain text. The first line of the file must be the field names separated by the
separator string. The rest of the file contains the data, one record per line. Data should be in the
same order as the field names, separated by the separator value. There must be no spaces between
the data and the separators.

• If the user exists in the database, fileadd will send an error message to STDOUT. The user
record will not be changed in the database; the process will skip to the next record in the file.

• An optional encrypted argument can be added at the end of the command line to indicate that
the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or the newly added or modified users may not be able to
access WebCT.

Syntax
fileadd
<db> <course> <filename> <separator> [encrypted]

Example
Add students whose records are stored in the file class.txt to the course cs100.

SAMPLE CLASS.TXT FILE
User ID,Password,Last Name,First Name,
jsmith,9876,Smith,John
jbrown,2345,Brown,Jane
bfawlty,8765,Fawlty,Basil
arigsby,5432,Rigsby,Arthur

Enter the command:
webctdb fileadd student cs100 class.txt “,”

©2002 WebCT 18

UPDATING USERS

UPDATING A SINGLE USER IN THE GLOBAL DATABASE
Operation = update
• The fieldsData_pair_list must include the WebCT ID.
• Empty fields are not changed.
• If the field value is “_DELETE_”, the value will be set to null
• The Standard API behavior when updating the Courses and Registered Courses field is to always

overwrite the field. If you supply a Courses field in your update, the user’s WebCT ID will be
linked to the courses that you supply, and unlinked from any pre-existing courses that you do not
supply.

• You can update a user type by specifying a different one.
• update cannot be used to modify quiz scores.
• An optional encrypted argument can be added at the end of the command line to indicate that

the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or updated users may not be able to access WebCT.

Syntax
update
<db> <course> <fieldsData_pair_list> <separator> [encrypted]

Example
For the student Justin Case, password 1234, with the following courses: cs100(D) cs200(TA) cs810(S), update
the password in the global database and update the courses so that only cs100 remains.

Enter the command:
webctdb update global xxxx "WebCT ID=jcase,Password=abcd,

Courses=cs100" ","

UPDATING A SINGLE USER IN THE STUDENT DATABASE
Operation = update
• The fieldsData_pair_list must include the User ID field.
• Empty fields are not changed.
• If the field value is “_DELETE_”, the value will be set to null
• The Standard API behavior when updating the Courses and Registered Courses field is to always

overwrite the field. If you supply a Courses field in your update, the user’s WebCT ID will be
linked to the courses that you supply, and unlinked from any pre-existing courses that you do not
supply

• You can update a user type by specifying a different one.
• update cannot be used to modify quiz scores.
• An optional encrypted argument can be added at the end of the command line to indicate that

the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or the updated users may not be able to access WebCT.

Syntax
update

©2002 WebCT 19

<db> <course> <fieldsData_pair_list> <separator> [encrypted]

Example
To update the student Bailey Wick, first name, last name, and password of password “1234”.

Enter the command:
webctdb update student cs100 "User ID=bwick,Password=abcd,

First Name=Bailie,Last Name=Wicke" ","

UPDATING MULTIPLE USERS IN THE GLOBAL DATABASE
Operation = fileupdate
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is the name of the file. A file
extension, such as .txt, is recommended.

• The file must be in plain text. The first line of the file must be the field names separated by the
separator. The rest of the file contains the data, one record per line. Data should be in the same
order as the field names, separated by the separator value. There must be no spaces between the
data and the separators.

• An optional encrypted argument can be added at the end of the command line to indicate
that the passwords are passing in an encrypted form. The passwords should be encrypted using
the standard UNIX DES encryption method or the newly added or modified users may not be
able to access WebCT.

• fileupdate will add a user if they do not exist in the database.
• Empty fields will not be changed.
• For fileupdate, if the value field value is “_DELETE_”, the value will be set to null
• The Standard API behavior when updating the Courses and Registered Courses field is to

always overwrite the field. If you supply a Courses field in your update, the user’s WebCT ID
will be linked to the courses that you supply, and unlinked from any pre-existing courses that you
do not supply

Syntax
fileupdate
<db> <course> <filename> <separator> [encrypted]

Example
Change the names of a group of users whose updates are contained in the file updates.txt.

SAMPLE UPDATES.TXT FILE:
WebCT ID,Last Name,First Name
jsmith,Smith,Jerry
jbrown,Brown,Janet
bfawlty,Fawlty,Brian
arigsby,Rigsby,Alan

Enter the command:

©2002 WebCT 20

webctdb fileupdate global xxxx updates.txt “,”

UPDATING MULTIPLE USERS IN THE STUDENT DATABASE
Operation = fileupdate
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is the name of the file. A file
extension, such as .txt, is recommended.

• The file must be in plain text. The first line of the file must be the field names separated by the
separator. The rest of the file contains the data, one record per line. Data should be in the same
order as the field names, separated by the value of the separator. There must be no spaces between
the data and the separators.

• An optional encrypted argument can be added at the end of the command line to indicate
that the passwords are passing in an encrypted form. The passwords should be encrypted using
the standard UNIX DES encryption method or the newly added or modified users may not be able
to access WebCT.

• fileupdate will add a student or user if they do not already exist in the database.
• Empty fields will not be changed.
• For fileupdate, if the field value is “_DELETE_”, the value will be set to null
• fileupdate overwrites the data fields being changed; it does not append.

Syntax
fileupdate
<db> <course> <filename> <separator> [encrypted]

Example
Change the names of students in the course cs100 using updates contained in the file updates.txt.

SAMPLE UPDATES.TXT FILE:
User ID,Last Name,First Name
jsmith,Smith,Jerry
jbrown,Brown,Janet
bfawlty,Fawlty,Brian
arigsby,Rigsby,Alan

Enter the command:
webctdb fileupdate student cs100 updates.txt “,”

©2002 WebCT 21

DELETING USERS

DELETING A SINGLE USER FROM THE GLOBAL DATABASE
Operation = delete
• global_id is the ID of the user to be deleted from the global database.

Note: Depending on the User Data setting in the administrator interface, the student’s data may also
be deleted from the student database.

Syntax
delete
<db> <course> <WebCT_ID | user_id>

Example
Delete the global database record for the user whose WebCT ID is jcase. Note: The student will be denied
access to all the courses listed in their global database record. Depending on the User Data setting in the
administrator interface, the student’s data may also be deleted from the student database.

Enter the command:
webctdb delete global xxxx jcase ","

DELETING A SINGLE USER FROM THE STUDENT DATABASE
Operation = delete
• user_id is the ID of the student to be deleted from the student database.

Example
Delete the record for the student in the cs100 course whose User ID is bwick.

Enter the command:
webctdb delete student cs100 bwick ","

DELETING MULTIPLE USERS FROM THE GLOBAL DATABASE
Operation = filedelete
• filename is the either a full absolute path or a relative path from the current directory to the file.

For example, if the file is located in the current directory, then filename is simply the name of the
file. A file extension, such as .txt, is recommended.

• If the user does not exist in the database, filedelete will send an error message to
STDOUT. The process will skip to the next record in the file.

©2002 WebCT 22

Syntax
filedelete
<db> <course> <filename>

Example
Delete users from the global database using a text file deleteusers.txt.

SAMPLE DELETEUSERS.TXT FILE:
jsmith
jbrown
bfawlty
arigsby

Enter the command:
webctdb filedelete global xxxx deleteusers.txt “,”

DELETING MULTIPLE USERS FROM THE STUDENT DATABASE
Operation = filedelete
• filename is the either a full absolute path or a relative path from the current directory to the file.

For example, if the file is located in the current directory, then filename is simply the name of the
file. A file extension, such as .txt, is recommended.

• If the user does not exist in the database, filedelete will send an error message to STDOUT
The process will skip to the next record in the file.

Syntax
filedelete
<db> <course> <filename>

Example
Delete students whose records are stored in the file delete.txt from the course cs100.

SAMPLE DELETE.TXT FILE:
jsmith
jbrown
bfawlty
arigsby

Enter the command:

webctdb filedelete student cs100 delete.txt

©2002 WebCT 23

FINDING USERS

FINDING A USER IN THE GLOBAL DATABASE
Operation = find
• WebCT ID is the WebCT ID of the user in the global database.
• Separator is the separator of the output data, which is sent to STDOUT in the same format as the

fieldsData_pair_list.
• If the field name user_type is specified in a global database query, the user type (S,D,TA) will

be included in the result.

Syntax
find
<db> <course> <WebCT_ID | user_id> <separator> [user_type]

Example
Find the global database record, including user type, for the user with the WebCT ID jcase.

Enter the command:

webctdb find global xxxx jcase "," user_type

If the command is successfully executed:

Success: WebCT ID=jcase,First Name=Justin,
Last Name=Case,Courses=cs100;D:cs200;TA:cs810;S

FINDING A USER IN THE STUDENT DATABASE
Operation = find
• user_id is the User ID of the student in the student database.
• Separator is the separator of the output data, which is sent to STDOUT in the same format as the

fieldsData_pair_list.

Syntax
find
<db> <course> <WebCT_ID | user_id> <separator> [user_type]

Example
Find the student in the cs100 course whose User ID is bwick.

Enter the command:

webctdb find student cs100 bwick ","

If the command is successfully executed:

©2002 WebCT 24

Success:First Name=Bailie,Last Name=Wicke,User ID=bwick

CHANGING WEBCT IDS

CHANGING A SINGLE USER’S WEBCT ID
Operation = changeid
• changeid can only be used on the global

database.
• old_id is the WebCT ID to be changed.
• new_id is the new WebCT ID.

Syntax
changeid
<db> <course> <fieldsData_pair_list> <separator>

Example
Change Justin Case’s WebCT ID from jcase to jicase.

Enter the command:

webctdb changeid global xxxx "Old ID=jcase,New ID=jicase” ","

CHANGING MULTIPLE USERS’ WEBCT IDS
Operation = filechangeid
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is simply the name of the
file. A file extension, such as .txt, is recommended.

• The first line of the data file should be the field names Old ID and New ID, separated by the
separator_file string. The rest of the file contains the data, one record per line. Data should be in
the same order as the field names, separated by the separator value. Note: The field name Old ID
does not exist in the databases.

• If the user does not already exist in the database, filechangeid will send an error message
to STDOUT The process will skip to the next record in the file.

Syntax
filechangeid
<db> <course> <filename> <separator>

Example
Change the WebCT IDs of a group of users contained in a file changeusers.txt.

SAMPLE CHANGEUSERS.TXT FILE:
Old ID,New ID
jsmith,jtsmith
jbrown,jkbrown

©2002 WebCT 25

bfawlty,befawlty
arigsby,aurigsby

Enter the command:

webctdb filechangeid global xxxx changeusers.txt “,”

WEB-BASED INTERFACE (SERVE_WEBCTDB)
The Web-based Standard API allows data in the WebCT global database and student databases to be queried
and manipulated by remote servers. For example, the Web-based interface could be used to make changes to
global database records based on registration changes driven by events on another system. It could also be used
to create a custom administrator’s interface.

Implementing the Web-based interface involves two steps.

1. Setting the API shared secret value
2. Developing a program to generate an HTTP request

Step 1 can be carried out by a WebCT administrator who has basic knowledge of the WebCT file system. Step
2 requires an experienced Web developer.

1. SETTING THE API SHARED SECRET VALUE
The shared secret value is a key component of allowing external servers to automatically sign on users to
WebCT. The shared secret value is used to create a Message Authentication Code (MAC) from the submitted
data. When WebCT receives a request, it decodes the shared secret value from MAC using the submitted data.
If the decoded shared secret value is the same as the one stored locally, the request is considered authentic and
is processed. You can set the shared secret value by performing the following steps:

1. Using a text editor, open the file
<webct_install_directory>/webct/webct/generic/api/api_secret

2. Change the first line of the file to your desired secret. (For security reasons, the default value
“SECRET” does not work). You should note the following about the shared secret value.

• It cannot exceed 256 characters.
• It cannot contain tab, or other control characters.
• It should not contain end-of-line characters. Note: By default, the UNIX text editor vi and pico

automatically add end-of-line characters. Check the file size to ensure that the number of characters
equals the number of bytes.

• It is case-sensitive
3. Save the file.

Because the shared secret value has such a critical role, choose it carefully.

Tips for
Shared
Secrets

¾ Make your shared secret value difficult to guess by making it
lengthy and by including a combination of numbers and upper and
lower case characters.

¾ Change your shared secret value at regular intervals.
¾ On remote systems, place shared secret values in secure directories.

©2002 WebCT 26

2. DEVELOPING A PROGRAM TO GENERATE AN HTTP REQUEST
Developing a program to generate an http request is the most substantive part of implementing the Web-based
standard API. The program must:

• Generate a Message Authentication Code (MAC)
• Assemble a properly formatted http request
• Process any data being returned

CREATING MESSAGE AUTHENTICATION CODES
Because the Web interfaces to the Standard API reside in public directories, Message Authentication Codes
(MACs) are required to ensure that only messages from trusted servers are processed.

WebCT provides three options to assist you in creating MACs:

1. A C function that you may integrate and compile into your C program
2. An executable file to which you make a system call from your program
3. Instructions for generating a MAC using a language of your choice

OPTION 1: USING THE GET_AUTHENTICATION C FUNCTION
The get_authentication function generates a MAC from an array of data and a shared secret value.

The source code necessary to use the C function is located in
<webct_install_directory>/webct/webct/generic/api/security/

A test program, which contains a Makefile for UNIX based systems, is also provided.

The file api_security.c contains the get_authentication function.

©2002 WebCT 27

get_authentication Generates a MAC from an array of data and a shared
secret value

Syntax char* get_authentication (int i, char* data[], char* secret,

char* encrypted_data)

Returns 32 byte alphanumeric MAC

Parameter Description

i The number of elements in the array data[].

data Array of all values to be used in generating the MAC.

The data should not be URL encoded.

secret The shared secret value.

encrypted_data The memory location of the MAC. It must be at least 32 bytes

long.

OPTION 2: USING THE MESSAGE AUTHENTICATION CODE GENERATOR (GET_MD5 EXECUTABLE)
The Message Authentication Code generator generates a MAC from a shared secret value and a string
consisting of the IMS ID, a timestamp, and a destination URL.

Use the Message Authentication Code generator (an executable called get_md5) if you are not working in the C
language, or do not want to create a function to create the MAC. You can make a system call to get_md5 from
your program and have the authentication string returned. The get_md5 executable has no dependencies on
WebCT and can be copied to other servers as required. If you need a get_md5 executable for an operating
system other than the one your WebCT server is running on, you can download several pre-compiled binaries
for other operating systems from http://download.webct.com

get_md5

Generates a MAC from a shared secret value and
a string to be encrypted (consisting of the IMS ID, a
timestamp, and a destination URL).

Syntax

get_md5 <shared_secret_filename>
<string_to_encrypt>

Returns 32 byte alphanumeric MAC

Parameter Description

shared_secret_filename The filename where the shared secret value is stored.

string_to_encrypt The string to be encrypted. The string should not be
URL encoded.

An example of using the Message Authentication Code generator to generate a MAC from a shared secret value
and the string described above follows.

©2002 WebCT 28

Enter the command:
get_md5 api_secret 2A508D8EB5EB2D596DD937E2B8835100 982187291 http://webct.institution.edu:8900/
SCRIPT/ENGL100-001/scripts/serve_home

OPTION 3: CREATE A MAC USING A LANGUAGE OF YOUR OWN CHOICE
If you want to create MACs within your code, (e.g. you are writing your code in Java and don’t want to make a
system call), you can create a MAC with the following procedure:

1. Calculate the total of the ASCII values of all the characters in the data.

2. Convert the total of the ASCII values into a string.

3. Append the shared secret value.

4. Encrypt the string into a 16-byte string using the MD5 algorithm.

5. Convert the 16-byte string into a 32-byte alphanumeric string to make it URL-friendly.

ASSEMBLING THE HTTP REQUEST
There are several options for assembling an http request to the Web-based standard API. The option you choose
will be based on your programming language of choice, and how you want to communicate with the Web
server. You can issue API commands in several ways, including:

• Socket programming directly with the Web server
• Using a library which simulates a user agent
• Assembling a GET request and refreshing a browser window with the query string.

In Perl, you have the option of communicating directly with the Web server using the IO::Socket module
included with most basic distributions, or installing and using a module such as LWP which simulates a user
agent (e.g. a Web browser). Similar modules are available for most popular languages such as C or Java.

If you wish to refresh a user’s browser window with a query string, you can do so using the “Location” http
header, HTML meta tags, or using JavaScript’s location.replace method.

SYNTAX
The general syntax for a Web-based request to the Standard API is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=<operation>&DB=<db>
&COURSE=<course_id | placeholder>&AUTH=<32_byte_mac>
[&User%20ID=<user_id> | &WebCT%20ID=<webct_id>][&IMS%20ID=<ims_id>]
[&USER%20TYPE=<1_or_0>][&ENCRYPTED=<1_or_0>][&field1=<field1>]
[&fieldn=<fieldn>]HTTP/1.0

where:

Key Value Description
add Adds a user to the global or student database.

If the user already exists, an error is returned.

OPERATION

update Updates an existing user in the global or student database.
If the user does not exist, this operation returns an error.

©2002 WebCT 29

Key Value Description

delete Deletes a single user from the global or student database.

find Finds the user record based on the User ID (if searching the

student database) or WebCT ID (if searching the global
database).

changeid Changes a WebCT ID.

homearea_xml Exports a user’s myWebCT in XML format.

Notes:

The Standard API can accept GET or POST requests. POST requests can put their key/value pairs in the query
string or in the body of the message in the appropriate format (see the W3C HTML 4.01 Specification at
http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4)
Requests must be URL encoded (e.g. spaces should be replaced with %20)
Key/value pairs may appear in any order
Syntax examples represent http requests directly to the Web server. If you are using a programming module to
create your requests (such as LWP in Perl), many details of the request may be transparent to you.

FUNCTIONS

ADDING USERS

ADDING A USER TO THE GLOBAL DATABASE
Add operations have the following syntax:

<GET | POST> /webct/public/serve_webctdb?OPERATION=add&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&WebCT%20ID=<webct_id>
&Password=<password>[&field1=<field1>][&fieldn=<fieldn>]
[&ENCRYPTED=<1_or_0>]HTTP/1.0

where:

Key Value Description
COURSE Any alphanumeric

string
This is a required placeholder value. You may use any
alphanumeric value, but ensure that you use it in the
calculation of the MAC.

AUTH 32 byte MAC This is the 32 byte hexadecimal string generated using

the get_authentication C code, the Message
Authentication Code (MAC) generator, or using custom
code.

©2002 WebCT 30

Key Value Description
WebCT ID WebCT ID The WebCT ID of the user being added.

WebCT IDs can contain alphanumeric strings,
underscores, and periods.

Password Password The password to be used for the user being added.

Passwords can consist of any alphanumeric string. The
API does not enforce minimum password lengths.

Field1
…
Fieldn
(optional)

Data associated with the
column specified as a
key.

Any of the default columns within the global database
(First Name, Last Name, Courses, Registered Courses)
can be modified using the syntax ColumnName=Value.
Administrator-created columns can also be modified
using this method.

1 Enables pre-encrypted password support. With the

encrypted argument set to 1, you should pass passwords
encrypted with the standard UNIX DES method when
using this setting.

ENCRYPTED
(optional)

0 (default) Disables pre-encrypted password support (default). In
this mode, passwords should be submitted as clear-text.

Note: The Courses field uses a colon as a delimiter between courses, and a semicolon as a delimiter between
user types. Thus the string “HKIN100;D:HKIN200;TA:HKIN300;S” indicates that a user is to be added to
HKIN100 as a designer, HKIN200 as a teaching assistant and HKIN300 as a student. If no user type is
specified, WebCT will default to adding the user as a student. Similarly, the Registered Courses field is colon
delimited. See the System Administrators Guide for more information on the Courses and Registered courses
field.

Example
Add a user to the global database, and enroll them in the course ENGL100 as a designer, ENGL560 as a
student, and ENGL477 as a teaching assistant.

GET /webct/public/serve_webctdb?OPERATION=add&DB=global&COURSE=xxxx
&AUTH= EB1A09F0BB299C23E99A5978587F49C1&WEBCT%20ID=pinto
&PASSWORD=an1mal&FIRST%20NAME=Larry&LAST%20NAME=Kroger&
COURSES=ENGL100;D:ENGL560:ENGL477;TA HTTP/1.0

ADDING A USER TO THE STUDENT DATABASE
Students can be added to the student database using the following syntax:

<GET | POST> /webct/public/serve_webctdb?OPERATION=add&DB=student
&COURSE=<course_id>&AUTH=<32_byte_mac>&User%20ID=<user_id>
&Password=<password>[&field1=<field1>][&fieldn=<fieldn>]
[&ENCRYPTED=<1_or_0>]HTTP/1.0

©2002 WebCT 31

where:

Key Value Description
COURSE WebCT Course ID The WebCT course to which the user will be added.

AUTH 32 byte MAC This is the 32 byte hexadecimal string generated

using the get_authentication C code, the get_md5
program, or using custom code.

User ID User ID The User ID of the user being added.

Password Password The password to be used for the user being added.

The API does not enforce minimum password
lengths.

Field1
…
Fieldn
(optional)

Data associated with the
column specified as a
key.

Any of the default columns within the global database
(First Name, Last Name, Courses, Registered
Courses) can be modified using the syntax
ColumnName=Value. Administrator-created columns
can also be modified using this method.

1 Enables pre-encrypted password support. With the

encrypted argument set to 1, you should pass
passwords encrypted with the standard UNIX DES
method when using this setting

ENCRYPTED
(optional)

0 (default) Disables pre-encrypted password support (default). In
this mode, passwords should be submitted as clear

Example
Add a student to the student database of the course ENGL588. In addition, add data to a pre-existing column
“StudentNumber” (This is a custom column created by the designer). Because this user is being added to the
student database only, they are considered an “orphan user” until a WebCT ID is associated with this User ID:

GET /webct/public/serve_webctdb?OPERATION=add&DB=student
&COURSE=ENGL588&AUTH=EB1A09F0BB299C23E99A5978587F49C1
&User%20ID=flounder&Password=an1mal&First%20Name=Kent
&Last%20Name=Dorfman&StudentNumber=123456789 HTTP/1.0

UPDATING USERS

UPDATING A USER IN THE GLOBAL DATABASE
Updating users in the global database is very similar to adding users. The syntax is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=update&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&WebCT%20ID=<webct_id>
[&FIELD1=<field1>][&FIELDN=<fieldn>][&ENCRYPTED=<1_or_0>]HTTP/1.0

where:

©2002 WebCT 32

Key Value Description
COURSE Any alphanumeric

string
This is a required placeholder value. You may use any
alphanumeric value, but ensure that you use it in the
calculation of the MAC.

AUTH 32 byte MAC This is the 32 byte hexadecimal string generated using

the get_authentication C code, the get_md5 program, or
using custom code.

WebCT ID Existing WebCT ID The WebCT ID of the user being added.

WebCT IDs may contain alphanumeric strings,
underscores, and periods.

Password
(optional)

Password The password to be used for the user being updated. The
API does not enforce minimum password lengths.

Data associated with the
column specified as a
key.

Any of the default columns within the global database
(First Name, Last Name, Courses, Registered Courses)
can be modified using the syntax ColumnName=Value.
Administrator-created columns can also be modified
using this method.

Field1
…
Fieldn
(optional)

DELETE The “_DELETE_” keyword deletes the data from the
field specified in the key and sets it to undefined.

1 Enables pre-encrypted password support. With the

encrypted argument set to 1, you should pass passwords
encrypted with the standard UNIX DES method when
using this setting

ENCRYPTED
(optional)

0 (default) Disables pre-encrypted password support (default). In
this mode, passwords should be submitted as clear-text.

Notes:

• The User Data setting in the WebCT Administrator interface affects how updating the Courses column
will modify the student database when unlinking WebCT IDs from User IDs. If the User Data setting is
selected, user data is left in the student database.

• The Standard API always overwrites the Courses and Registered Course fields when updating. If you
supply a Courses field in your update, the user’s WebCT ID will be linked to the courses that you
specify, and unlinked from any pre-existing courses that you do not specify.

• The Courses field uses a colon as a delimiter between courses, and a semicolon as a delimiter between
user types. Thus the string “HKIN100;D:HKIN200;TA:HKIN300;S” indicates that a user is to be
added to HKIN100 as a designer, HKIN200 as a teaching assistant and HKIN300 as a student. If no
user type is specified, WebCT will default to adding the user as a student. Similarly, the Registered
Courses field is colon delimited. See the WebCT 3.7 Campus Edition System Administrator’s Guide for
more information on the Courses and Registered courses field.

©2002 WebCT 33

Example
A user is currently enrolled in three courses: ENGL101 as a designer, ENGL560 as a student, and ENGL477 as
a teaching assistant. This example unlinks the WebCT ID from the User ID for ENGL 560 and ENGL 477, and
adds the WebCT ID to the course ENGL101 as designer.

GET /webct/public/serve_webctdb?OPERATION=update&DB=global&COURSE=xxxx&AUTH=EB1A
09F0BB299C23E99A5978587F49C1&WebCT%20ID=pinto&Courses=ENGL101;D:ENGL101;D
HTTP/1.0

The user is unlinked from the two courses because API updates always overwrite fields.

UPDATING A USER IN THE STUDENT DATABASE
Updating students in the student database is very similar to adding students. The syntax is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=update&DB=student
&COURSE=<course_id>&AUTH=<32_byte_mac>&User%20ID=<user_id>
[&field1=<field1>][&fieldn=<fieldn>][&ENCRYPTED=<1_or_0>]HTTP/1.0

where:

Key Value Description
COURSE WebCT Course ID The WebCT course in which the user’s data is

updated.

AUTH 32 byte MAC This is the 32 byte hexadecimal string generated

using the get_authentication C code, the get_md5
program, or using custom code.

User ID User ID The User ID of the user being added.

Password
(optional)

Password The password to be used for the user being added.
The API does not enforce minimum password
lengths.

Data associated with the
column specified as a
key.

Any of the default columns within the global database
(First Name, Last Name, Courses, Registered
Courses) can be modified using the syntax
ColumnName=Value. Administrator-created columns
can also be modified using this method.

Field1
…
Fieldn
(optional)

DELETE The “_DELETE_” keyword deletes the data from the
field specified in the key and sets it to undefined.

ENCRYPTED
(optional)

1 Enables pre-encrypted password support. With the
encrypted argument set to 1, you should pass
passwords encrypted with the standard UNIX DES
method when using this setting.

©2002 WebCT 34

Key Value Description
 0 (default) Disables pre-encrypted password support (default). In

this mode, passwords should be submitted as clear-
text.

Example
In the following example, a student record is updated with information for the instructor-added numeric
columns “Student Participation" and "Bonus" in the course MATH100.

GET webct/public/serve_webctdb?OPERATION=update&DB=student&

COURSE=MATH100&AUTH=EB1A09F0BB299C23E99A5978587F49C1
&User%20ID=otter&Student%20Participation=100&Bonus=34 HTTP/1.0

DELETING USERS

DELETING A USER FROM THE GLOBAL DATABASE
The syntax for deleting a user from the global database is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=delete&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&WebCT%20ID=<webct_id>
HTTP/1.0

where:

Key Value Description
COURSE Any alphanumeric string This is a required placeholder value. You can use any

alphanumeric value, but ensure that you use it in the
calculation of the MAC.

AUTH 32 byte MAC This is the 32 byte hexadecimal string generated using the

get_authentication C code, the get_md5 program, or using
custom code.

WebCT ID WebCT ID The WebCT ID of the user being deleted.

Note: The User Data setting in the WebCT Administrator interface affects whether user data is left in a course
when a user record is deleted from the global database. If the User Data setting is selected, user data is left in
the student database.

Example
In this example, the user record for the user with the WebCT ID “neidermeyer” is deleted from the global
database:

GET /webct/public/serve_webctdb?OPERATION=delete&DB=global&COURSE=xxxx
&AUTH=EB1A09F0BB299C23E99A5978587F49C1&WebCT%20ID=neidermeyer
HTTP/1.0

©2002 WebCT 35

DELETING A USER FROM THE STUDENT DATABASE
The syntax for deleting a student from the student database is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=delete&DB=student
&COURSE=<course_id>&AUTH=<32_byte_mac>&User%20ID=<user_id>
HTTP/1.0

where:

Key Value Description
COURSE WebCT Course ID The WebCT course from which the user will be deleted.

AUTH 32 byte MAC This is the 32 byte hexadecimal string generated using the

get_authentication C code, the get_md5 program, or using custom
code.

User ID User ID The User ID of the user being deleted.

Example
In this example, the student with the User ID “stork” is deleted from the course PSYCH204-23:

GET /webct/public/serve_webctdb?OPERATION=delete&DB=student
&COURSE=PSYCH204-23&AUTH=EB1A09F0BB299C23E99A5978587F49C1
&User%20ID=stork HTTP/1.0

FINDING USERS

FINDING A USER IN THE GLOBAL DATABASE
To find a user’s global database record, the following syntax is used:

<GET | POST> /webct/public/serve_webctdb?OPERATION=find&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&WebCT%20ID=<webct_id>
[USER%20TYPE=<1_or_0>]HTTP/1.0

where:

Key Value Description
OPERATION find Finds the user record for a given WebCT ID

COURSE Any alphanumeric string This is a required placeholder value. You can use any

alphanumeric value, but ensure that you use it in the
calculation of the MAC.

AUTH 32_byte_mac This is the 32 byte hexadecimal string generated using

the get_authentication C code, the get_md5 program,
or using custom code.

WebCT ID WebCT_ID The WebCT ID of the record you want to display.

©2002 WebCT 36

Key Value Description
1 With the User Type option enabled, the global database

record generated includes user type information that
indicates whether a user is a designer, student, or
teaching assistant for the course.

USER TYPE
(optional)

0 (default) No user type information is generated.

Example
In this example, the complete record including user type information is returned for the user with the WebCT
ID “pinto”, who is enrolled in three courses.

GET /webct/public/serve_webctdb?OPERATION=find&DB=global&COURSE=xxxx
&AUTH=EB1A09F0BB299C23E99A5978587F49C1&WebCT%20ID=pinto
&USER%20TYPE=1 HTTP/1.0

The Web server returns the following, not including http headers:

Success: WebCT ID=pinto,First Name=Larry,Last Name=Kroger,Courses=
ENGL100;D:ENGL560;S:ENGL477;TA

FINDING A USER IN THE STUDENT DATABASE
To find a student’s student database record, the following syntax is used:

<GET | POST> /webct/public/serve_webctdb?OPERATION=find&DB=student
&COURSE=<course_id>&AUTH=<32_byte_mac>&User%20ID=<user_id> HTTP/1.0

where:

Key Value Description
OPERATION find Finds a user’s record from a WebCT ID.

COURSE Any alphanumeric string The course that you are searching.

AUTH 32_byte_mac This is the 32 byte hexadecimal string generated using

the get_authentication C code, the get_md5 program,
or using custom code.

User ID User ID The User ID of the record you wish to display.

Example
In this example, a complete student database record is displayed for the user with User ID “chip” in the course
“HKIN455”:

GET /webct/public/serve_webctdb?OPERATION=find&DB=student
&COURSE=HKIN455=AUTH=EB1A09F0BB299C23E99A5978587F49C1&User%20ID=chip
HTTP/1.0

The Web server returns the following, not including http headers:

©2002 WebCT 37

Success: First Name=Chip,Last Name=Diller,User ID=chip,Quiz1=36,Assignment1=10

CHANGING WEBCT IDS

CHANGING A USER’S WEBCT ID
To change a WebCT ID for a user, use the syntax:

<GET | POST> /webct/public/serve_webctdb?OPERATION=changeid&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&Old%20ID=<old_webct_id>
&New%20ID=<new_webct_id> HTTP/1.0

where:

Key Value Description
OPERATION changid Changes the WebCT ID of a user

COURSE Any

alphanumeric
string

This is a required placeholder value. You can use any
alphanumeric value, but ensure that you use it in the calculation
of the MAC.

AUTH 32_byte_mac This is the 32 byte hexadecimal string generated using the

get_authentication C code, the get_md5 program, or using
custom code.

Old ID Old WebCT ID The WebCT ID of the record you want to change.

New ID New WebCT

ID
The WebCT ID that you want to assign to the user.

Example
In this example, the WebCT ID “flounder” is changed to “dorfmank”:

GET /webct/public/serve_webctdb?OPERATION=changeid&DB=global&COURSE=xxxx
&AUTH=EB1A09F0BB299C23E99A5978587F49C1&Old%20ID=flounder
&New%20ID=dorfmank HTTP/1.0

The Web server returns the following, not including http headers:
Success:

©2002 WebCT 38

SECTION 2: CAMPUS EDITION

©2002 WebCT 39

CHAPTER 1
USER AUTHENTICAT ION

WebCT 3.7 Campus Edition (CE) provides two major methods for user authentication:

Browser Based
Authentication

• Users are authenticated through a browser dialog box that prompts
for a username and password. The username and password are
verified against WebCT internal databases. If the user is
authorized, a Basic Authentication Header is provided. Subsequent
page accesses to WebCT are authorized according to the browser
header.

• This authentication method is used in previous versions of
WebCT.

Ticket Based
Authentication

• Users are authenticated through a logon page that prompts for a
username and password. The username and password are verified
against either WebCT internal databases or against an external
password database. If the user is authenticated, the user is issued a
browser cookie that serves as a ticket. Subsequent page accesses to
WebCT are authorized according to the ticket.

• Institutions that choose ticket-based authentication have the option
of implementing automatic signon to WebCT. With this feature
implemented, institutions that have portal solutions or other secure
environments can create a seamless environment for users by pre-
authenticating them into WebCT.

CH O O S I N G AN AU T H E N T I C A T I O N ME T H O D
Many of the features of WebCT 3.7 CE require ticket-based authentication, including:

External password database authentication using LDAP, Kerberos, Windows 2000 Domain Controller, or a
custom implementation

• Logout
• Server lockdown
• Automatic signon
• Session timeout
• Customizable logon page

Browser based authentication is primarily provided in WebCT 3.7 as a legacy option. Choose this method of
authentication if:

• Your institution has an information technology policy forbidding the use of applications that
employ browser cookies.

• It is critical that the user interface of WebCT remain the same as previous versions.

©2002 WebCT 40

BROWSER BASED AUTHENTICATION PROCESS
Browser-based authentication has served as the standard authentication method for all previous versions of
WebCT. When a user a requests a URL, authentication of the user occurs as follows:

1. The Web server checks to see if the requested URL requires authorization.

2. If none is required (e.g., a user requests a course Welcome Page), then the Web server delivers the page
to the browser.

3. If authorization is required, the Web server checks to see if the user has already provided a username
and password by checking to see if a valid Basic Authentication Header was provided in the request. If
the header is valid, the page is delivered.

4. If the Basic Authentication Header is invalid, or no header is provided, the user is prompted with a
username and password dialog box. The cycle is then repeated.

TICKET BASED AUTHENTICATION PROCESS
When a user requests a URL, authentication of the user occurs as follows:

1. The Web server checks to see if the requested URL requires authorization.

2. If none is required, the Web server delivers the page to the browser.

3. If authorization is required, WebCT checks for a valid ticket.

4. If a valid ticket is found (i.e. the user has been authenticated and is authorized for the resource), the
page is delivered to the browser.

5. If a ticket is not found, a logon form is delivered to the browser. The user submits the form and WebCT
authenticates the user, issuing their browser a cookie. The URL is re-requested and the cycle repeats.

HOW WEBCT GENERATES TICKETS
WebCT tickets (in the form of browser cookies) contain the following information:

• Username
• Encrypted Password (DES encryption)
• Timestamp (UNIX Epoch format)
• Message Authentication Code (MAC)

The MAC is generated in three steps:

1. The username, encrypted password, timestamp, user agent information (if sent),
and a shared secret value are concatenated.

2. The concatenated string is encrypted with the MD5 algorithm.

3. The encrypted string is encrypted a second time with the MD5 algorithm.

©2002 WebCT 41

IM P L E M E N T I N G T I C K E T BA S E D AU T H E N T I C A T I O N
With ticket-based authentication, you can use one or more authentication sources. WebCT supports the
following authentication sources:

• WebCT’s internal database (default)
• LDAP
• Kerberos
• Windows 2000 Domain Controller
• a custom authentication source.

CHOOSING AN AUTHENTICATION SOURCE
The authentication source(s) that you choose should be based on what your institution has already
implemented. If your institution is using a centralized password management or single signon solution that is
not directly supported, you may want to consider a custom implementation using WebCT’s open source
authentication code, written in C. For more information on custom authentication, see the section Implementing
Custom Authentication.

The following table describes each type of authentication source.

WebCT Internal
Database

• This is the best option for institutions that do not have a single signon
solution.

• This is the easiest option to deploy as there are no external systems to
manage.

LDAP • This is the open standard for providing directory services such as email

addresses, telephone numbers, addresses, etc. to the Internet.
• Many institutions have discovered that LDAP can also serve as an

authentication database as part of a single signon environment.
• LDAP is not a true authentication source, so it lacks many of the features

seen in purpose-built authentication sources.

Kerberos/Windows
2000 Domain
Controller

• Kerberos is an authentication system that enables two parties to exchange
private information across a network. A unique key, called a ticket, is
assigned to each user who logs on to the network.

Custom
Authentication

• If your institution uses a single signon solution that is not directly
supported, (e.g. Radius, IMAP), your institution can modify WebCT’s open
source authentication code by using the WebCT Open Authentication Kit.

• To obtain the WebCT Open Authentication Kit (WOAK), contact your
account representative.

• You will need an experienced C programmer to write the authentication
function.

USING ONE AUTHENTICATION SOURCE
1. From the Admin toolbar, click Server Mgmt. The Server Mgmt toolbar appears.

2. From the Server Mgmt toolbar, click Settings. The Administrator Settings screen appears.

3. Under User Authentication, select Use ticket based authentication.

©2002 WebCT 42

4. Choose whether the Logout link should appear in the course Menu Bar:

• To display the Logout link, select Display Logout link in course Menu Bar.
• To hide the Logout link, deselect Display Logout link in course Menu Bar. Note: If you run

WebCT in a framed environment (such as a portal) where a logout link or "Return to Portal" link
already exists, you may prefer to hide the Logout link.

5. In the Ticket shared secret value text box, either leave the shared secret value that was automatically
generated by WebCT or enter a new shared secret value. For security reasons, the default value "secret"
does not work. The secret value

• is case-sensitive
• cannot exceed 256 characters
• cannot contain tab or other control characters
• should not contain end-of-line characters. Note: By default, the UNIX text editors vi and pico

automatically add end-of-line characters. Check the file size to ensure that the number of
characters equals the number of bytes.

6. In the Tickets remain valid for text box, enter the number of minutes until ticket time-out. This value
controls the expiry time of the ticket based on the user’s last access and therefore affects how long a user
can stay logged on while inactive. The default is 180 minutes.

7. Choose whether to allow WebCT authentication across a domain. Authentication across a domain allows
users to access all servers in the domain, without having to re-authenticate for each one.

• To allow authentication across a domain:
c) Select Allow WebCT authentication across a domain.
d) In the Please specify your domain text box, enter the domain name. The domain name must

have a period in front of it. Example: .webct.com

• To disallow authentication across a domain, select Do not allow WebCT authentication across a
domain.

8. Under User is authenticated using, from the drop-down list for the authentication source that you are
using, select First.

9. For all other authentication sources, select Never.

10. Scroll to the bottom of the screen and click Update.

USING MULTIPLE AUTHENTICATION SOURCES
You can integrate third-party authentication sources, such as LDAP, Kerberos, or a custom authentication
source with WebCT. For example, use multiple authentication sources if your institution requires a failover
authentication scheme to authenticate users who do not have an account in the primary authentication database.
Users who are not authenticated by the primary authentication source can be authenticated by secondary
sources, such as the internal WebCT database.

1. From the Admin toolbar, click Server Mgmt. The Server Mgmt toolbar appears.

2. From the Server Mgmt toolbar, click Settings. The Administrator Settings screen appears.

3. Under User Authentication, select Use ticket based authentication.

4. Choose whether the Logout link should appear in the course Menu Bar:

• To display the Logout link, select Display Logout link in course Menu Bar.

©2002 WebCT 43

• To hide the Logout link, deselect Display Logout link in course Menu Bar. Note: If you run
WebCT in a framed environment (such as a portal) where a logout link or "Return to Portal" link
already exists, you may prefer to hide the Logout link.

5. In the Ticket shared secret value text box, either leave the shared secret value that was automatically
generated by WebCT or enter a new shared secret value. For security reasons, the default value "secret"
does not work. The secret value

• is case-sensitive
• cannot exceed 256 characters
• cannot contain tab or other control characters
• should contain end-of-line characters. Note: By default, the UNIX text editors vi and pico

automatically add end-of-line characters. Check the file size to ensure that the number of
characters equals the number of bytes.

6. In the Tickets remain valid for text box, enter the number of minutes until ticket time-out. This value
controls the expiry time of the ticket based on the user’s last access and therefore affects how long a user
can stay logged on while inactive. The default is 180 minutes.

7. Choose whether to allow WebCT authentication across a domain. Authentication across a domain allows
users to access all servers in the domain, without having to re-authenticate for each one.

• To allow authentication across a domain:
a) Select Allow WebCT authentication across a domain.
b) In the Please specify your domain text box, enter the domain name. The domain name must

have a period in front of it. Example: .webct.com
• To disallow authentication across a domain, select Do not allow WebCT authentication across a

domain.
8. Under User is authenticated using, specify when to use the authentication source(s):

• If you are using the internal WebCT password database, from the corresponding drop-down list,
select when it should be used in the authentication sequence. Important: If you are using the
internal WebCT database in a failover authentication scheme, it is strongly recommended that you
¾ use the WebCT database last in the authentication sequence.
¾ do not use passwords that can be guessed (for example: webct or password).

• If you are using LDAP:
a) From the LDAP server drop-down list, select when it should be used in the authentication

sequence.
b) Specify the LDAP settings. (See the Specifying the LDAP Settings section in this guide).

• If you are using Kerberos or Windows 2000 Domain Controller:
a) From the MIT Kerberos V5 KDC or Windows 2000 Domain Controller drop-down list,

select when it should be used in the authentication sequence.
b) Specify the Kerberos settings or Windows 2000 Domain Controller settings (See the

Specifying the Kerberos Settings section in this guide). If you are using a custom
authentication source, from the corresponding drop-down list, select when it should be
used in the authentication sequence.

9. Scroll to the bottom of the screen and click Update.

SPECIFYING THE LDAP SETTINGS
1. Under LDAP settings, in the LDAP Server Name text box, enter the name of your LDAP server.

2. In the LDAP Port text box, enter the port of your LDAP server.

©2002 WebCT 44

3. In the Base DN text box, enter the top level of the LDAP directory tree where your WebCT user records
are stored. This directs the authentication program to search in the appropriate directory on your LDAP
server.

4. In the WebCT ID Attribute text box, enter the attribute or field of the user record where the WebCT ID is
stored.

5. In the Manager DN text box, enter the LDAP server manager's distinguished name.

6. In the Manager Password text box, enter the LDAP server manager's password.

7. Click Update.

Important: If you are using LDAP in a multiple authentication scheme, you must also specify the sequence in
which it should be used.

SPECIFYING THE KERBEROS SETTINGS
Note:

• Unix users: Kerberos requires a properly configured krb5.conf file in the /etc directory.
• Windows users: Kerberos requires a properly configured krb5.ini file in the

<webct_install_dir>\webct\webct\generic\ticket folder.

1. Under Kerberos/Domain Controller settings, in the Realm/Domain Name text box, enter the Kerberos
Realm name. Note: Each entry in the KDC is called a principal and has the format:
username/instance@Kerberos Realm
Example: johnsmith/admin@MYINSTITUTE.EDU
In this example, the Realm is MYINSTITUTE.EDU.

2. In the Instance text box, enter the Kerberos Instance name. In the example above, the Instance is admin.

3. Click Update.

Important: If you are using Kerberos in a multiple authentication scheme, you must also specify the sequence
in which it should be used.

SPECIFYING THE WINDOWS 2000 DOMAIN CONTROLLER SETTINGS
1. Under Kerberos/Domain Controller settings, in the Realm/Domain Name text box, enter the Windows

domain name.

2. Leave the Instance text box empty.

3. Click Update.

Important: If you are using Windows 2000 Domain Controller in a multiple authentication scheme, you must
also specify the sequence in which it should be used.

IM P L E M E N T I N G CU S T O M AU T H E N T I C A T I O N
For institutions that use external password databases that are not directly supported (e.g. Radius, IMAP),
WebCT allows modification of the WebCT open source authentication code by using the WebCT Open
Authentication Kit (WOAK). To obtain the WebCT Open Authentication Kit for your operating system, contact
your account representative. In addition, you will need an experienced C programmer to write the
authentication function.

©2002 WebCT 45

UNIX/LINUX
To compile the WOAK, ensure that you have the Free Software Foundation’s GCC compiler installed
(http://www.gnu.org/software/gcc/). Other C compilers are not recommended.

It is beyond the scope of this document to describe an exact procedure for code development. You should
follow basic rules such as not developing on live servers, make appropriate backups of important files, and do
as much testing as possible with your custom code. The following is provided as a general guide:

1. Make a backup copy of your original ticketLogin executable in the
[install_dir]/webct/webct/generic/ticket/ directory.

2. Extract the WebCT Open Authentication Kit to a working directory.

3. In the [woak_directory]/compile directory of the WOAK, modify the Makefile with a text
editor so that your system architecture is uncommented (e.g. A Solaris developer should uncomment
the configure/solaris-sparc line and make sure that both the configure/linux-libc6
and configure/aix lines are commented out.) The Makefile is set up for Linux systems by
default.

4. Open the file custom_auth.c within the [woak_directory]/ticket directory.

5. Modify the function user_is_authentic_other so that it returns 1 if the username and
password passed to the function is authentic or –1 if it is not.

6. Make any changes necessary to your Makefile in order for it to compile with your code.

7. Compile the ticketLogin executable by issuing the make command within the
custom_auth/compile directory.

8. Copy the new ticketLogin executable to your test server.

WINDOWS NT/2000
To compile the WebCT Open Authentication Kit (WOAK), ensure that you have Microsoft Visual Studio 6
(http://msdn.microsoft.com/vstudio) installed. Other C compilers are not recommended.

It is beyond the scope of this document to describe an exact procedure for code development. The following is
provided as a general guide.

1. Make a backup copy of your original ticketLogin executable in the
[install_dir]/webct/webct/generic/ticket/ directory.

2. Extract the WOAK into a working directory.

3. Open up the WOAK project within Visual Studio 6.

4. In the file custom_auth.c, implement the function user_is_authentic_other so that it returns
AUTH_DECLINED if the user does not exist in the password database, AUTH_VALID if the
password is valid, and AUTH_FAILED if the password is not valid.

5. Compile ticketLogin and copy the executable to your test server.

©2002 WebCT 46

CHAPTER 2
AUTOMATIC SIGNON FROM OTHER SYSTEMS

Automatic signon allows institutions to create seamless computing environments. Users can move from an
application where they are authenticated to WebCT without retyping usernames and passwords. For example,
Automatic signon could allow users to log on to their campus portal, browse campus events, and then click a
link to their WebCT course, upon which they are automatically logged on, without being prompted for a
username or password.

AU T O M A T I C S I G N O N PR O C E S S
The automatic signon process will vary depending on the type of system with which you are integrating
WebCT. For an institution that has a campus portal, the process may occur as follows:

1. A user accesses their campus portal account, using their portal username and password.

2. The portal obtains the user’s myWebCT and/or WebCT course information either by

• obtaining the information from an external source, such as a student information system.
• executing a local program that makes a Standard API call to obtain the information. The local

program can use one of the following API commands:
� Standard API command homearea_xml, which uses the WebCT ID and server base

address to export a user’s myWebCT in XML format (see Chapter 5: Standard API)
� Standard API command find, which uses the WebCT ID to find a user’s global database

record (see Chapter 5: Standard API)

3. The user clicks a link to the WebCT server (either to their myWebCT or directly into a course).

4. The portal executes a local program that makes an IMS API call to find the user’s IMS ID and IMS
source.

5. WebCT returns the IMS ID and IMS source.

6. Optional: The portal stores the IMS ID and IMS source locally with the user’s record so that
subsequent requests to the WebCT server are faster.

7. The portal executes a local program that creates a Message Authentication Code (MAC) from the data
(the IMS ID and IMS source, a timestamp, and a destination URL) and the shared secret value. The
local program assembles the data and MAC into an http request and then sends the http request via the
user’s browser.

8. WebCT verifies the validity of the http request and issues a ticket in the form of a browser cookie.

9. The user is redirected to the URL provided in the request (e.g., the course Homepage or their
myWebCT).

©2002 WebCT 47

IM P L E M E N T I N G AU T O M A T I C S I G N O N
Implementing automatic signon involves two steps:

1. Setting shared secret values and enabling ticket based authentication
2. Developing a program to automatically authenticate a user

Step 1. can be accomplished by a WebCT administrator who has basic knowledge of the WebCT file system.
Step 2 requires an experienced Web developer.

1. SETTING SHARED SECRET VALUES AND ENABLING TICKET BASED
AUTHENTICATION
Shared secret values are key security components for Automatic signon as they are used for authenticating
messages from external servers. Implementing Automatic signon requires setting two shared secret values,
which ensure that only messages from trusted servers are processed:

• the Automatic signon secret
• the API secret

First, set the shared secret value for Automatic signon:

1. Using a text editor, open the file
<webct_install_dir>/webct/webct/generic/autosignon/autosignon_secret

2. Change the first line of the file to your desired secret. (For security reasons, the default value
“SECRET” does not work).

• It cannot exceed 256 characters.
• It cannot contain tab or other control characters.
• It should not contain end-of-line characters. Note: By default, the UNIX text editor vi and pico

automatically add end-of-line characters. Check the file size to ensure that the number of characters
equals the number of bytes.

• It is case-sensitive

3. Change the first line of the file to your desired secret. (For security reasons, the default value
“SECRET” does not work).Save the file.

Now, set the API shared secret value:

4. Open the file <webct_install_dir>/webct/webct/generic/api/api_secret

5. Change the first line of the file to your desired secret, following the guidelines in step 2.

6. Save the file.

Now, logon to the Administrator interface, and enable ticket-based authentication:

7. From the Admin toolbar, click Server Mgmt. The Server Mgmt toolbar appears.

8. From the Server Mgmt toolbar, click Settings. The Administrator Settings screen appears.

©2002 WebCT 48

9. Under User Authentication, select Use ticket based authentication.

2. DEVELOPING A PROGRAM TO AUTOMATICALLY AUTHENTICATE A USER
The most substantive part of implementing automatic signon is developing a program that automatically
authenticates users into WebCT. The program must:

• find a user’s IMS ID and IMS source via the IMS API
• make a request to the Automatic Signon CGI

Each of these requests requires the creation of a MAC to ensure the authenticity of the request.

CREATING MESSAGE AUTHENTICATION CODES
Because the Web interfaces to the Standard API and Automatic signon reside in public directories, Message
Authentication Codes (MACs) are required to ensure that only messages from trusted servers are processed.

WebCT provides three options to assist you in creating MACs:

1. A C function that you may integrate and compile into your C program
2. An executable file to which you make a system call from your program
3. Instructions for generating a MAC using a language of your choice

OPTION 1: USING THE GET_AUTHENTICATION C FUNCTION
The get_authentication function generates a MAC from an array of data and a shared secret value.

The source code necessary to use the C function is located in
<webct_install_directory>/webct/webct/generic/api/security/

A test program, which contains a Makefile for UNIX based systems, is also provided.

The file api_security.c contains the get_authentication function.

get_authentication Generates a MAC from an array of data and a shared
secret value

Syntax char* get_authentication (int i, char* data[], char* secret,

char* encrypted_data)

Returns 32 byte alphanumeric MAC

Parameter Description

i The number of elements in the array data.

data Array of all values to be used in generating the MAC.

The data should not be URL encoded.

secret The shared secret value.

encrypted_data The memory location of the MAC. It must be at least 32 bytes

©2002 WebCT 49

long.

OPTION 2: USING THE THE MESSAGE AUTHENTICATION CODE GENERATOR (GET_MD5 EXECUTABLE)
The Message Authentication Code (MAC) generator generates a MAC from a shared secret value and a string
consisting of the IMS ID, a timestamp, and a destination URL.

Use the Message Authentication Code (MAC) generator (an executable called get_md5) if you are not working
in the C language, or do not want to create a function to create the MAC. You can make a system call to
get_md5 from your program and have the authentication string returned. The get_md5 executable has no
dependencies on WebCT and can be copied to other servers as required. If you need a get_md5 executable for
an operating system other than the one your WebCT server is running on, you can download several pre-
compiled binaries for other operating systems from http://download.webct.com

get_md5

Generates a MAC from a shared secret value
and a string to be encrypted (consisting of the
IMS ID, a timestamp, and a destination URL).

Syntax

get_md5 <shared_secret_filename>
<string_to_encrypt>

Returns 32 byte alphanumeric MAC

Attribute Description

shared_secret_filename The filename where the shared secret value is stored.

data_to_encrypt The data to be encrypted. Data should not be URL
encoded.

An example of using the get_md5 program to generate a MAC from a shared secret value and the data string
described above follows:

eg. MAC = get_md5 api_secret 2A508D8EB5EB2D596DD937E2B8835100 982187291
http://webct.institution.edu:8900/ SCRIPT/ENGL100-001/scripts/serve_home

OPTION 3: CREATE A MAC USING A LANGUAGE OF YOUR OWN CHOICE
If you want to create MACs within your code, (e.g. you are writing your code in Java and don’t want to make a
system call), you can create a MAC with the following procedure:

1. Calculate the total of the ASCII values of all the characters in the passed data.

2. Convert the total of the ASCII values into a string.

3. Append the shared secret value.

4. Encrypt the string into a 16-byte string using the MD5 algorithm.

5. Convert the 16-byte string into a 32-byte alphanumeric string to make it URL-friendly.

©2002 WebCT 50

FINDING THE IMS ID FOR AUTOMATIC SIGNON
To send a request to Autosignon, the program must first find a user’s IMS ID and IMS source. The program can
find the IMS ID and IMS source by making an IMS API call using the get_person_ims_info operation.
Optionally, after finding the IMS ID and IMS source, the program can store the IMS ID and IMS source locally
so that the next time they are required, the program can read them locally and then pass them to the Automatic
signon CGI without having to make an API call.

FINDING THE IMS ID USING THE WEB-BASED IMS API
The syntax for a Web-based request to the IMS API to find an IMS ID is as follows:

<GET | POST> /webct/ims/serve_ep_api.pl?ACTION=configure&OPTION=get_person_ims_i
nfo&GLOBALID=<WEBCTID>&TIMESTAMP=<unix_epoch_time>
&AUTH=<32_byte_mac>

OPTION get_person_ims_info Finds a user’s IMS ID and IMS source from a

WebCT ID

GLOBALID An existing WebCT ID An existing WebCT ID is required when using

the get_person_ims_info option

TIMESTAMP UNIX epoch timestamp Time stamp in UNIX epoch format (seconds

since midnight GMT, Jan 1, 1970)

AUTH A valid MAC This is the 32 byte hexadecimal string generated

using the get_authentication C code, the
get_md5 program, or using custom code.

When developing a program for a Web-based API, you should keep the following points in mind:

• You can use either GET or POST methods to submit requests
• Requests must be URL encoded (e.g. spaces should be replaced with %20)
• Key/value pairs can be separated by ampersands (&) or plus signs (+)
• Key/value pairs may appear in any order

FINDING THE IMS ID USING THE COMMAND LINE IMS API
The IMS API executable ep_api.pl is in the following directory:
<webct_install_dir>/webct/generic/ims

The syntax for a command line request to the IMS API to find an IMS ID is as follows:

ep_api.pl configure get_person_ims_info <WEBCTID>

where:

Argument Input Description
WEBCTID An existing WebCT ID A WebCT ID is required when using the

get_person_ims_info option.

©2002 WebCT 51

Example
Find the IMS ID for the WebCT ID jdoe:

ep_api.pl configure get_person_ims_info jdoe

The IMS API returns:

Success:

IMS id=2A508D8EB5EB2D596DD937E2B8835100

IMS source=WebCT

FINDING WUUIS

FINDING THE WUUI USING THE WEB-BASED STANDARD API
Important: Since the release of WebCT 3.6, the use of the WebCT Unique Universal Identifier
(WUUI) for Automatic Signon and the find_wuui operation are deprecated. With WebCT moving towards
the use of the IMS specifications, which are becoming standards in the learning community, the IMS ID and
IMS source are now preferred over the WUUI. Although the use of the WUUI is deprecated, the functionality
will still be supported for 3.7.

The syntax for a Web-based request to the Standard API is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=<operation>&DB=global
&field1=<field1>&COURSE=<placeholder>&AUTH=<32_byte_mac>
HTTP/1.0

Key Value Notes

find_wuui Finds a user’s WUUI for a given a WebCT ID (Note:
deprecated; not recommended for use)

OPERATION

find_ims_id_wuui Finds a user’s WUUI for a given an IMS ID

DB global Although this value may also be student, for the

application of finding WUUIs, you will always use
global

WebCT_ID Use if the operation is find_wuui field1
IMS_ID Use if the operation is find_ims_id_wuui

COURSE Any alphanumeric

string
This is a generic placeholder value. You can use any
value, but ensure that you use it in the calculation of
the MAC.

AUTH 32 byte MAC This is the 32 byte hexadecimal string generated using

the get_authentication C code, the get_md5 program,
or using custom code.

©2002 WebCT 52

FIND A USER’S WUUI FROM AN IMS ID
Find the WUUI for the IMS ID (Person→SourcedID→ID) “123456789”:

GET /webct/public/serve_webctdb?OPERATION=find_ims_id_wuui
&DB=global&IMS%20ID=123456789&COURSE=xxxx
&AUTH=EB1A09F0BB299C23E99A5978587F49C1 HTTP/1.0

The Web server returns the following, not including http headers:

Success: #WUUI = 6321BB2537BE7F1E26375D4E1687EE1F

FINDING THE WUUI USING THE COMMAND LINE STANDARD API
Important: Since the release of WebCT 3.6, the use of the WUUI for Automatic Signon and the find_wuui
operation are deprecated. With WebCT moving towards the use of the IMS specifications, which are becoming
standards in the learning community, the IMS ID and IMS source are now preferred over the WUUI. .
Although the use of the WUUI is deprecated, the functionality will still be supported for 3.7.

The Standard API executable webctdb is in the following directory:
<webct_install_dir>/webct/webct/generic/api

The general syntax using the command line Standard API to find WUUIs is as follows:

webctdb <find_ims_id_wuui> global xxxx <WEBCTID | IMSID>

Where:

• find_ims_id_wuui is the operation to find a WUUI using an IMS ID
• global is the name of the database you are accessing
• xxxx is a required placeholder
• WEBCTID is the WebCT ID of the user whose WUUI you are trying to find
• IMSID is the IMS ID of the user whose WUUI you are trying to find

MAKING A REQUEST TO THE AUTOMATIC SIGNON CGI
Once the program has determined the IMS ID and IMS source, it must pass the IMS ID and IMS source to the
Autosignon CGI, which then logs the user on to WebCT.

The general syntax for an Automatic signon request is as follows:

http://<webctserver>:<port>/webct/public/autosignon?IMS%20id=<IMS id>
&Time%20Stamp=<unix_epoch_time>&URL=<url>&MAC=<32_byte_mac>

Key Value Notes
IMS id An IMS id This is the IMS ID that has either been found using an IMS

API call or is stored locally.

Time Stamp unix_epoch_time Time stamp in UNIX epoch format (seconds since midnight

GMT, Jan 1, 1970).

©2002 WebCT 53

URL URL The destination URL.

MAC 32 byte mac This is the 32 byte hexadecimal string generated using the

get_authentication C code, the get_md5 program, or using
custom code.

The following example shows a user being logged onto the course Homepage of the course ID ENGL100-001:

http://webct.institution.edu:8900/webct/public/autosignon?
IMS%20id=2A508D8EB5EB2D596DD937E2B8835100&Time%20Stamp=982187291
&URL=http://webct.institution.edu:8900/SCRIPT/ENGL100-
001/scripts/serve_home&MAC=0A0D776506D70AE16537560CBDE4EE1

The server responds by issuing the browser a cookie and sending the user to the URL, in this case the
homepage for ENGL100-001.

©2002 WebCT 54

CHAPTER 3
OVERVIEW OF THE

APPLICAT ION PROGRAMMING INTERFACES
Application Programming Interfaces (APIs) allow users and other systems to directly interface with WebCT
without the graphical user interface. WebCT 3.7 CE provides two APIs, the proprietary Standard API, and the
IMS Enterprise API. The IMS Enterprise API is exclusive to WebCT 3.7 Campus Edition and is compliant with
the IMS Global Learning Consortium, Inc. (http://www.imsproject.org) enterprise API specification. Both APIs
have two interfaces, a command line interface and a Web-based interface.

D I F F E R E N C E S B E T W E E N T H E I M S E N T E R P R I S E A P I
A N D T H E S T A N D A R D A P I
Some functions are available in both the IMS API and Standard API. The following table summarizes the
functionality of each API.

FUNCTIONAL DIFFERENCES
Function IMS API Standard API
 Command

Line
Web-
Based

 Command
Line

 Web-
Based

Export Midterm/Final Grades from
Course

√ √

Add/Update/Delete Multiple Courses √ √

Add/Update/Delete Single Users

from/to global database √ √ √ √
from/to the student database 1
(Manage Students table in courses)

 √ √

Add/Update/Delete Multiple Users

from/to global database √ √ √
from/to the student database 1
(Manage Students table in courses)

 √

Set IMS IDs and IMS sources for users
and courses

√ √

Find Users √ √ √ √
Find WUUIs
Find IMS IDs √ √
Change WebCT IDs √ √

1 Indirectly, the IMS API can modify the student database when importing membership objects. However, direct
modification is only available via the Standard API.

©2002 WebCT 55

Export myWebCT in XML format √

OPERATIONAL DIFFERENCES
The IMS API relies on the exchange of XML data files to perform its functions. The Standard API relies on a
variety of operations to carry out its functions, including the processing of delimited text files for batch
operations, entering command line statements for single operations, and creating http query-strings for Web-
based operations.

For features unique to each API, the choice of which to use is obvious. However, for managing user accounts in
WebCT, the choice is more difficult since there is an overlap in functionality. In general, whenever your goal is
to communicate with an IMS-compliant application, you should use the IMS API. Some advantages and
disadvantages of each API for user management are summarized below:

 Advantages Disadvantages

IMS API • Allows you to set IMS IDs and IMS
sources within WebCT

• Facilitates two way communication
between IMS-compliant systems
(which rely on the IMS ID and IMS
source)

• XML files must be created

Standard API • Allows the modification of

administrator-created columns
• Can be simpler to use for user

management since it is command
driven and does not require XML
files

• Difficult to integrate with
IMS-compliant systems

C H O O S I N G T H E A P P R O P R I A T E I N T E R F A C E
F O R Y O U R R E Q U I R E M E N T S
WebCT provides two interfaces to each of its APIs: a command line interface, and a Web-based interface.
Choosing an interface is not a one-time decision; it will vary depending on the task that you need to
accomplish. For example, if you want to process real-time updates from your institution’s Student Information
System (SIS), the Web-based interface may be more suitable. However, if you have to debug a user’s problem,
using the command line interface may be more suitable.

Use the following table as a guide for choosing the best interface.

Task/
Situation

Suggested
Interface

Processing multiple records simultaneously
(e.g. you want to populate the global database based on a batch extract from
your institution’s SIS)

command line

Processing a single record command line

Integrating systems that are on the same physical server and run as the same
user as WebCT

command line

©2002 WebCT 56

Task/
Situation

Suggested
Interface

Debugging command line

Integrating external system with WebCT
(e.g., you want to integrate your institution’s SIS with WebCT)

Web-based

©2002 WebCT 57

CHAPTER 4
IMS ENTERPRISE API

The IMS Enterprise API in WebCT 3.7 Campus Edition complies with version 1.01 of the IMS Enterprise
Specification (available at http://www.imsproject.org/enterprise), the latest version of the specification at the
time of release. The IMS API allows you streamline integration of WebCT with other products that also
conform to the IMS specification.

FU N C T I O N A L I T Y I N T H E IMS EN T E R P R I S E API
The IMS API has functionality that can be divided into three basic categories.

Import • Create, modify, and delete course instances (group objects in IMS terminology)
• Create, modify, and delete users (person objects in IMS terminology)
• Register and deregister users from courses (associate person with group objects

using the membership object in IMS terminology)

Export • Create an XML file of all user, course, and course membership information
• Create an XML file containing basic information for a single student record
• Create an XML file containing a list of users with midterm and/or final grades for a

given course

Configure • Add or update the IMS source for a single course
• Add or update the IMS ID for a single course
• Add or update the IMS source for a single user
• Add or update the IMS ID for a single user
• Find the IMS ID and IMS source for a single user

TE R M I N O L O G Y
The IMS Enterprise Information Model describes data structures that are used to provide interoperability of
instructional management systems like WebCT with other enterprise systems. The information model defines
several data objects, and WebCT maps the appropriate internal data to these objects. You should become
familiar with the IMS data objects and their relation to WebCT. The following table summarizes some of the
important terminology relevant to WebCT.

©2002 WebCT 58

Important IMS Terminology for WebCT users
Term Definition
Group
Object

An object describing a group of users, most commonly a course instance. WebCT
matches data in this object with data associated with courses such as the Course ID
and Course Description.

Person
Object

An object describing an individual. IMS data elements map to WebCT elements as
follows: User ID maps to WebCT ID; Family maps to Last Name; and Given maps to
First Name.

Membership
Object

An object describing the membership of a person or group within a group. WebCT
uses the membership object to modify the Courses field within the global database
and to add instructors, students, and teaching assistants to their appropriate course
databases.

Properties
Object

An object containing general bookkeeping information for an IMS-compliant XML
file. WebCT has no equivalent to the properties object.

IMS ID The IMS ID is a unique identifier for an IMS object. All group, person, and

membership objects have an associated IMS ID. Within an IMS-compliant XML file,
the IMS ID refers to the <object>→SourcedID→ID

IMS source The IMS source identifies the organization or system that assigned the IMS ID to the

object. Group, person, and membership objects all have IMS sources
Within an IMS-compliant XML file, the IMS source refers to the
<object>→SourcedID→Source.

IM P L E M E N T I N G T H E IMS API
To implement the IMS API, consider the tasks that you need to perform and the systems that you want WebCT
to interact with. A typical implementation of the IMS API with a Student Information System (SIS) might
include the following steps.

1. Creation of an XML extract from a SIS that has group, person, and member data objects within it.

2. Bulk population of the WebCT global database using the Command Line IMS API to import the XML
extract. This creates the courses, creates the users, and assigns users to courses.

3. Setup of an interface between the SIS and WebCT that sends periodic updates to WebCT via the Web-
based IMS API. Updates could include students dropping and adding courses, the addition of new
students, and the creation of courses that have a WebCT component.

4. Transfer of midterm and/or final grades from WebCT to the SIS via the Web-based IMS API. The
transfer could occur when an instructor fills out a Web form indicating that grades are ready to be
released to the registrar.

©2002 WebCT 59

COMMAND LINE INTERFACE (EP_API.PL)
The IMS Best Practice and Implementation Guide describes a robust and easily implementable interface which
involves the creation and passing of a complete "snapshot" of the Person, Group, and Group Membership data
from one system to another. For example, at the beginning of a school year, an institution could export a
snapshot of all student and course information from their SIS for the term. The “snapshot” could then be
transferred to the WebCT server and imported.

The command line interface provides an effective way of importing “snapshots” into WebCT.

The command line interface also provides an effective way of exporting and configuring WebCT data without
the development effort required for a Web-based implementation.

Note: The IMS Best Practice and Implementation Guide is available from
http://www.imsproject.org/enterprise/

SYNTAX
The command line interface has the following general syntax:

ep_api.pl <ACTION> <OPTION> <FILENAME | COURSEID | GLOBAL ID>
[--ims_id=<ID>] [--ims_source=<SOURCE>] [--ims_target=<TARGET>]
[--datasource=<DATASOURCE>] [--studentlist=<STUDENTLIST>]
[--sct_mode=<SCTMODE>] [--inline=<INLINEMODE>]

where:

ACTION OPTION
import restrict

unrestrict

export snapshot

person_record
group_record
group_final_grades
group_midterm_grades

configure set_group_ims_info

import_group_ims_info
set_person_ims_info
import_group_ims_info
get_person_ims_info

©2002 WebCT 60

FUNCTIONS

IMPORT
The syntax for an import is:

ep_api.pl import <OPTION> FILENAME [--inline=<INLINEMODE>]
[--sct_mode=<SCTMODE>]

where:

Argument Input Description
restrict With restrict mode on, the sourcedid.source and sourcedid.ID

supplied in the XML file are checked against the IMS sourcedid
elements for similar objects to ensure they exist in the WebCT
database. Objects can be updated or deleted only if the
sourcedid.source element and sourcedid.ID elements match.

OPTION

unrestrict No checking of the sourcedid.source element is performed; only the
sourcedid.ID is checked.

FILENAME filename File to be imported into WebCT.

ON(default) Objects are processed in the order they appear in the XML file. --inline
OFF Group and Person objects are processed before Membership objects.
ON (default) Scenario 1: The following data elements are examined under

GROUPTYPE:
<TYPEVALUE level=”2”>Term</TYPEVALUE>
<TYPEVALUE level=”3”>Course</TYPEVALUE>
<TYPEVALUE level=”4”>Section</TYPEVALUE>

A group object is added to the global database if the Term value
appears but not the Course or Section values.

Scenario 2: If the following data element is present under
EXTENSION, the group object is added to the global database.
<DELIVERY>WEBCT</DELIVERY>

Note: If Scenario 2 dictates that a group object should be added to the
global database, it will be added, regardless of the result of Scenario
1.

--sct_mode

OFF No checking of TYPEVALUE or DELIVERY is performed.

Example
Import the XML file “course.xml” in restrict mode.

ep_api.pl import restrict courses.xml --sct_mode=OFF

©2002 WebCT 61

EXPORT
This argument exports data from WebCT’s global database. The syntax for an export is:

ep_api.pl export <OPTION> <FILENAME> [--datasource=<DATASOURCE>]
[--ims_target=<TARGET>] [--type=<TYPE>] [--ims_id=<ID>]
[--studentlist=<STUDENTLIST>]

where:

Argument Input Description
snapshot Create an XML file of all person, group, and

membership objects.
person_record Create an XML file containing basic information

for a single student record.
group_record Create an XML file containing a list of users

with midterm and final grade information for a
given course.

group_final_grades Create an XML file containing a list of users
with final grade information for a given course.

OPTION

group_midterm_grades Create an XML file containing a list of users
with midterm grade information for a given
course.

FILENAME Any valid filename Filename to be used for the XML file.

--datasource Any alphanumeric string up to

256 characters.
Enclose strings containing spaces
in quotation marks.

Sets the DATASOURCE element within the
PROPERTIES element. Defaults to “WebCT” if
none is specified.

--ims_target Any alphanumeric string up to

256 characters.
Enclose strings containing spaces
in quotation marks

Sets the TARGET element within the
PROPERTIES element.

--type Any alphanumeric string up to

256 characters.
Enclose strings containing spaces
in quotation marks.

Sets the TYPE element within the
PROPERTIES object.

--ims_id Any person or group object ID

from the SOURCEDID data
element

When exporting with the person_record,
group_record, group_final_grades, or
group_midterm_grades options, use this optional
field to specify the person or group object that
you want to export.

--studentlist Any valid filename When exporting using group_record,

group_final_grades, or group_midterm_grades
options, this optional file allows you to export a
subset of the data. The file must be in plain text
format with one IMS ID per line.

©2002 WebCT 62

Example 1
Export a snapshot of the WebCT global database to the file dbsnap.xml with the datasource set to “WebCT -
Faber College” and the target set to “BigSIS”:

ep_api.pl export snapshot dbshot.xml --datasource=”WebCT - Faber College”
--ims_target=”BigSIS”

Example 2
Export a person_record to the file person.xml for the user with the IMS ID “612”:

ep_api.pl export person_record person.xml --ims_id=612

Example 3
Export a group_record to the file group.xml for a subset of students whose IMS IDs are stored in the file
students.txt.

Note: The file containing the IMS IDs must be in plain text format, with one IMS ID per line.

ep_api.pl export group_record group.xml --studentlist=students.txt
–-ims_id=<ID>

CONFIGURE
Configure is used to set the IMS ID for group objects, and person objects. The syntax for a configure action is:

ep_api.pl configure <OPTION> <FILENAME | COURSEID | WEBCTID >
[--ims_id=<ID>] [--ims_source=<SOURCE>]

where:

Argument Input Description
set_group_ims_info Sets the IMS ID for a group object (course)
import_group_ims_info Sets the IMS ID for multiple group objects from a file.
set_person_ims_info Sets the IMS ID for a person object (user).
import_person_ims_info Sets the IMS ID for multiple person objects from a

file.

OPTION

get_person_ims_info Finds a user’s IMS ID and IMS source with the
WebCT ID.

FILENAME Any valid filename A filename must be supplied for

import_group_ims_info or import_person_ims_info.
The file must be plain text, in the format:
<webct_id>,<ims_id>,<ims_source_new>

COURSEID An existing Course ID A WebCT Course ID is required when using the

set_group_ims_info option.

WEBCTID An existing WebCT ID A WebCT ID is required when using the

set_person_ims_info option and the
get_person_ims_info option.

©2002 WebCT 63

--ims_id Any valid IMS ID For the set_group_ims_info and set_person_ims_info

options, this argument allows you to set the
Group→SourcedID→ID or Person→SourcedID→ID,
respectively

--ims_source Any valid IMS source For the set_group_ims_info and set_person_ims_info

options, this argument allows you to specify the
desired Group→SourcedID→Source or
Person→SourcedID→ID, respectively.

Example 1
Set the SourcedID→ID “0390-ENGL-101-2345” for a group object with the course ID “ENGL101-2345”:

ep_api.pl configure set_group_ims_info ENGL101-2345
--ims_id=0390-ENGL-101-2345

Example 2
Set the SourcedID→ID’s for three person objects contained in the file person_ims.txt.

Note: When viewed with a text editor, the person_ims.txt file looks like the following:

bluto,blutarsky123,InstitutionSIS
pinto,kroger34,InstitutionSIS
flounder,dorfman53,InstitutionSIS

ep_api.pl configure import_person_ims_info person_ims.txt

WEB-BASED INTERFACE (SERVE_EP_API.PL)
The IMS Best Practices and Implementation Guide defines an event driven interface as an effective method of
communicating periodic updates. The event-driven interface, in which events trigger the transmission of IMS
data objects to the target system (e.g. WebCT), can be implemented effectively through the Web-based
interface. For example, a student adding a course can trigger an event on an SIS which then sends an IMS data
object to WebCT, updating the WebCT database.

Note: The IMS Best Practices and Implementation Guide is available from
http://www.imsproject.org/enterprise

Implementing the Web-based interface involves two steps.

1. Setting the API shared secret value
2. Developing a program to generate an HTTP request

Step 1 can be accomplished by a WebCT administrator who has basic knowledge of the WebCT file system.
Step 2 requires an experienced Web developer.

1. SETTING THE API SHARED SECRET VALUE
The shared secret value is a key component of allowing external servers to automatically sign on users to
WebCT. The shared secret is used to create a Message Authentication Code (MAC) from the submitted data.

©2002 WebCT 64

When WebCT receives a request, it decodes the shared secret from MAC using the submitted data. If the
decoded shared secret is the same as the one stored locally, the request is considered authentic and is processed.
You can set the shared secret by performing the following steps:

1. Using a text editor, open the file
<webct_install_directory>/webct/webct/generic/api/api_secret

2. Change the first line of the file to your desired secret. (for security reasons, the default value
“SECRET” does not work). You should note the following about the shared secret value.

• It cannot exceed 256 characters.

• It cannot contain tab, or other control characters.

• It should not contain end-of-line characters. Note: By default, the UNIX text editor vi and pico
automatically add end-of-line characters. Check the file size to ensure that the number of
characters equals the number of bytes.

• It is case-sensitive

3. Save the file.

Because the shared secret value has such a critical role, choose it carefully.

Tips for
Shared
Secrets

¾ Make your shared secret value difficult to guess by making it
lengthy and by including a combination of numbers and upper and
lower case characters.

¾ Change your shared secret value at regular intervals.
¾ On remote systems, place shared secret values in secure directories.

2. DEVELOPING A PROGRAM TO GENERATE AN HTTP REQUEST
Developing a program to generate an http request is the most substantive part of implementing the Web-based
IMS API. The program must:

• Generate a Message Authentication Code (MAC)
• Generate a checksum for submitted XML extracts
• Assemble a properly formatted http request
• Process any data being returned

CREATING MESSAGE AUTHENTICATION CODES
Because the Web interfaces to the Standard API and Automatic signon reside in public directories, Message
Authentication Codes (MACs) are required to ensure that only messages from trusted servers are processed.

WebCT provides three options to assist you in creating MACs:

1. A C function that you may integrate and compile into your C program
2. An executable file to which you make a system call from your program
3. Instructions for generating a MAC using a language of your choice

OPTION 1: USING THE GET_AUTHENTICATION C FUNCTION
The get_authentication function generates a MAC from an array of data and a shared secret value.

©2002 WebCT 65

The source code necessary to use the C function is located in
<webct_install_directory>/webct/webct/generic/api/security/

A test program, which contains a Makefile for UNIX based systems, is also provided.

The file api_security.c contains the get_authentication function.

get_authentication Generates a MAC from an array of data and a
shared secret value

Syntax char* get_authentication (int i, char* data[], char*
secret, char* encrypted_data)

Returns 32 byte alphanumeric MAC

Parameter Description

i The number of elements in the array data[].

data Array of all values to be used in generating the MAC.

The data should not be URL encoded.

secret The shared secret value.

encrypted_data The memory location of the MAC. It must be at least

32 bytes long.

OPTION 2: USING MESSAGE AUTHENTICATION CODE GENERATOR (GET_MD5 EXECUTABLE)
The Message Authentication Code (MAC) generator generates a MAC from a shared secret value and a string
consisting of the IMS ID, a timestamp, and a destination URL.

Use the Message Authentication Code (MAC) generator (an executable called get_md5) if you are not working
in the C language, or do not want to create a function to create the MAC. You can make a system call to
get_md5 from your program and have the authentication string returned. The get_md5 executable has no
dependencies on WebCT and can be copied to other servers as required. If you need a get_md5 executable for
an operating system other than the one your WebCT server is running on, you can download several pre-
compiled binaries for other operating systems from http://download.webct.com

get_md5

Generates a MAC from a shared secret value
and a line of data

Syntax get_md5 <shared_secret_filename>
<data_to_encrypt>

©2002 WebCT 66

Returns 32 byte alphanumeric MAC

Attribute Description

shared_secret_filename The filename where the shared secret value is stored.

string_to_encrypt The string to be encrypted. The string should not be

URL encoded.

OPTION 3: CREATE A MAC USING A LANGUAGE OF YOUR OWN CHOICE
If you want to create MACs within your code, (e.g. you are writing your code in Java and don’t want to make a
system call), you can create a MAC with the following procedure:

1. Calculate the total of the ASCII values of all the characters in the data.

2. Convert the total of the ASCII values into a string.

3. Append the shared secret value.

4. Encrypt the string into a 16-byte string using the MD5 algorithm.

5. Convert the 16-byte string into a 32-byte alphanumeric string to make it URL-friendly.

Note: The FILENAME field should not be passed as data.

GENERATING A CHECKSUM
To ensure the integrity of XML files being transferred, WebCT uses a checksum. The checksum is created by
summing the ASCII values of each character in the file (including line feeds and other control characters). As
with other data, the checksum is used in the generation of the MAC. However, unlike other data, the checksum
is not passed in the request to the Web server.

For example, the string “a dog\n” (where \n represents a line feed) has ASCII values of 97, 16, 100, 111, 103,
and 10. The checksum for this string is 437, calculated by summing the values.

If you are programming in Perl, you can use the ord() function to get the ASCII value for a single character,
and then loop through the entire file. In C, you can accomplish the same task using the atoi() function.

ASSEMBLING THE HTTP REQUEST
Your choice of language will determine the method that you use to assemble your http request. In general, you
have two basic options:

• Socket programming with the Web server
• Using a library which simulates a user agent

In Perl, you have the option of communicating directly with the Web server using the IO::Socket module
included with most basic distributions, or installing and using a module such as LWP which simulates a user
agent (e.g. a Web browser). Similar modules are available for most popular languages such as C or Java.
Although no language is recommended over others, the examples in this document use Perl and the IO::Socket
module to communicate with the Web server.

©2002 WebCT 67

The serve_ep_api.pl CGI will accept both GET and POST requests. However, anytime that you need to submit
a file to the server, a POST request will be necessary in since GET requests are limited in length. Actions that
require you to use POST are:

• Import actions
• Export actions that utilize the STUDENTLIST option
• The import_group_ims_info and import_person_ims_info actions.

The following example (written in Perl) imports an XML extract into WebCT. It generates a MAC for the data,
generates a checksum for the XML extract, POSTs an http request to the serve_ep_api.pl CGI via sockets, and
prints out the response from the Web server.

#!/usr/bin/perl
use strict;
use IO::Socket;

my $remote_host = "webct.institution.com";
my $remote_port = "8900";
my $SECRET_FILE = "api_secret";

my %params;

Normally, you wouldn't hard code the following values, but
since this program is only trying to show a example of how
to communicate with the API, we can get away with it.
$params{"FILENAME"} = "extract.xml";
$params{"ACTION"} = "import";
$params{"OPTION"} = "restrict";
$params{"SCTMODE"} = "OFF"; # ON by default

Read in the XML extract and assign it to a variable
my $filename_data = &read_file($params{"FILENAME"});

Calculate a timestamp
$params{"TIMESTAMP"} = time();
Print out the TIMESTAMP for debugging purposes
print "TIMESTAMP: " . $params{"TIMESTAMP"} . "\n";

Generate a checksum from the calculate_checksum subroutine
$params{"CHECKSUM"} = &calculate_checksum($filename_data);
Print out the checksum for debugging purposes
print "Checksum: " . $params{"CHECKSUM"} . "\n";

Concatenate the data into a single string so that we can
create the MAC
my $data_string = $params{"ACTION"};
$data_string .= $params{"OPTION"};
$data_string .= $params{"TIMESTAMP"};
$data_string .= $params{"CHECKSUM"};
$data_string .= $params{"SCTMODE"};

Make a system call to the program that generates MACs
$params{"AUTH"} = `./get_md5 $SECRET_FILE $data_string`;
Print out the MAC for debugging purposes
print "Auth: ".$params{"AUTH"}."\n";

©2002 WebCT 68

To make multipart/form-data requests, we need to use a boundary
that won't interfere with our data; you can choose anything you like.
my $content_boundary = "WebCT_Enterprise_API_Boundary";

This script is going to post all data in the body of the message
The $file_content variable will hold the body.
my $file_content;

$file_content .= "--".$content_boundary."\r\n";
$file_content .= "Content-Disposition: form-data; name=\"ACTION\"\r\n\r\n";
$file_content .= "$params{'ACTION'}\r\n";
$file_content .= "--".$content_boundary."\r\n";
$file_content .= "Content-Disposition: form-data; name=\"OPTION\"\r\n\r\n";
$file_content .= "$params{'OPTION'}\r\n";
$file_content .= "--".$content_boundary."\r\n";
$file_content .= "Content-Disposition: form-data; name=\"TIMESTAMP\"\r\n\r\n";
$file_content .= "$params{'TIMESTAMP'}\r\n";
$file_content .= "--".$content_boundary."\r\n";
$file_content .= "Content-Disposition: form-data; name=\"AUTH\"\r\n\r\n";
$file_content .= "$params{'AUTH'}\r\n";
$file_content .= "--".$content_boundary."\r\n";
$file_content .= "Content-Disposition: form-data; name=\"SCTMODE\"\r\n\r\n";
$file_content .= "$params{'SCTMODE'}\r\n";
$file_content .= "--".$content_boundary."\r\n";
$file_content .= "Content-Disposition: form-data; name=\"FILENAME\";";
$file_content .= " filename=\"$params{'FILENAME'}\"\r\n";
$file_content .= "Content-Type: text/xml\r\n\r\n";
$file_content .= "$filename_data\r\n";
$file_content .= "--".$content_boundary."--\r\n";

Open the socket connection to the Web server
my $socket = IO::Socket::INET->new(PeerAddr => "$remote_host:$remote_port",
 PeerPort => $remote_port,
 Proto => "tcp",
 Type => SOCK_STREAM);

if (!$socket)
{
print "Could not open connection to $remote_host:$remote_port";
return 0;
}

Determine the size of the message body for the
http Content-length header
my $file_size = length($file_content);

Send the request to the Web server
print $socket "POST /webct/ims/serve_ep_api.pl HTTP/1.0\n";
print $socket "Content-length: $file_size\n";
print $socket "Content-type: multipart/form-data;

boundary=$content_boundary\n\n";
print $socket $file_content;

get results
my @results;

©2002 WebCT 69

@results = <$socket>;

Print the results to standard output. A real program would
want to do some processing of the results to check for success
or failure.
print @results;

Close the socket connection
close($socket);

read_file
Reads in a file, returns the file's contents as a variable

sub read_file
{
 my $filename = shift(@_);
 my $file_content = undef;

 if(open(FH,$filename)) {
 while (my $line = <FH>)
 {
 $file_content .= $line;
 }
 close(FH);
 }

 return $file_content;
}

calculate_checksum

sub calculate_checksum
{
 my ($data) = @_;
 my ($checksum) = 0;

 # Sum up the ASCII values of all the characters in $data
 while ($data)
 {
 $checksum = $checksum + ord($data);
 $data = substr($data, 1);
 }

 return $checksum;

}

©2002 WebCT 70

XML FILE FORMAT GUIDELINES
The IMS Enterprise API is based on the exchange of XML files between IMS Enterprise-compliant systems.
Each XML file contains one or more data objects, which each represent an operation that should occur (e.g. add
a user to the database, create a new course instance). All IMS Enterprise documents have the following general
structure:

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE ENTERPRISE SYSTEM “IMS-EP01.dtd” >

<ENTERPRISE>

 <OBJECT1>
 </OBJECT1>

 <OBJECT2>
 </OBJECT2>

 <OBJECTn>
 </OBJECTn>

</ENTERPRISE>

This example demonstrates a “shell” file that does not perform any actions. In this example, the three OBJECT
tags represent placeholders that would be filled with properties, group, person, or membership data objects.
You can place as many data objects as you want within the file.

IMS OBJECTS AND WEBCT RELATIONSHIPS
All objects in an IMS-compliant XML file are based on the IMS Enterprise Information Model (available at
http://www.imsproject.org/enterprise). Because the IMS Information Model is very broad to cover a wide range
of needs, WebCT only uses a subset of information from the model. The following sections outline the
relationship between the IMS data objects and WebCT data.

PROPERTIES OBJECT
The properties object contains some general packaging and control data for use by the target system (WebCT).
The following is a fragment from an XML file showing a properties object:

 <PROPERTIES>
 <DATASOURCE>Faber College SIS</DATASOURCE>
 <DATETIME>2000-12-21</DATETIME>
 </PROPERTIES>

The following table describes data elements relevant to WebCT:

Data Element Required Description
Datasource Yes The Properties→Datasource element is the identifier of the system

that generated the XML file.

Datetime Yes Although not used by WebCT, a Datetime element with date and

time in ISO8601 standard format is required for IMS-compliance.

©2002 WebCT 71

GROUP OBJECT
The following is a code fragment from an XML file. It shows a group object:

<GROUP recstatus="1">
 <SOURCEDID>
 <SOURCE>Faber College SIS</SOURCE>
 <ID>0390COMPSCI697CSec1-1164</ID>
 </SOURCEDID>
 <DESCRIPTION>
 <SHORT>Security In Computing</SHORT>
 </DESCRIPTION>
 <EXTENSION>
 <TEMPLATE>Blank</TEMPLATE>
 </EXTENSION>
</GROUP>

The following table describes data elements relevant to WebCT:

Data Element Required Description
RecStatus No This describes the type of action to be performed on an object.

Numbers are used for language independence:
1 = Add, 2 = Update, and 3 = Delete.
If no RecStatus is supplied, the API will default to 1 (Add) if the
record does not already exist, or 2 (Update) if the record does exist.

Source Yes The Group→SourcedID→Source element is used when importing

in restrict mode. This value is compared against the IMS
sourcedid.source element for the item on the WebCT server to
determine if an object will be processed.

ID Yes The Group→SourcedID→ID element is used as the WebCT

Course ID.

Short Yes The Group→Description→Short element is used as the Course

Description within WebCT.

Template No The Group→Extension→Template element allows you to specify a

course template or course ID as the basis for another course. It is
processed in the following order:
1. If no Template element is specified, use the SCT template.

2. If this tag has the text “Blank,” a blank template is used.

3. If a valid Course ID is supplied, the course is created based on it.

4. If a valid course template ID is supplied, it is used. Valid course
template IDs are “blank”, “photo_basic”(basic),
“photo”(intermediate), and “photo_comprehensive”(advanced)

5. If an invalid value is supplied, use the default template.

©2002 WebCT 72

SPECIFIC OBJECT TYPES
One Object type, the term object (school term), is described in the section that follows.

ABOUT TERMS
The IMS API provides a means to add, update, and delete terms, as well as to add a course to a term and to add
a course to a category. Functionality related to terms is also provided through the Administrative Interface.
Note that terms initially created through the IMS API cannot be deleted through the Administrative Interface;
deletion must be performed using the IMS API.

TERM OBJECT
The following is an XML code fragment showing two term objects. To add a term, prepare an XML file using
these guidelines and add to the database using the ‘import’ command.

<GROUP>
<SOURCEDID>

 <SOURCE>Faber College SIS</SOURCE>
 <ID>2002-Summer</ID>

 </SOURCEDID>
<GROUPTYPE>
 <TYPEVALUE level="1">Instruction</TYPEVALUE>
 <TYPEVALUE level="2">Term</TYPEVALUE>
</GROUPTYPE>
<DESCRIPTION>
 <SHORT>2002 Term 2</SHORT>
 <LONG>Summer 2002</LONG>
</DESCRIPTION>

 </GROUP>
 <GROUP>

 <SOURCEDID>
<SOURCE>Faber College SIS</SOURCE>

 <ID>2002-Fall</ID>
 </SOURCEDID>
<GROUPTYPE>
 <TYPEVALUE level="1">Instruction</TYPEVALUE>
 <TYPEVALUE level="2">Term</TYPEVALUE>
</GROUPTYPE>
<DESCRIPTION>
 <SHORT>2002 Term 3</SHORT>
 <LONG>Fall 2002</LONG>
</DESCRIPTION>

 </GROUP>

The following table describes data elements within the code fragment that are relevant to WebCT:

Data Element Required Description
RECSTATUS No This describes the type of action to be performed on an object.

Numbers are used for language independence:
1 = Add, 2 = Update, and 3 = Delete.
If no RecStatus is supplied, the API will default to 1 (Add) if
the record does not already exist, or 2 (Update) if the record
does exist.

©2002 WebCT 73

SOURCE Yes The Group →SourcedID→Source element is used when
importing in restrict mode. This value is compared against the
IMS sourceid.source element for the item on the WebCT server
to determine if an object will be processed.

ID The Group → SourcedID→ID element is used as the WebCT
ID and is stored internally. The WebCT ID can be overridden
by the UserID element.

TYPEVALUE Yes The Group→Typevalue element is required to indicate that the
group object is a term. Each TYPEVALUE element requires a
level to be defined. Level=“1” specifies this is an instructional
group object. Level=”2” further specifies the instructional
group object (in the example given) as a term object.

SHORT Yes Sorting key for term element. For example, Spring, Summer,

Fall, Winter terms could be assigned values 1, 2, 3, and 4
respectively to ensure the terms are displayed in the correct
order in the WebCT interface.

LONG No, but
recommended

Term title that will appear in WebCT

ASSIGNING A COURSE TO A CATEGORY

The following is an XML code fragment showing the assignment of a course within a category:
<?xml version="1.0" encoding="UTF-8" ?>
<GROUP>
 <SOURCEDID>
 <SOURCE>Faber College SIS</SOURCE>
 <ID>0390COMPSCI697CSec1-1164</ID>

 </SOURCEDID>
 <DESCRIPTION>

 <SHORT>CS-697</SHORT>
 <LONG>Security In Computing</LONG>

 </DESCRIPTION>
<ORG>
 <ORGNAME>Faber College</ORGNAME>
 <ORGUNIT>Physics</ORGUNIT>
</ORG>

The following table describes data elements within the code fragment that are relevant to WebCT:

Data Element Required Description
RECSTATUS No This describes the type of action to be performed on an object.

Numbers are used for language independence:
1 = Add, 2 = Update, and 3 = Delete.
If no RecStatus is supplied, the API will default to 1 (Add) if
the record does not already exist, or 2 (Update) if the record
does exist.

SOURCE The Group→SourcedID→Source element is used when
importing in restrict mode. This value is compared against the
IMS sourceid.source element for the item on the WebCT server
to determine if an object will be processed.

©2002 WebCT 74

ID The Group → SourcedID→ID element is used as the WebCT
ID and is stored internally. The WebCT ID can be overridden
by the UserID element.

SHORT Yes This is the course title.

LONG No, but
recommended

This is the course description.

ORG No Needed when assigning a course to a category.

ORGNAME Yes Institution name (this information is not actually used by
WebCT)

ORGUNIT Yes The course will be assigned to the Category with this name. If
your institution is organized by Departments, the ORGUNIT
may be Physics, or Psychology.

ASSIGNING A COURSE TO A TERM

The following is an XML code fragment showing the assignment of a course to a term.
<GROUP>
<SOURCEDID>
 <SOURCE>Faber College SIS</SOURCE>
 <ID>0390COMPSCI697CSec1-1164</ID>

</SOURCEDID>
<DESCRIPTION>
 <SHORT>CS-697</SHORT>
 <LONG>Security In Computing</LONG>

</DESCRIPTION>
<RELATIONSHIP myrelationship="1">
<SOURCEDID>
<SOURCE>Faber College SIS</SOURCE>
<ID>2002-Summer</ID>

</SOURCEDID>
</RELATIONSHIP>

The following table describes data elements within the code fragment that are relevant to WebCT:

Data Element Required Description
RECSTATUS No This describes the type of action to be performed on an

object. Numbers are used for language independence:
1 = Add, 2 = Update, and 3 = Delete.
If no RecStatus is supplied, the API will default to 1 (Add)
if the record does not already exist, or 2 (Update) if the
record does exist.

SOURCE The Group →SourcedID→Source element is used when
importing in restrict mode. This value is compared against
the IMS sourceid.source element for the item on the
WebCT server to determine if an object will be processed.

ID The Group→ SourcedID→ID element is used to generate

©2002 WebCT 75

the Course ID and is stored internally.
SHORT Yes This is the course title.
LONG No, but

recommended
This is the course description.

RELATIONSHIP Yes myrelationship=”1” indicates that the course specified
should be related to the term indicated.

SOURCE The Group →Relationship→Source element is used when
importing in restrict mode. This value is compared against
the IMS sourceid.source element for the term to which the
course is being assigned.

ID The Group→ Relationship→SourcedID→ID element refers
to the Group→ SourcedID→ID of the term this course is
being assigned to.

PERSON OBJECT
The following is an XML code fragment showing a person object:

<PERSON recstatus="1">
 <SOURCEDID>
 <SOURCE>Faber College SIS</SOURCE>
 <ID>39450210223</ID>
 </SOURCEDID>
 <USERID>HooverR</USERID>
 <NAME>
 <FN>Robert Hoover</FN>
 <N>
 <FAMILY>Hoover</FAMILY>
 <GIVEN>Robert</GIVEN>
 </N>
 </NAME>
 <EXTENSION>
 <WEBCREDENTIAL>ToughPassword</WEBCREDENTIAL>
 </EXTENSION>
</PERSON>

The following table describes data elements relevant to WebCT:

Data Element Required Description
RecStatus No This describes the type of action to be performed on an object.

Numbers are used for language independence.
1 = Add, 2 = Update, and 3 = Delete.
If no RecStatus is supplied, the API will default to 1 (Add) if the
record does not already exist, or 2 (Update) if the record does
exist.

Source Yes The Person→SourcedID→Source element is used when importing

in restrict mode. This value is compared against the IMS
sourceid.source element for the item on the WebCT server to
determine if an object will be processed.

©2002 WebCT 76

ID Yes The Person→ SourcedID→ID element is used as the WebCT ID

and is stored internally. The WebCT ID can be overridden by the
UserID element.

UserID No The option Person→ UserID element can specify a WebCT ID to

be used.

FN Yes The Person→ Name→FN (Formatted Name) element is required

by the IMS Specification and is stored internally. It is only used
for compliance.

Family No The Person→Name→N→Family element maps to the Last Name

field within the WebCT global database.

Given No The Person→ Name→N→Given element maps to the First Name

field within the WebCT global database.

WebCredential No The Person→ Extension→WebCredential data element maps to

the Password field within WebCT. If this element is not supplied,
the password defaults to the WebCT ID given to the user.

MEMBERSHIP OBJECT
The following is an XML code fragment showing a membership object with two member elements underneath
it (one student and one designer).

 <MEMBERSHIP>
 <SOURCEDID>
 <SOURCE>Faber College SIS</SOURCE>
 <ID>0390COMPSCI697CSec1-1164</ID>
 </SOURCEDID>
 <MEMBER>
 <SOURCEDID>
 <SOURCE>Faber College SIS</SOURCE>
 <ID>39450210223</ID>
 </SOURCEDID>
 <IDTYPE idtype="1"/>
 <ROLE recstatus="1" roletype="01">
 <USERID>39450210223</USERID>
 <STATUS>1</STATUS>
 <FINALRESULT>
 <RESULT>B</RESULT>
 </FINALRESULT>
 <EXTENSION>
 <MIDTERMRESULT>
 <RESULT>A</RESULT>
 <MIDTERMRESULT>
 </EXTENSION>

</ROLE>
 </MEMBER>
 <MEMBER>
 <SOURCEDID>

©2002 WebCT 77

 <SOURCE>Faber College SIS</SOURCE>
 <ID>012345678910</ID>
 </SOURCEDID>
 <IDTYPE idtype="1"/>
 <ROLE recstatus="1" roletype="02">
 <USERID>12345678910</USERID>
 <SUBROLE>Primary</SUBROLE>
 <STATUS>1</STATUS>
 </ROLE>
 </MEMBER>
 </MEMBERSHIP>

©2002 WebCT 78

The following table describes data elements relevant to WebCT:

Data Element Required Description
Membership→SourcedID→ID Yes This Membership→SourcedID→ID should match an

existing Group→SourcedID→ID element. Users will
be manipulated in the WebCT course instance that
this matches.

Member No The Membership→Member element can be repeated

multiple times to associate multiple users with the
group specified in Membership→SourcedID→ID.

Membership→Member
→SourcedID→Source

Yes The Membership→Member→SourcedID→Source
element is used when importing in restrict mode.
This value is compared against the IMS
sourceid.source element for the item on the WebCT
server to determine if an object will be processed.

Membership→Member
→SourcedID→ID

Yes This ID should match an existing
Person→SourcedID→ID. This is the person object
being added, updated, or deleted within the course.

IDType Yes The Membership→Member→IDType element is
required according to the IMS specification and
indicates if the member is a person (indicated by a
“1”) or a group object (indicated by a “2”). WebCT
only supports person objects.

RecStatus No This describes the type of action to be performed on

an object. Numbers are used for language
independence.
1 = Add, 2 = Update, and 3 = Delete.
If no RecStatus is supplied, the API will default to 1
(Add) if the record does not already exist, or 2
(Update) if the record does exist.

RoleType Yes The Membership→Member→Role→RoleType

determines what type of user this person object
should be. 01 = Learner/Student, 02 = Instructor.
Other numbers listed in the IMS Specification are not
currently supported.

UserID Condition

al
The Membership→Member→Role→UserID is a
required element if the associated person object has a
UserID associated with it. The UserIDs in both
objects must match or an error will be returned.

SubRole No For instructors/designers, a
Membership→Member→Role→Subrole can be
specified as “Primary” or “Subordinate” that map in

©2002 WebCT 79

Data Element Required Description
WebCT to primary and secondary designers. The
IMS specifications also suggest that “Teaching
Assistant” may be used as a SubRole. However,
WebCT’s IMS API does not yet support Teaching
Assistants.

Status Yes This Membership→Member→Role→Status element

affects students (but must be included for all users
for IMS-compliance). “1” indicates that a user is
active, and “0” indicates inactive. Students with
inactive status will be denied access and their records
within Manage Students will appear in gray.

Membership→Member→Role
→FinalResult→Result

No The
Membership→Member→Role→FinalResult→Result
element maps to the Final Grade column within
Manage Students

Membership→Member
→Extension→MidtermResult
→Result

No This element maps to the Midterm column within
Manage Students.

COMPLETE SPECIFICATIONS
A complete discussion of the IMS Enterprise Information Model is beyond the scope of this document. You
should refer to the IMS Enterprise Information Model, Version 1.01, available at
http://www.imsproject.org/enterprise.

OTHER XML CONSIDERATIONS
In addition to following the IMS specification for XML, WebCT requires that documents are well formed and
follow XML convention. Any error that causes WebCT’s XML parser to fail will result in the entire API action
failing with errors generated to standard error (on screen for command line operations, and to the Apache error
logs for Web-based requests). Applications that generate XML markup should ensure that they are following
the XML 1.0 specification (available from the W3C at http://www.w3.org/TR/REC-xml).

©2002 WebCT 80

SYNTAX
The general syntax for a Web-based request to the IMS API is as follows:

<GET | POST> /webct/ims/serve_ep_api.pl?ACTION=<action>&OPTION=<option>
&TIMESTAMP=<unix_epoch_time>&AUTH=<32_byte_mac>
[&INLINEMODE=<inlinemode>][&COURSE=<course>]
[&DATASOURCE=<datasource>][&TARGET=<target>][&ID=<id>]
[&SOURCE=<source>][&SCTMODE=<sctmode>] HTTP/1.0

[--Boundary_Value_Of_Your_Choosing]
[Content-Disposition: form-data; name=”FILENAME”; filename=”<filename>”
Content-Type: text/xml | Content-Type: text/plain

<file_content>]
[--Boundary_Value_Of_Your_Choosing]
[Content-Disposition: form-data; name=”STUDENTLIST”;

filename=”<studentlistfilename>”
Content-Type: text/plain

<studentlist_file_content>]

where:

ACTION Description
import Imports an XML extract into the WebCT global database.

export Exports an XML extract from the WebCT global database.

configure Configures the IMS ID for a person or group object

Notes:

• Although either GET or POST methods may be used, any request that requires the transfer of a file
requires you to use POST

• Requests using the POST method may pass the key/value pairs to the Web server using the
application/x-www-form-urlencoded content type or via the multipart/form-data content type
within the body of the message. If you are uploading a file, the multipart/form-data content-type is
required.

• Syntax examples represent http requests directly to the Web server. If you are using a programming
module to create your requests (such as LWP in Perl), many details of the request may be
transparent to you.

• Because POSTing in multipart/form-data is extremely verbose, syntax examples have been
consolidated so that only files to be uploaded appear in full syntax. Other key/value pairs are
presented in the query string. In practice, your requests must send all data in the message body
when POSTing.

©2002 WebCT 81

FUNCTIONS

IMPORT
This action imports data to the WebCT global database. The syntax for an import is:

POST /webct/ims/serve_ep_api.pl?ACTION=import&OPTION=<option>
&TIMESTAMP=<unix_epoch_time>&AUTH=<32_byte_mac>
&CHECKSUM=<checksum>[&INLINEMODE=<inlinemode>[&SCTMODE=<sctmode>] HTTP/1.0

--Boundary_Value_Of_Your_Choosing
Content-Disposition: form-data; name=”FILENAME” filename=”<filename>”
Content-Type: text/xml

<file_content>
--Boundary_Value_Of_Your_Choosing--

where:

Key/
Parameter

Value Description

restrict With restrict mode on, the sourcedid.source and sourcedid.ID
supplied in the XML file are checked against the IMS sourcedid
elements for similar objects to ensure they exist in the WebCT
database. Objects can be updated or deleted only if the
sourcedid.source element and sourcedid.ID elements match.

OPTION

unrestrict No checking of the sourcedid.source element is performed; only
the sourcedid.ID is checked.

TIMESTAMP UNIX epoch

timestamp
Time stamp in UNIX epoch format (seconds since midnight
GMT, Jan 1, 1970)

AUTH A valid MAC This is the 32 byte hexadecimal string generated using the

get_authentication C code, the get_md5 program, or using
custom code.

ON Objects are processed in the order they appear in the XML file. INLINE
OFF
(default)

Group and Person objects are processed before Membership
objects.

©2002 WebCT 82

Key/
Parameter

Value Description

ON (default) Scenario 1:
The following data elements are examined under
GROUPTYPE:
<TYPEVALUE level=”2”>Term</TYPEVALUE>
<TYPEVALUE level=”3”>Course</TYPEVALUE>
<TYPEVALUE level=”4”>Section</TYPEVALUE>
A group object is added to the global database if the Term value
appears but not the Course or Section values.

Scenario 2:
If the following data element is present under EXTENSION, the
group object is added to the global database:
<DELIVERY>WEBCT</DELIVERY>

Note: If Scenario 2 dictates that a group object should be added
to the global database, it will be, regardless of the result of
Scenario 1.

SCTMODE

OFF No checking of TYPEVALUE or DELIVERY is performed.

<filename> A valid

filename
Filename to be imported into WebCT.

<file_content> Contents of

XML extract.
The contents of an IMS-compliant XML file.

Example
This example imports an XML file that includes a single person object.

POST /webct/ims/serve_ep_api.pl HTTP/1.0
Content-length: 1253
Content-type: multipart/form-data; boundary=WebCT_Enterprise_API_Boundary

--WebCT_Enterprise_API_Boundary
Content-Disposition: form-data; name="ACTION"

import
--WebCT_Enterprise_API_Boundary
Content-Disposition: form-data; name="OPTION"

restrict
--WebCT_Enterprise_API_Boundary
Content-Disposition: form-data; name="TIMESTAMP"

984693507
--WebCT_Enterprise_API_Boundary
Content-Disposition: form-data; name="AUTH"

68056FBF19C2C5FE3B7AB63A06B9A009
--WebCT_Enterprise_API_Boundary
Content-Disposition: form-data; name="SCTMODE"

©2002 WebCT 83

OFF
--WebCT_Enterprise_API_Boundary
Content-Disposition: form-data; name="FILENAME"; filename="event.xml"
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ENTERPRISE SYSTEM "IMS-EP01.dtd" >

<ENTERPRISE>
 <PROPERTIES lang="EN">
 <DATASOURCE>Faber College SIS</DATASOURCE>
 <DATETIME>2001-03-04</DATETIME>
 </PROPERTIES>

 <PERSON>
 <SOURCEDID>
 <SOURCE>Faber College SIS</SOURCE>
 <ID>Hoover26</ID>
 </SOURCEDID>
 <USERID>rhoover</USERID>
 <NAME>
 <FN>Robert Hoover</FN>
 <N>
 <FAMILY>Hoover</FAMILY>
 <GIVEN>Robert</GIVEN>
 </N>
 </NAME>
 <DATASOURCE>Faber College SIS</DATASOURCE>
 <EXTENSION>
 <WEBCREDENTIAL>ToughPassword</WEBCREDENTIAL>
 </EXTENSION>
 </PERSON>

</ENTERPRISE>

--WebCT_Enterprise_API_Boundary—

The Web server returns (not including http headers):

Success: Data successfully imported.
Success: Import complete.

©2002 WebCT 84

EXPORT
This action exports data from the WebCT global database. The syntax for an export is:

<GET | POST> /webct/ims/serve_ep_api.pl?ACTION=export&OPTION=<option>
&TIMESTAMP=<unix_epoch_time>&AUTH=<32_byte_mac>
[&DATASOURCE=<datasource>]
[&TARGET=<target>][&TYPE=<type>][&ID=<id>]
[&STUDENTLIST=<studentlist>]
[&STUDENTLISTCHECKSUM=<studentlistchecksum>] HTTP/1.0

[--Boundary_Value_Of_Your_Choosing
Content-Disposition: form-data; name=”STUDENTLIST”;

filename=”<studentlist_filename>”
Content-Type: text/plain

<studentlist_file_content>
--Boundary_Value_Of_Your_Choosing--]

where:

Key/Parameter Input Description
snapshot Creates an XML file of all person, group and

membership objects
person_record Creates an XML file containing basic

information for a single student record
group_record Creates an XML file containing a list of users

with midterm and final grade information for a
given course

group_final_grades Creates an XML file containing a list of users
with final grade information for a given course

OPTION

group_midterm_grades Creates an XML file containing a list of users
with midterm grade information for a given
course

TIMESTAMP UNIX epoch

timestamp
Time stamp is in UNIX epoch format (seconds
since midnight GMT, Jan 1, 1970)

AUTH A valid MAC This is the 32 byte hexadecimal string

generated using the get_authentication C code,
the get_md5 program, or using custom code.

DATASOURCE Any alphanumeric

string up to 256
characters. Strings
containing spaces can
be enclosed in
quotation marks.

Sets the DATASOURCE element within the
PROPERTIES element. Defaults to “WebCT”
if none is specified.

TARGET Any alphanumeric

string up to 256
characters. Strings

Sets the TARGET element within the
PROPERTIES object

©2002 WebCT 85

Key/Parameter Input Description
containing spaces can
be enclosed in
quotation marks.

TYPE Any alphanumeric

string up to 256
characters. Strings
containing spaces can
be enclosed in
quotation marks.

Sets the TYPE element within the
PROPERTIES object

ID Any person or group
object
SourcedID→ID.

When exporting with the person_record,
group_record, group_final_grades, or
group_midterm_grades options, you use this
optional field to specify the person or group
object that you want to export

<studentlist_filename> Any valid filename This optional element is provided when using

the group_record, group_final_grades, or
group_midterm_grades options when you wish
to export a subset of data.

<studentlist_file_content> Contents of file This optional element is provided when using

the group_record, group_final_grades, or
group_midterm_grades options when you wish
to export a subset of data.
The file must be in plain text, with one IMS ID
per line.

Example
The following request generates an XML file for a person object with the Person→SourcedID→ID of
“Hoover26”:

GET /webct/ims/serve_ep_api.pl?ACTION=export&OPTION=person_record
&TIMESTAMP=984694373&ID=Hoover26
&AUTH=1F2E7CA6B6EBCE62D3FC089CA42E80FB HTTP/1.0

The server returns the following (not including http headers):

<?xml version="1.0" encoding="UTF-8"?>

<ENTERPRISE>
 <PROPERTIES>
 <DATASOURCE>WebCT</DATASOURCE>
 <DATETIME>2001-03-15T14:15:18-0800</DATETIME>
 </PROPERTIES>
 <PERSON>
 <SOURCEDID>
 <SOURCE>Faber College SIS</SOURCE>
 <ID>Hoover26</ID>
 </SOURCEDID>
 <USERID>rhoover</USERID>

©2002 WebCT 86

 <NAME>
 <FN>Robert Hoover</FN>
 <N>
 <FAMILY>Hoover</FAMILY>
 <GIVEN>Robert</GIVEN>
 </N>
 </NAME>
 <DATASOURCE>WebCT</DATASOURCE>
 </PERSON>
</ENTERPRISE>

CONFIGURE
Configure sets the IMS ID for group objects and person objects. The syntax for configure is:

<GET | POST> /webct/ims/serve_ep_api.pl?ACTION=configure&OPTION=<option>
&TIMESTAMP=<unix_epoch_time>&AUTH=<32_byte_mac>
[&COURSE=<course>][&GLOBALID=<WebCTID>][&ID=<id>][&SOURCE=<source>]

[--Boundary_Value_Of_Your_Choosing
Content-Disposition: form-data; name=”FILENAME”; filename=”<filename>”
Content-Type: text/plain

<file_content>
--Boundary_Value_Of_Your_Choosing--]

where:

Argument Input Description
set_group_ims_info Sets the IMS ID for a group object (course)
import_group_ims_info Sets the IMS ID for multiple group objects (courses)

from a file
set_person_ims_info Sets the IMS ID for a person object (user)
import_person_ims_info Sets the IMS ID for multiple person objects (users)

from a file

OPTION

get_person_ims_info Finds the IMS ID and IMS source for a single user

TIMESTAMP UNIX epoch timestamp Time stamp in UNIX epoch format (seconds since

midnight GMT, Jan 1, 1970)

AUTH A valid MAC This is the 32 byte hexadecimal string generated

using the get_authentication C code, the get_md5
program, or using custom code.

COURSE An existing Course ID An existing WebCT Course ID is required when

using the set_group_ims_info option.

GLOBALID An existing WebCT ID An existing WebCT ID is required when using the

set_person_ims_info option and the
get_person_ims_info option

ID Any valid IMS ID This argument sets the Group→SourcedID→ID or

©2002 WebCT 87

Argument Input Description
Person→SourcedID→ID for the set_group_ims_info
and set_person_ims_info options, respectively.

SOURCE Any valid IMS source This argument sets the Group→SourcedID→Source

or Person→SourcedID→Source for the
set_group_ims_info and
set_person_ims_info options, respectively.

<filename> A valid filename A filename must be supplied for
import_group_ims_info or
import_person_ims_info.

<file_content> Contents of text file The file must be plain text, in the format:

<webct_id>,<ims_id>,<ims_source_new>.

Example
This example sets the Person→Sourced→ID to “Pepperidge23” and the Person→SourcedID→Source to “Faber
College SIS” for the WebCT ID “mpepperidge”:

GET /webct/ims/serve_ep_api.pl?ACTION=configure
&OPTION=set_person_ims_info&TIMESTAMP=984701570
&GLOBALID=mpepperidge&ID=Pepperidge23
&SOURCE=Faber%20College%20SIS
&AUTH=95F5858984AB4D1571DC5BE9BD8E21DB HTTP/1.0

The Web server returns (not including http headers):

<RESPONSE responsetext="optional">SUCCESS</RESPONSE>
Success: IMS info updated for mpepperidge.

©2002 WebCT 88

CHAPTER 5
STANDARD API

The Standard API gives administrators and developers access to the WebCT databases via command line or
Web-based interfaces. The Standard API can be used to integrate external applications with WebCT. For
example, it can be used for integrating WebCT with a Student Information System.

FU N C T I O N A L I T Y I N T H E ST A N D A R D API
The Standard API allows you to manipulate two separate databases within WebCT, the global database and the
student database.

The global database contains the central listing of users for all users on the WebCT server. By default, the
global database contains the WebCT ID, Password, First Name, Last Name, Courses, and Registered Courses
fields. All users must have an entry in this database in order to access a course.

The student database is a term for a collection of databases specific to a course. Every WebCT course has its
own student database that contains, by default, the User ID, Password, First Name, and Last Name fields. The
information in the student database can be viewed most readily by looking at the designer interface of Manage
Students.

Generally, a WebCT ID is linked to a User ID for each course that a user is enrolled in. Users can have
different User IDs from their WebCT IDs, as well as different First Name and Last Name data in the student
and global databases.

The functionality of the Standard API can be divided into the following basic categories:

Adding Users • Adding a single user to the global database or student database
• Adding multiple users to the global database or student database

Updating Users • Updating a single user in the global database or student database

• Updating multiple users in the global database or student database
• Updating user types

Deleting Users • Deleting a single user from the global database or student database

• Deleting multiple users from the global database or student database

Finding WUUIs • Finding the WebCT Unique Universal Identifier in the global database,

either by WebCT ID or IMS ID

Important: Since the release of WebCT 3.6, the use of the WUUI for
Automatic Signon and the find_wuui operation are deprecated. With
WebCT moving towards the use of the IMS specifications, which are
becoming standards in the learning community, the IMS ID and IMS
source are now preferred over the WUUI. Although the use of the WUUI
is deprecated, the functionality remains.

Finding Users • Finding a user in the global database or student database

©2002 WebCT 89

Changing
WebCT IDs

• Changing a single user’s WebCT ID
• Changing multiple users’ WebCT IDs

Exporting myWebCT
in XML format

• Exporting a user’s myWebCT in XML format

IM P L E M E N T I N G T H E ST A N D A R D API

COMMAND LINE INTERFACE (WEBCTDB)
The command line interface to the standard API provides a simple interface to the WebCT API. The executable
file webctdb, is located in the directory <install_dir>/webct/webct/generic/api/.

SYNTAX
The general syntax for each of the Standard API operations is as follows:

Operation Field Names
add <db> <course> <fieldsData_pair_list> <separator> [encrypted]

delete <db> <course> <WebCT_ID | user_id>

changeid <db> <course> <fieldsData_pair_list> <separator>

update <db> <course> <fieldsData_pair_list> <separator> [encrypted]

find <db> <course> <WebCT_ID | user_id> <separator> [user_type]

find_wuui <db> <course> <WebCT_ID>

find_ims_id_wuui <db> <course> <IMS_ID>

fileadd <db> <course> <filename> <separator> [encrypted]

fileupdate <db> <course> <filename> <separator> [encrypted]

filedelete <db> <course> <filename>

filechangeid <db> <course> <filename> <separator>

homearea_xml <db> <course> <WebCT ID> <separator pair> <server base address>

©2002 WebCT 90

Field Name: db
Value: global or student
Example: global

Description: This is the name of the database, either global database or student database.

Field Name: course
Value: Course ID
Example: cs100

Description: - Required for student database operations.
- For global database operations, enter the placeholder value xxxx.

Field Name: fieldsData_pair_list
Value: A double quote-enclosed list of field-data pairs in the form:

field_name=data_value.
Example: WebCT ID=student1

Description: - The field names must exist in the WebCT global database or student
database. The separator must be inserted between each of the field-data
pairs.

- For the global database, the optional fields Courses and Registered
Courses are available for adding and/or modifying courses and registered
courses to which a global user belongs. The values for these fields can be
a colon-separated list of course IDs for Courses or course names for
Registered Courses. For example,
Courses=cs100:psyc100:math100. If you also specify a user
type with the course, this is separated from the course ID by a semicolon,
for example, Courses=cs100;D:psyc100;TA. Note: The default
user type is (S)tudent.

- A user can be added as a primary designer or as a secondary designer.
The first WebCT ID added to the course as a designer becomes the
primary designer; every subsequent designer becomes a secondary
designer.

©2002 WebCT 91

Field Name: fieldsData_pair_list (cont.)
Description: - Note: The following are reserved words in the fieldsData_pair_list:

- Login ID (this is old terminology, and is supported for backward
compatibility only. It has the same meaning as User ID).

- User ID (the User ID of a student in a course)
- Password (the password of the global user or the student)
- Global ID (this is old terminology, and is supported for backward

compatibility only. It has the same meaning as WebCT ID).
- WebCT ID (WebCT ID of a global user)
- First Name (first name of the global user or the student. It is one of the

reserved columns in both the global and student databases)
- Last Name (last name of the global user or the student. It is one of the

reserved columns in both the global and student databases)
- Courses (the list of WebCT courses for a global user). If you populate this

field through the API, the course must already exist on the WebCT server.
- Registered Courses (the list of courses maintained by the registrar for a

global user. These courses may or may not have a WebCT course.)
- Thumbprint (internal data and cannot be modified)
- LockPID (internal data and cannot be modified)
- #User Type (internal data. This can be modified through the API)
- #Email (internal data and cannot be modified)
- #Password Question (internal data and cannot be modified)
- #Password Answer (internal data and cannot be modified)
Note: The reserved words are case sensitive.

Field Name: separator
Value: Any alphanumeric string representing the separator between data pairs in the

fieldsData_pair_list.
Example: "," (comma)
Description: Delimiter used to separate data items. You must declare what value you will

be using as a delimiter for the operations add, delete, changeid, update, and
find.
Note: For the global database, the colon and semi-colon are not allowed as
separators.

Field Name: user_type
Value: user_type
Example: user_type

Description: Only used with the find operation on the global database; return value of
user_type is one of three users types, S,D,TA (for Student, Designer,
Teaching Assistant)

©2002 WebCT 92

Field Name: encrypted
Value: encrypted
Example: encrypted

Description: - Only used with the add, update, fileadd and fileupdate operations.
- The password must be encrypted using the standard UNIX DES

encryption method or the newly added or modified users may not be able
to access WebCT.

- Add to the end of the command line to indicate that the passwords are
passing in encrypted form.

FUNCTIONS

ADDING USERS
Users can be added to the global database or student databases. However, in general, you should add users to
the global database and use the Courses field to add them to each course. This method is simpler and
automatically links the WebCT ID to each User ID.

ADDING A SINGLE USER TO THE GLOBAL DATABASE
Operation = add
• The fieldsData_pair_list must include both the WebCT ID and Password fields.
• You can specify the user type (S for student, D for designer, TA for teaching assistant). If you

don’t specify a user type, the user type defaults to (S)tudent. If the user type is specified as
(D)esigner and there is no existing designer, the user is added as the primary designer. If there is
an existing designer, the user is added as secondary designer.

Example
Add a user named Justin Case to the global database as a designer for cs100; a teaching assistant for cs200; and
as a student in cs810:

Enter the command:
webctdb add global xxxx "WebCT ID=jcase,Password=1234,

First Name=Justin,Last Name=Case,Courses=cs100;D:cs200;TA:cs810;S" ","

ADDING A SINGLE USER TO THE STUDENT DATABASE
Operation = add
• The fieldsData_pair_list must include both the User ID and Password fields.

Example
Add a user named Bailey Wick to the student database for course cs100:

Enter the command:
webctdb add student cs100 "User ID=bwick,Password=1234,

First Name=Bailey,Last Name=Wick" ","

©2002 WebCT 93

ADDING MULTIPLE USERS TO THE GLOBAL DATABASE
Operation = fileadd
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is only the name of the file. A
file extension, such as .txt, is recommended.

• The file must be in plain text. The first line of the file must be the field names separated by the
separator string. The rest of the file contains the data, one record per line. Data should be in the
same order as the field names, separated by the value of the separator. There must be no spaces
between the data and the separators.

• If the user exists in the database, fileadd will send an error message to STDOUT. The user
record will not be changed; the process will skip to the next record in the file.

• An optional encrypted argument can be added at the end of the command line to indicate that
the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or the newly added or modified users may not be able to
access WebCT.

Example
Add users to the global database from a text file named users.txt.

SAMPLE USERS.TXT FILE:
WebCT ID,Password,Last Name,First Name
jsmith,9876,Smith,John
jbrown,2345,Brown,Jane
bfawlty,8765,Fawlty,Basil
arigsby,5432,Rigsby,Arthur

Enter the command:
webctdb fileadd global xxxx users.txt “,”

©2002 WebCT 94

ADDING MULTIPLE USERS TO THE STUDENT DATABASE
Operation = fileadd
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is only the name of the file. A
file extension, such as .txt, is recommended.

• The file must be in plain text. The first line of the file must be the field names separated by the
separator string. The rest of the file contains the data, one record per line. Data should be in the
same order as the field names, separated by the value of the separator. There must be no spaces
between the data and the separators.

• If the user exists in the database, fileadd will send an error message to STDOUT. The user
record will not be changed in the database; the process will skip to the next record in the file.

• An optional encrypted argument can be added at the end of the command line to indicate that
the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or the newly added users may not be able to access
WebCT.

Example
Add students whose records are stored in the file class.txt to the course cs100.

SAMPLE CLASS.TXT FILE
User ID,Password,Last Name,First Name,
jsmith,9876,Smith,John
jbrown,2345,Brown,Jane
bfawlty,8765,Fawlty,Basil
arigsby,5432,Rigsby,Arthur

Enter the command:
webctdb fileadd student cs100 class.txt “,”

©2002 WebCT 95

UPDATING USERS

UPDATING A SINGLE USER IN THE GLOBAL DATABASE
Operation = update
• The fieldsData_pair_list must include the WebCT ID.
• Empty fields are not changed.
• If the field value is “_DELETE_”, the value will be set to null
• The Standard API behavior when updating the Courses and Registered Courses field is to always

overwrite the field. If you supply a Courses field in your update, the user’s WebCT ID will be
linked to the courses that you supply, and unlinked from any pre-existing courses that you do not
supply.

• You can update a user type by specifying a different one.
• update cannot be used to modify quiz scores.
• An optional encrypted argument can be added at the end of the command line to indicate that

the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or updated users may not be able to access WebCT.

Example
For the student Justin Case, password 1234, with the following courses: cs100(D) cs200(TA) cs810(S), update
the password in the global database and update the courses so that only cs100 remains.

Enter the command:
webctdb update global xxxx "WebCT ID=jcase,Password=abcd,

Courses=cs100" ","

UPDATING A SINGLE USER IN THE STUDENT DATABASE
Operation = update
• The fieldsData_pair_list must include the User ID field.
• Empty fields are not changed.
• If the field value is “_DELETE_”, the value will be set to null
• The Standard API behavior when updating the Courses and Registered Courses field is to always

overwrite the field. If you supply a Courses field in your update, the user’s WebCT ID will be
linked to the courses that you supply, and unlinked from any pre-existing courses that you do not
supply

• You can update a user type by specifying a different one.
• update cannot be used to modify quiz scores.
• An optional encrypted argument can be added at the end of the command line to indicate that

the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or the updated users may not be able to access WebCT.

Example
To update the student Bailey Wick, first name, last name, and password of password “1234”.

Enter the command:
webctdb update student cs100 "User ID=bwick,Password=abcd,

First Name=Bailie,Last Name=Wicke" ","

©2002 WebCT 96

UPDATING MULTIPLE USERS IN THE GLOBAL DATABASE
Operation = fileupdate
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is the name of the file. A file
extension, such as .txt, is recommended.

• The file must be in plain text. The first line of the file must be the field names separated by the
separator string. The rest of the file contains the data, one record per line. Data should be in the
same order as the field names, separated by the value of the separator. There must be no spaces
between the data and the separators.

• An optional encrypted argument can be added at the end of the command line to indicate that
the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or the newly added or modified users may not be able to
access WebCT.

• fileupdate will add a user if they do not exist in the database.
• Empty fields will not be changed.
• For fileupdate, if the value field value is “_DELETE_”, the value will be set to null
• The Standard API behavior when updating the Courses and Registered Courses field is to always

overwrite the field. If you supply a Courses field in your update, the user’s WebCT ID will be
linked to the courses that you supply, and unlinked from any pre-existing courses that you do not
supply

Example
Change the names of a group of users whose updates are contained in the file updates.txt.

SAMPLE UPDATES.TXT FILE:
WebCT ID,Last Name,First Name
jsmith,Smith,Jerry
jbrown,Brown,Janet
bfawlty,Fawlty,Brian
arigsby,Rigsby,Alan

Enter the command:

webctdb fileupdate global xxxx updates.txt “,”

©2002 WebCT 97

UPDATING MULTIPLE USERS IN THE STUDENT DATABASE
Operation = fileupdate
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is the name of the file. A file
extension, such as .txt, is recommended.

• The file must be in plain text. The first line of the file must be the field names separated by the
separator string. The rest of the file contains the data, one record per line. Data should be in the
same order as the field names, separated by the value of the separator. There must be no spaces
between the data and the separators.

• An optional encrypted argument can be added at the end of the command line to indicate that
the passwords are passing in an encrypted form. The passwords should be encrypted using the
standard UNIX DES encryption method or the newly added or modified users may not be able to
access WebCT.

• fileupdate will add a student or user if they do not already exist in the database.
• Empty fields will not be changed.
• For fileupdate, if the field value is “_DELETE_”, the value will be set to null
• fileupdate overwrites the data fields being changed; it does not append.

Example
Change the names of students in the course cs100 using updates contained in the file updates.txt.

SAMPLE UPDATES.TXT FILE:
User ID,Last Name,First Name
jsmith,Smith,Jerry
jbrown,Brown,Janet
bfawlty,Fawlty,Brian
arigsby,Rigsby,Alan

Enter the command:
webctdb fileupdate student cs100 updates.txt “,”

DELETING USERS

DELETING A SINGLE USER FROM THE GLOBAL DATABASE
Operation = delete
• global_id is the ID of the user to be deleted from the global database.

Note: Depending on the User Data setting in the administrator interface, the student’s data may also
be deleted from the student database.

Example
Delete the global database record for the user whose WebCT ID is jcase. Note: The student will be denied
access to all the courses listed in their global database record. Depending on the User Data setting in the
administrator interface, the student’s data may also be deleted from the student database.

©2002 WebCT 98

Enter the command:
webctdb delete global xxxx jcase

DELETING A SINGLE USER FROM THE STUDENT DATABASE
Operation = delete
• user_id is the ID of the student to be deleted from the student database.

Example
Delete the record for the student in the cs100 course whose User ID is bwick.

Enter the command:
webctdb delete student cs100 bwick

DELETING MULTIPLE USERS FROM THE GLOBAL DATABASE
Operation = filedelete
• filename is the either a full absolute path or a relative path from the current directory to the file.

For example, if the file is located in the current directory, then filename is simply the name of the
file. A file extension, such as .txt, is recommended.

• If the user does not exist in the database, filedelete will send an error message to STDOUT.
The process will skip to the next record in the file.

Example
Delete users from the global database using a text file deleteusers.txt.

SAMPLE DELETEUSERS.TXT FILE:
jsmith
jbrown
bfawlty
arigsby

Enter the command:
webctdb filedelete global xxxx deleteusers.txt “,”

DELETING MULTIPLE USERS FROM THE STUDENT DATABASE
Operation = filedelete

©2002 WebCT 99

Operation = filedelete
• filename is the either a full absolute path or a relative path from the current directory to the file.

For example, if the file is located in the current directory, then filename is simply the name of the
file. A file extension, such as .txt, is recommended.

• If the user does not exist in the database, filedelete will send an error message to STDOUT
The process will skip to the next record in the file.

Example
Delete students whose records are stored in the file delete.txt from the course cs100.

SAMPLE DELETE.TXT FILE:
jsmith
jbrown
bfawlty
arigsby

Enter the command:

webctdb filedelete student cs100 delete.txt

FINDING WUUIS
Important: Since the release of WebCT 3.6, the use of the WUUI for Automatic Signon and the find_wuui
operation are deprecated. With WebCT moving towards the use of the IMS specifications, which are becoming
standards in the learning community, the IMS ID and IMS source are now preferred over the WUUI. Although
the use of the WUUI is deprecated, the function will still be supported for 3.7.

FINDING WUUIS USING IMS IDS
Operation = find_ims_id_wuui
• The WUUI (WebCT Unique Universal Identifier) is a 32-character alphanumeric string that

identifies a global user in WebCT.
• The find_ims_id_wuui operation is for the global database only.
• This operation is similar to the find_wuui operation, except that your campus portal passes

the user’s IMS ID, not their WebCT ID. WebCT returns the user’s WUUI.
• This operation can be used only when WebCT’s global database has been populated using the

IMS Enterprise API, because only in those cases would an IMS ID be present for each user in the
WebCT global database.

• IMS ID is the IMS ID of the user in the global database.
• The WUUI is sent to STDOUT.

Example
Find the WUUI for the user whose IMS ID is jcase.

Enter the command:

webctdb find_ims_id_wuui global xxxx jcase

The server returns:

©2002 WebCT 100

Success: WUUI=abcdefghijklmnopqrstuvwxyz123456

FINDING USERS

FINDING A USER IN THE GLOBAL DATABASE
Operation = find
• WebCT ID is the WebCT ID of the user in the global database.
• Separator is the separator of the output data, which is sent to STDOUT in the same format as the

fieldsData_pair_list.
• If the field name user_type is specified in a global database query, the user type (S,D,TA) will be

included in the result.

Example
Find the global database record, including user type, for the user with the WebCT ID jcase.

Enter the command:

webctdb find global xxxx jcase "," user_type

If the command is successfully executed:

Success: WebCT ID=jcase,First Name=Justin,
Last Name=Case,Courses=cs100;D:cs200;TA:cs810;S

FINDING A USER IN THE STUDENT DATABASE
Operation = find
• user_id is the User ID of the student in the student database.
• Separator is the separator of the output data, which is sent to STDOUT in the same format as the

fieldsData_pair_list.

Example
Find the student in the cs100 course whose User ID is bwick.

Enter the command:

webctdb find student cs100 bwick ","

If the command is successfully executed:

Success:First Name=Bailie,Last Name=Wicke,User ID=bwick

CHANGING WEBCT IDS

CHANGING A SINGLE USER’S WEBCT ID
Operation = changeid

©2002 WebCT 101

Operation = changeid
• changeid can only be used on the global database.
• old_id is the WebCT ID to be changed.
• new_id is the new WebCT ID.

Example
Change Justin Case’s WebCT ID from jcase to jicase.

Enter the command:

webctdb changeid global xxxx "Old ID=jcase,New ID=jicase” ","

CHANGING MULTIPLE USERS’ WEBCT IDS
Operation = filechangeid
• filename is either a full absolute path or a relative path from the current directory to the file. For

example, if the file is located in the current directory, then filename is simply the name of the
file. A file extension, such as .txt, is recommended.

• The first line of the data file should be the field names Old ID and New ID, separated by the
separator string. The rest of the file contains the data, one record per line. Data should be in the
same order as the field names, separated by the value of the separator. Note: The field name Old
ID does not exist in the databases.

• If the user does not already exist in the database, filechangeid will send an error message to
STDOUT The process will skip to the next record in the file.

Example
Change the WebCT IDs of a group of users contained in a file changeusers.txt.

SAMPLE CHANGEUSERS.TXT FILE:
Old ID,New ID
jsmith,jtsmith
jbrown,jkbrown
bfawlty,befawlty
arigsby,aurigsby

Enter the command:

webctdb filechangeid global xxxx changeusers.txt “,”

EXPORTING MYWEBCT IN XML FORMAT
This Standard API command exports a user’s myWebCT in XML format, which allows myWebCT information
to be modified and redisplayed in a desired format. For example, the information could be integrated with a
campus portal.

This command can be used in conjunction with automatic signon, allowing for a single point of authentication,
see Chapter 2: Automatic Signon From Other Systems.

©2002 WebCT 102

Operation = homearea_xml
• homearea_xml can only be used on the global

database.
• WebCT ID is the WebCT ID of the user whose

myWebCT you want to export in XML format.
• Separator is the separator of the output data, which

is sent to STDOUT in the same format as the
fieldsData_pair_list.

• server base address is the address of the WebCT
server.

The XML that is returned is compliant with the DTD located in
<install_dir>/webct/webct/generic/api/xml/webct2.dtd

The XML can be parsed to extract the required elements. Link elements that require authentication by WebCT
contain the attribute “secure” with a value of TRUE.

Example
Export myWebCT in XML format for the user whose WebCT ID is jsmith and whose server base address is
http://webctserver:port.

Enter the command:

webctdb homearea_xml global xxxx jsmith “,” http://webctserver:port

WEB-BASED INTERFACE (SERVE_WEBCTDB)
The Web-based Standard API allows data in the WebCT global database and student databases to be queried
and manipulated by remote servers. For example, the Web-based interface could be used to make changes to
global database records based on registration changes driven by events on another system. It could also be used
to create a custom administrator’s interface.

Implementing the Web-based interface involves two steps.

1. Setting the API shared secret value
2. Developing a program to generate an HTTP request

Step 1 can be accomplished by a WebCT administrator who has basic knowledge of the WebCT file system.
Step 2 requires an experienced Web developer.

1. SETTING THE API SHARED SECRET VALUE
The shared secret value is a key component of allowing external servers to automatically sign on users to
WebCT. The shared secret value is used to create a Message Authentication Code (MAC) from the submitted
data. When WebCT receives a request, it decodes the shared secret value from MAC using the submitted data.
If the decoded shared secret value is the same as the one stored locally, the request is considered authentic and
is processed. You can set the shared secret value by performing the following steps:

©2002 WebCT 103

1. Using a text editor, open the file
<webct_install_directory>/webct/webct/generic/api/api_secret

2. Change the first line of the file to your desired secret. (For security reasons, the default value
“SECRET” does not work). You should note the following about the shared secret value.

• It cannot exceed 256 characters.
• It cannot contain tab, or other control characters.
• It should not contain end-of-line characters. Note: By default, the UNIX text editor vi and pico

automatically add end-of-line characters. Check the file size to ensure that the number of characters
equals the number of bytes.

• It is case-sensitive
3. Save the file.

Because the shared secret value has such a critical role, choose it carefully.

Tips for
Shared
Secrets

¾ Make your shared secret value difficult to guess by making it
lengthy and by including a combination of numbers and upper and
lower case characters.

¾ Change your shared secret value at regular intervals.
¾ On remote systems, place shared secret values in secure directories.

2. DEVELOPING A PROGRAM TO GENERATE AN HTTP REQUEST
Developing a program to generate an http request is the most substantive part of implementing the Web-based
standard API. The program must:

• Generate a Message Authentication Code (MAC)
• Assemble a properly formatted http request
• Process any data being returned

CREATING MESSAGE AUTHENTICATION CODES
Because the Web interfaces to the Standard API and Automatic signon reside in public directories, Message
Authentication Codes (MACs) are required to ensure that only messages from trusted servers are processed.

WebCT provides three options to assist you in creating MACs:

1. A C function that you may integrate and compile into your C program
2. An executable file to which you make a system call from your program
3. Instructions for generating a MAC using a language of your choice

OPTION 1: USING THE GET_AUTHENTICATION C FUNCTION
The get_authentication function generates a MAC from an array of data and a shared secret value.

The source code necessary to use the C function is located in
<webct_install_directory>/webct/webct/generic/api/security/

A test program, which contains a Makefile for UNIX based systems, is also provided.

The file api_security.c contains the get_authentication function.

©2002 WebCT 104

get_authentication Generates a MAC from an array of data and a
shared secret value

Syntax char* get_authentication (int i, char* data[], char*

secret, char* encrypted_data)

Returns 32 byte alphanumeric MAC

Parameter Description

i The number of elements in the array data[].

data Array of all values to be used in generating the MAC.

The data should not be URL encoded.

secret The shared secret value.

encrypted_data The memory location of the MAC. It must be at least

32 bytes long.

OPTION 2: USING THE MESSAGE AUTHENTICATION CODE GENERATOR (GET_MD5 EXECUTABLE)
The Message Authentication Code (MAC) generator generates a MAC from a shared secret value and a string
consisting of the IMS ID, a timestamp, and a destination URL.

Use the Message Authentication Code generator (an executable called get_md5) if you are not working in C, or
do not want to create a function to create the MAC. You can make a system call to get_md5 from your program
and have the authentication string returned. The get_md5 executable has no dependencies on WebCT and can
be copied to other servers as required. If you need a get_md5 executable for an operating system other than the
one your WebCT server is running on, you can download several pre-compiled binaries for other operating
systems on WebCT.com.

get_md5

Generates a MAC from a shared secret value
and a line of data

Syntax get_md5 <shared_secret_filename>
<data_to_encrypt>

Returns 32 byte alphanumeric MAC

Attribute Description

shared_secret_filename The filename where the shared secret value is stored.

©2002 WebCT 105

string_to_encrypt The string to be encrypted. The string should not be
URL encoded.

OPTION 3: CREATE A MAC USING A LANGUAGE OF YOUR OWN CHOICE
If you want to create MACs within your code, (e.g. you are writing your code in Java and don’t want to make a
system call), you can create a MAC with the following procedure:

1. Calculate the total of the ASCII values of all the characters in the data.

2. Convert the total of the ASCII values into a string.

3. Append the shared secret value.

4. Encrypt the string into a 16-byte string using the MD5 algorithm.

5. Convert the 16-byte string into a 32-byte alphanumeric string to make it URL-friendly.

ASSEMBLING THE HTTP REQUEST
There are several options for assembling an http request to the Web-based standard API. The option you choose
will be based on your programming language of choice, and how you want to communicate with the Web
server. You can issue API commands in several ways, including:

• Socket programming directly with the Web server
• Using a library which simulates a user agent
• Assembling a GET request and refreshing a browser window with the query string.

In Perl, you have the option of communicating directly with the Web server using the IO::Socket module
included with most basic distributions, or installing and using a module such as LWP which simulates a user
agent (e.g. a Web browser). Similar modules are available for most popular languages such as C or Java.

If you wish to refresh a user’s browser window with a query string, you can do so using the “Location” http
header, HTML meta tags, or using JavaScript’s location.replace method.

SYNTAX
The general syntax for a Web-based request to the Standard API is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=<operation>&DB=<db>
&COURSE=<course_id | placeholder>&AUTH=<32_byte_mac>
[&User%20ID=<user_id> | &WebCT%20ID=<webct_id>][&IMS%20ID=<ims_id>]
[&USER%20TYPE=<1_or_0>][&ENCRYPTED=<1_or_0>][&field1=<field1>]
[&fieldn=<fieldn>]HTTP/1.0

where:

Key Value Description
add Adds a user to the global or student database.

If the user already exists, an error is returned.

update Updates an existing user in the global or student database.

If the user does not exist, this operation returns an error.

OPERATION

©2002 WebCT 106

Key Value Description
delete Deletes a single user from the global or student database.

find_wuui Finds the WUUI for a user using their WebCT ID as the key.
find_ims_id_wuui Finds the WUUI for a user using their IMS ID

(Person→SourcedID→ID) as the key.

find Finds the user record based on the User ID (if searching the

student database) or WebCT ID (if searching the global
database).

changeid Changes a WebCT ID.

homearea_xml Exports a user’s myWebCT in XML format.

Notes:

• The Standard API can accept GET or POST requests. POST requests can put their key/value pairs
in the query string or in the body of the message in the appropriate format (see the W3C HTML
4.01 Specification at http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4)

• Requests must be URL encoded (e.g. spaces should be replaced with %20)
• Key/value pairs may appear in any order
• Syntax examples represent http requests directly to the Web server. If you are using a programming

module to create your requests (such as LWP in Perl), many details of the request may be
transparent to you.

FUNCTIONS

ADDING USERS

ADDING A USER TO THE GLOBAL DATABASE
Add operations have the following syntax:

<GET | POST> /webct/public/serve_webctdb?OPERATION=add&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&WebCT%20ID=<webct_id>
&Password=<password>[&field1=<field1>][&fieldn=<fieldn>]
[&ENCRYPTED=<1_or_0>]HTTP/1.0

where:

Key Value Description
COURSE Any alphanumeric

string
This is a required placeholder value. You may use any
alphanumeric value, but ensure that you use it in the
calculation of the MAC.

AUTH 32 byte MAC This is the 32 byte hexadecimal string generated using

the get_authentication C code, the get_md5 program, or
using custom code.

©2002 WebCT 107

Key Value Description
WebCT ID WebCT ID The WebCT ID of the user being added.

WebCT IDs can contain alphanumeric strings,
underscores, and periods.

Password Password The password to be used for the user being added.

Passwords can consist of any alphanumeric string. The
API does not enforce minimum password lengths.

Field1
…
Fieldn
(optional)

Data associated with the
column specified as a
key.

Any of the default columns within the global database
(First Name, Last Name, Courses, Registered Courses)
can be modified using the syntax ColumnName=Value.
Administrator-created columns can also be modified
using this method.

1 Enables pre-encrypted password support. With the

encrypted argument set to 1, you should pass passwords
encrypted with the standard UNIX DES method when
using this setting.

ENCRYPTED
(optional)

0 (default) Disables pre-encrypted password support (default). In
this mode, passwords should be submitted as clear-text.

Note: The Courses field uses a colon as a delimiter between courses, and a semicolon as a delimiter between
user types. Thus the string “HKIN100;D:HKIN200;TA:HKIN300;S” indicates that a user is to be added to
HKIN100 as a designer, HKIN200 as a teaching assistant and HKIN300 as a student. If no user type is
specified, WebCT will default to adding the user as a student. Similarly, the Registered Courses field is colon
delimited. See the System Administrators Guide for more information on the Courses and Registered courses
field.

Example
Add a user to the global database, and enroll them in the course ENGL100 as a designer, ENGL560 as a
student, and ENGL477 as a teaching assistant.

GET /webct/public/serve_webctdb?OPERATION=add&DB=global&COURSE=xxxx
&AUTH= EB1A09F0BB299C23E99A5978587F49C1&WEBCT%20ID=pinto
&PASSWORD=an1mal&FIRST%20NAME=Larry&LAST%20NAME=Kroger&
COURSES=ENGL100;D:ENGL560:ENGL477;TA HTTP/1.0

ADDING A USER TO THE STUDENT DATABASE
Students can be added to the student database using the following syntax:

<GET | POST> /webct/public/serve_webctdb?OPERATION=add&DB=student
&COURSE=<course_id>&AUTH=<32_byte_mac>&User%20ID=<user_id>
&Password=<password>[&field1=<field1>][&fieldn=<fieldn>]
[&ENCRYPTED=<1_or_0>]HTTP/1.0

where:

©2002 WebCT 108

Key Value Description
COURSE WebCT Course ID The WebCT course to which the user will be added.

AUTH 32 byte MAC This is the 32 byte hexadecimal string generated

using the get_authentication C code, the get_md5
program, or using custom code.

User ID User ID The User ID of the user being added.

Password Password The password to be used for the user being added.

The API does not enforce minimum password
lengths.

Field1
…
Fieldn
(optional)

Data associated with the
column specified as a
key.

Any of the default columns within the global database
(First Name, Last Name, Courses, Registered
Courses) can be modified using the syntax
ColumnName=Value. Administrator-created columns
can also be modified using this method.

1 Enables pre-encrypted password support. With the

encrypted argument set to 1, you should pass
passwords encrypted with the standard UNIX DES
method when using this setting

ENCRYPTED
(optional)

0 (default) Disables pre-encrypted password support (default). In
this mode, passwords should be submitted as clear

Example
Add a student to the student database of the course ENGL588. In addition, add data to a pre-existing column
“StudentNumber” (This is a custom column created by the designer). Because this user is being added to the
student database only, they are considered an “orphan user” until a WebCT ID is associated with this User ID:

GET /webct/public/serve_webctdb?OPERATION=add&DB=student
&COURSE=ENGL588&AUTH=EB1A09F0BB299C23E99A5978587F49C1
&User%20ID=flounder&Password=an1mal&First%20Name=Kent
&Last%20Name=Dorfman&StudentNumber=123456789 HTTP/1.0

UPDATING USERS

UPDATING A USER IN THE GLOBAL DATABASE
Updating users in the global database is very similar to adding users. The syntax is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=update&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&WebCT%20ID=<webct_id>
[&FIELD1=<field1>][&FIELDN=<fieldn>][&ENCRYPTED=<1_or_0>]HTTP/1.0

where:

Key Value Description
COURSE Any alphanumeric

string
This is a required placeholder value. You may use any
alphanumeric value, but ensure that you use it in the

©2002 WebCT 109

Key Value Description
calculation of the MAC.

AUTH 32 byte MAC This is the 32 byte hexadecimal string generated using

the get_authentication C code, the get_md5 program, or
using custom code.

WebCT ID Existing WebCT ID The WebCT ID of the user being added.

WebCT IDs may contain alphanumeric strings,
underscores, and periods.

Password
(optional)

Password The password to be used for the user being updated. The
API does not enforce minimum password lengths.

Data associated with the
column specified as a
key.

Any of the default columns within the global database
(First Name, Last Name, Courses, Registered Courses)
can be modified using the syntax ColumnName=Value.
Administrator-created columns can also be modified
using this method.

Field1
…
Fieldn
(optional)

DELETE The “_DELETE_” keyword deletes the data from the
field specified in the key and sets it to undefined.

1 Enables pre-encrypted password support. With the

encrypted argument set to 1, you should pass passwords
encrypted with the standard UNIX DES method when
using this setting

ENCRYPTED
(optional)

0 (default) Disables pre-encrypted password support (default). In
this mode, passwords should be submitted as clear-text.

Notes:

• The User Data setting in the WebCT Administrator interface affects how updating the Courses
column will modify the student database when unlinking WebCT IDs from User IDs. If the User
Data setting is selected, user data is left in the student database.

• The Standard API always overwrites the Courses and Registered Course fields when updating. If
you supply a Courses field in your update, the user’s WebCT ID will be linked to the courses that
you specify, and unlinked from any pre-existing courses that you do not specify.

• The Courses field uses a colon as a delimiter between courses, and a semicolon as a delimiter
between user types. Thus the string “HKIN100;D:HKIN200;TA:HKIN300;S” indicates that a user
is to be added to HKIN100 as a designer, HKIN200 as a teaching assistant and HKIN300 as a
student. If no user type is specified, WebCT will default to adding the user as a student. Similarly,
the Registered Courses field is colon delimited. See the WebCT 3.7 Campus Edition System
Administrator’s Guide for more information on the Courses and Registered courses field.

Example
A user is currently enrolled in three courses: ENGL101 as a designer, ENGL560 as a student, and ENGL477 as
a teaching assistant. This example unlinks the WebCT ID from the User ID for ENGL 560 and ENGL 477, and
adds the WebCT ID to the course ENGL101 as designer.

©2002 WebCT 110

GET /webct/public/serve_webctdb?OPERATION=update&DB=global&COURSE=xxxx&AUTH=EB1A
09F0BB299C23E99A5978587F49C1&WebCT%20ID=pinto&Courses=ENGL101;D:ENGL101;D
HTTP/1.0

The user is unlinked from the two courses because API updates always overwrite fields.

UPDATING A USER IN THE STUDENT DATABASE
Updating students in the student database is very similar to adding students. The syntax is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=update&DB=student
&COURSE=<course_id>&AUTH=<32_byte_mac>&User%20ID=<user_id>
[&field1=<field1>][&fieldn=<fieldn>][&ENCRYPTED=<1_or_0>]HTTP/1.0

where:

Key Value Description
COURSE WebCT Course ID The WebCT course in which the user’s data is

updated.

AUTH 32 byte MAC This is the 32 byte hexadecimal string generated

using the get_authentication C code, the get_md5
program, or using custom code.

User ID User ID The User ID of the user being added.

Password
(optional)

Password The password to be used for the user being added.
The API does not enforce minimum password
lengths.

Data associated with the
column specified as a
key.

Any of the default columns within the global database
(First Name, Last Name, Courses, Registered
Courses) can be modified using the syntax
ColumnName=Value. Administrator-created columns
can also be modified using this method.

Field1
…
Fieldn
(optional)

DELETE The “_DELETE_” keyword deletes the data from the
field specified in the key and sets it to undefined.

1 Enables pre-encrypted password support. With the
encrypted argument set to 1, you should pass
passwords encrypted with the standard UNIX DES
method when using this setting.

ENCRYPTED
(optional)

0 (default) Disables pre-encrypted password support (default). In
this mode, passwords should be submitted as clear-
text.

Example
In the following example, a student record is updated with information for the instructor-added numeric
columns “Student Participation" and "Bonus" in the course MATH100.

©2002 WebCT 111

 GET /webct/public/serve_webctdb?OPERATION=update&DB=student&
COURSE=MATH100&AUTH=EB1A09F0BB299C23E99A5978587F49C1
&User%20ID=otter&Student%20Participation=100&Bonus=34 HTTP/1.0

DELETING USERS

DELETING A USER FROM THE GLOBAL DATABASE
The syntax for deleting a user from the global database is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=delete&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&WebCT%20ID=<webct_id>
HTTP/1.0

where:

Key Value Description
COURSE Any alphanumeric string This is a required placeholder value. You can use any

alphanumeric value, but ensure that you use it in the
calculation of the MAC.

AUTH 32 byte MAC This is the 32 byte hexadecimal string generated using the

get_authentication C code, the get_md5 program, or using
custom code.

WebCT ID WebCT ID The WebCT ID of the user being deleted.

Note: The User Data setting in the WebCT Administrator interface affects whether user data is left in a course
when a user record is deleted from the global database. If the User Data setting is selected, user data is left in
the student database.

Example
In this example, the user record for the user with the WebCT ID “neidermeyer” is deleted from the global
database:

GET /webct/public/serve_webctdb?OPERATION=delete&DB=global&COURSE=xxxx
&AUTH=EB1A09F0BB299C23E99A5978587F49C1&WebCT%20ID=neidermeyer
HTTP/1.0

DELETING A USER FROM THE STUDENT DATABASE
The syntax for deleting a student from the student database is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=delete&DB=student
&COURSE=<course_id>&AUTH=<32_byte_mac>&User%20ID=<user_id>
HTTP/1.0

where:

Key Value Description
COURSE WebCT Course ID The WebCT course from which the user will be deleted.

©2002 WebCT 112

AUTH 32 byte MAC This is the 32 byte hexadecimal string generated using the
get_authentication C code, the get_md5 program, or using custom
code.

User ID User ID The User ID of the user being deleted.

Example
In this example, the student with the User ID “stork” is deleted from the course PSYCH204-23:

GET /webct/public/serve_webctdb?OPERATION=delete&DB=student
&COURSE=PSYCH204-23&AUTH=EB1A09F0BB299C23E99A5978587F49C1
&User%20ID=stork HTTP/1.0

FINDING WUUIS
Important: Since the release of WebCT 3.6, the use of the WUUI for Automatic Signon and the find_wuui
operation are deprecated. With WebCT moving towards the use of the IMS specifications, which are becoming
standards in the learning community, the IMS ID and IMS source are now preferred over the WUUI. Although
the use of the WUUI is deprecated, the functionality remains.

The syntax for finding WUUIs is as follows:

<GET | POST> /webct/public/serve_webctdb?OPERATION=<operation>
&DB=global&field1=<field1>&COURSE=<placeholder>
&AUTH=<32_byte_mac> HTTP/1.0

Key Value Description

find_wuui Finds a user’s WUUI from a WebCT ID OPERATION
find_ims_id_wuui Finds a user’s WUUI from an IMS ID

AUTH 32 byte MAC This is the 32 byte hexadecimal string generated using

the get_authentication C code, the get_md5 program,
or using custom code.

field1 WebCT ID Use if the operation is find_wuui
 IMS ID Use if the operation is find_ims_id_wuui

COURSE Any alphanumeric string This is a required placeholder value. You can use any

alphanumeric value, but ensure that you use it in the
calculation of the MAC.

EXAMPLES

FINDING A USER’S WUUI FROM A WEBCT ID
Find the WUUI for the WebCT ID “jdoe”.

GET /webct/public/serve_webctdb?OPERATION=find_wuui&DB=global
&WebCT%20ID=jdoe&COURSE=xxxx&AUTH=EB1A09F0BB299C23E99A5978587F49C1
HTTP/1.0

©2002 WebCT 113

The Web server returns the following (not including http headers):

Success: #WUUI = 6321BB2537BE7F1E26375D4E1687EE1F

FINDING A USER’S WUUI FROM AN IMS ID
Find the WUUI for the IMS ID (Person→SourcedID→ID) “123456789”:

GET /webct/public/serve_webctdb?OPERATION=find_ims_id_wuui&DB=global
&IMS%20ID=123456789&COURSE=xxxx&
AUTH=EB1A09F0BB299C23E99A5978587F49C1 HTTP/1.0

The Web server returns the following (not including http headers):

Success: #WUUI = 6321BB2537BE7F1E26375D4E1687EE1F

FINDING USERS

FINDING A USER IN THE GLOBAL DATABASE
To find a user’s global database record, the following syntax is used:

<GET | POST> /webct/public/serve_webctdb?OPERATION=find&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&WebCT%20ID=<webct_id>
[USER%20TYPE=<1_or_0>]HTTP/1.0

where:

Key Value Description
OPERATION find Finds the user record for a given WebCT ID

COURSE Any alphanumeric string This is a required placeholder value. You can use any

alphanumeric value, but ensure that you use it in the
calculation of the MAC.

AUTH 32_byte_mac This is the 32 byte hexadecimal string generated using

the get_authentication C code, the get_md5 program,
or using custom code.

WebCT ID WebCT_ID The WebCT ID of the record you want to display.

1 With the User Type option enabled, the global database
record generated includes user type information that
indicates whether a user is a designer, student, or
teaching assistant for the course.

USER TYPE
(optional)

0 (default) No user type information is generated.

©2002 WebCT 114

Example
In this example, the complete record including user type information is returned for the user with the WebCT
ID “pinto”, who is enrolled in three courses.

GET /webct/public/serve_webctdb?OPERATION=find&DB=global&COURSE=xxxx
&AUTH=EB1A09F0BB299C23E99A5978587F49C1&WebCT%20ID=pinto
&USER%20TYPE=1 HTTP/1.0

The Web server returns the following, not including http headers:

Success: WebCT ID=pinto,First Name=Larry,Last Name=Kroger,Courses=
ENGL100;D:ENGL560;S:ENGL477;TA

FINDING A USER IN THE STUDENT DATABASE
To find a student’s student database record, the following syntax is used:

<GET | POST> /webct/public/serve_webctdb?OPERATION=find&DB=student
&COURSE=<course_id>&AUTH=<32_byte_mac>&User%20ID=<user_id> HTTP/1.0

where:

Key Value Description
OPERATION find Finds a user’s record for a given WebCT ID.

COURSE Any alphanumeric string The course that you are searching.

AUTH 32_byte_mac This is the 32 byte hexadecimal string generated using

the get_authentication C code, the get_md5 program,
or using custom code.

User ID User ID The User ID of the record you wish to display.

Example
In this example, a complete student database record is displayed for the user with User ID “chip” in the course
“HKIN455”:

GET /webct/public/serve_webctdb?OPERATION=find&DB=student
&COURSE=HKIN455=AUTH=EB1A09F0BB299C23E99A5978587F49C1&User%20ID=chip
HTTP/1.0

The Web server returns the following, not including http headers:

Success: First Name=Chip,Last Name=Diller,User ID=chip,Quiz1=36,Assignment1=10

©2002 WebCT 115

CHANGING WEBCT IDS

CHANGING A USER’S WEBCT ID
To change a WebCT ID for a user, use the syntax:

<GET | POST> /webct/public/serve_webctdb?OPERATION=changeid&DB=global
&COURSE=<placeholder>&AUTH=<32_byte_mac>&Old%20ID=<old_webct_id>
&New%20ID=<new_webct_id> HTTP/1.0

where:

Key Value Description
OPERATION changid Changes the WebCT ID of a user

COURSE Any

alphanumeric
string

This is a required placeholder value. You can use any
alphanumeric value, but ensure that you use it in the calculation
of the MAC.

AUTH 32_byte_mac This is the 32 byte hexadecimal string generated using the

get_authentication C code, the get_md5 program, or using
custom code.

Old ID Old WebCT ID The WebCT ID of the record you want to change.

New ID New WebCT

ID
The WebCT ID that you want to assign to the user.

Example
In this example, the WebCT ID “flounder” is changed to “dorfmank”:

GET /webct/public/serve_webctdb?OPERATION=changeid&DB=global&COURSE=xxxx
&AUTH=EB1A09F0BB299C23E99A5978587F49C1&Old%20ID=flounder
&New%20ID=dorfmank HTTP/1.0

The Web server returns the following, not including http headers:
Success:

EXPORTING MYWEBCT IN XML FORMAT
This Standard API command exports a user’s myWebCT in XML format, which allows myWebCT information
to be modified and redisplayed in a desired format. For example, the information could be integrated with a
campus portal.

This command can be used in conjunction with automatic signon, allowing for a single point of authentication,
see Chapter 2: Automatic Signon From Other Systems.

To export a user’s myWebCT in XML format, use the syntax:

<GET | POST> /webct/public/serve_webctdb?OPERATION=homearea_xml&DB=global
&WebCT%20ID=<WebCT ID>&AUTH=<32_byte_mac>

where:

©2002 WebCT 116

Key Value Notes
OPERATION homearea_xml Exports a user’s myWebCT in XML format.

WebCT ID WebCT ID The WebCT ID of the user whose myWebCT you want to export

in XML format.

AUTH 32_byte_mac This is the 32-byte hexadecimal string generated using the

get_authentication C code, the get_md5 program, or using
custom code.

The XML that is returned is compliant with the DTD located in
<install_dir>/webct/webct/generic/api/xml/webct2.dtd

The XML can be parsed to extract the required elements. Link elements that require authentication by WebCT
contain the attribute “secure” with a value of TRUE.

©2002 WebCT 117

RESOURCES

LDAP RE S O U R C E S

WEB SITES
LDAP Guru (http://www.ldapguru.com)
Provides a large database of articles and resources

Open LDAP (http://www.openldap.org)
Home of the OpenLDAP Project

iPlanet Directory Server (http://developer.iplanet.com/tech/directory/)
Information on iPlanet, one of the most commonly used LDAP servers.

KE R B E R O S RE S O U R C E S

WEB SITES
Kerberos: The Network Authentication Protocol
(http://web.mit.edu/kerberos/www/)
The home of the free MIT Kerberos implementation

The Kerberos FAQ
(http://www.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html)
Updated monthly and has answers to many common questions

Windows 2000 Kerberos Authentication
(http://www.microsoft.com/windows2000/techinfo/howitworks/security/kerberos.asp)
Detailed document about how Kerberos works in a Windows 2000 environment

IMS RE S O U R C E S

WEB SITES
The IMS Enterprise Specifications Site
(http://www.imsproject.org/enterprise/)
The authoritative resource for the IMS Enterprise Information model, the XML Binding Specification
and the Best Practices and Implementation Guide

