basic discounting formula: $PV = \frac{FV}{(1 + r)^t}$
perpetual annuity of $pmt/year: PV = \frac{pmt}{r}$

Calculate the FV of $PV = $100 invested for $t = 10$ years at annual growth rate
\[
\begin{align*}
r &= 0.03 \\
r &= 0.06 \\
r &= 0.1 \\
\end{align*}
\]

Calculate the PV of $FV = $1 million discounted at rate $r = 0.06$ to be received
\[
\begin{align*}
t &= 5 \text{ years from now} \\
t &= 10 \text{ years from now} \\
t &= 20 \text{ years from now} \\
\end{align*}
\]

Calculate the implicit rate of return r on a $PV = $1 million investment that yields $FV = $2 million
\[
\begin{align*}
t &= 8 \text{ years from now} \\
t &= 9 \text{ years from now} \\
t &= 12 \text{ years from now} \\
\end{align*}
\]

Calculate how many years t are required to increase your PV by 50% at annual growth rate
\[
\begin{align*}
r &= 0.04 \\
r &= 0.07 \\
r &= 0.1 \\
\end{align*}
\]

A sewage treatment facility will cost $2 million to build and $100,000/year to operate over a 50-year lifespan. The environmental benefits will be $200,000/year over the facility’s lifespan. How do you decide if this facility should be built?

A new scrubber on a coal-fired power plant will cost $600,000 today and has a 5-year lifespan. It will cut the plant’s SO_2 emissions by 400 tons/year starting next year. The plant is currently paying $200/ton in the market for SO_2 emissions permits but expects the price of permits to rise 20% each year. Should the plant install the scrubber or keep buying 400 SO_2 permits for 5 more years?

<table>
<thead>
<tr>
<th>year</th>
<th>scrubber</th>
<th>permitP</th>
<th>permits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$600,000</td>
<td>$200</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$240</td>
<td>$96,000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$288</td>
<td>$115,200</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$346</td>
<td>$138,240</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$415</td>
<td>$165,888</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$498</td>
<td>$199,066</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$714,394</td>
</tr>
</tbody>
</table>