

Figure 4. Distribution of $1,000-\mathrm{mb}$ contour height at 200 -foot intervals (solid lines) and $500-\mathrm{mb}$ temperature
at $5^{\circ} \mathrm{C}$ intervals (dashed lines) at 11 days. The small rectangle in the lower right corner shows the size of at $5^{\circ} \mathrm{C}$ intervals (dashed lines) at 11 days. The small rectangle in the lower right corner shows the size of the finite-difference grid intervals Δx and Δy

Figure 5. Distribution of $1,000-\mathrm{mb}$ contour height at $200-$ foot intervals (solid lines) and $500-\mathrm{mb}$ temperature at $5^{\circ} \mathrm{C}$ intervals (dashed lines) at 14 days. The small rectangle in the lower right corner shows the size of
the finite-difference grid intervals Δx and Δy.
so as to allow rapid recovery after recognized errors) resulted in a choice of a 17×16 lattice of grid points, 17 in the y-direction, and 16 in the x-direction. Δy was set equal to 625 km , so that the distance $2 W$ was equal to $10,000 \mathrm{~km}$. A large value for Δx would presumably allow several eddies to form in the distance $L=16 \Delta x$, but would produce

Phillips, 1956

Fig. 1. Diagram illustrating the distribution of continent and "ocean." Cyclic continuity is assumed at the eastern and western ends of the domain.

The Effects of Doubling the CO_{2} Concentration on the Climate of a General Circulation Model ${ }^{1}$

Atmosphere: Six (+n) equations in Six (+n) unknowns

-Conservation of Momentum: 3 equations. Hydrostatic in vertical and timedependent momentum equations in each horizontal dimension.

- Conservation of Mass: $2+n$ equations keeping track of dry air and water. Add in equations for additional trace species (recent).
- Conservation of Thermal energy.

Unknowns in this formulation: two horizontal velocity components, pressure, temperature, density, water mixing ratio, and as many other mixing ratios as needed for the trace gases.

Conservative Remapping on the Sphere

- Grid-to-Grid conservative Remapping based on Cascade interpolation
- Model pre/post-processing applications (data transfer)
- Regular latitude-longitude sphere to various cubed-sphere grids or vice versa
- Option for monotonic and high-order accurate data transfer

CAM5: nominal 0.9° lat by $\mathrm{I} .25^{\circ}$ Iongitude, 30 vertical levels

POP
(Parallel Ocean Program)
60 vertical levels
zonal: I.I ${ }^{\circ}$ spacing
meridional:
0.27° at equator,
increases to 0.54° poleward of 35°.

Poles shifted to be on land

NCAR Community Model Version History

- CCM0 Community Climate Model, 1982 - Spectral solution, R15
"Community" was NCAR + universities and national labs
- CCM1, 1987
-CCM2, 1992 - portable beyond Crays, Biosphere submodel
- CCM3, 1995 - first version run at UD (Strauss)
- CAM2 Community Atmospheric Model, 2003

Name change: Atmospheric part of CCSM2 -
Community Climate System Model
(Klingaman, Sklut)
-CAM3, 2004

- CAM4, 2010 - Finite Volume numerical formulation, urban land type
- CAM5, 2010 - beginning of CESM1

Community Environment System Model

CAM Development Timelines
 The path towards CESM2 and CMIP6 (as of Jun 2014)

RANK	SITE	SYSTEM	CORES	(TFLOP/S)	(TFLOP/S) (KW)	
36	NCAR (National Center for	Yellowstone - iDataPlex	72,288	$1,257.6$	$1,503.6$	1,437
	Atmospheric Research)	DX360M4, Xeon E5-2670				
United States	$8 C 2.600 \mathrm{GHz}$, Infiniband					
		FDR				
		IBM				

CESM Components:

Active Climate System Elements:
CAM: Atmosphere, including dynamics, clouds, radiation
CLM: Vegetation and soil
OCN: Ocean
ROF: River-runoff
ICE: Sea Ice
GLC: Land Ice

Four versions of each component:Active, Data, Dead, and Stub:

CPL: Coupler, ties combinations together

Perturbed - Control, Annual Average

Surface temperature (radiative)

Perturbed - Control, Annual Average

Surface temperature (radiative)

CAM3: $5 x$ methane, difference from control run. 10 year single simulations. Data ocean model

Porting CAM5

I. Get the source code and related scripts
2. Configure a case combination starting with dead
3. Build the appropriate components
4. Run the model to test a dead model
5. Generalize the configuration into a machine type.
6. Proceed with useful modeling.

Goal at UD:

- get CAM5 with DOM operating on one of our clusters

Purpose:

- Education of any climate students Geog 657 Climate Dynamics
(Currently using CAM3 on departmental Linux server)
- Education of students who will use CMIP data (More on next slide)
- Education of students who will do global climate modeling for thesis research, at least for proof-of-concept runs understanding of the climate system).

Experiment description	CMIP5 label	I	$\underset{\text { U }}{\substack{\text { U }}}$		Major purposes
Preindustrial contrel run	piContrel	x	x		Evaluation, unforced variability
Past ~1.5 centuries (I8S0-2005)	historical	X	x		Evaluation
AMIP run (observed SSTs and sea ice prescribed for 1979-present)	amip	X	X	X	Evaluation
Future projection (2006-2300) forced by RCP4. 5	rep45	X	x		Projection
Future projection (2005-2300) forced by RCPB. 5	rep85	X	x		Projection
Future projection (2006-2300) forced by RCP2.6	rep 26	X	x		Projection
Future projection (2006-2100) forced by RCP6	rcp60	X	x		Projection
Benchmark 1\% yr ${ }^{-1}$ increase in CO_{3} (to quadrupling)	$1 \mathrm{pctCO2}$	X	x		Cimate sensitivity, feedbaciks
Quadruple CO_{2} abruptly, then hold fixed	abrupt4xCO2	X	X		Cimate sensitivity, feedbacks, fast responses ${ }^{\text {b }}$
Climatological S5Ts and sea ice imposed from piControl	$35+C \mathrm{lim}$	X	x		Fast responses)
As in sstCim, but with $4 \times \mathrm{XCO}$, imposed	sstClim4xCO2	\times	x		Fast responses?
As in sstClim, but with aerosols specified from year 2000 of the historical run	sstClimAerosol	X	X		Fast responses*
As in sstClim, but with sulfate aerosols spetified from year 2000 of the historical run	sstClimSulfate	X	X		Fast responses*
Preindustrial conditions imposed as in pilControl, but with atmospheric CO, determined by the model itself	esm/Contral		X		Evaluation, carbon crele
Simulation of past, as in historical, but driven by CO_{1} emissions rather than concentrations	esmHistorical		X		Evaluation, carbon cycle
Future projection as in rep 85 , but driven by CO_{2} emissions rather than concentrations	esmrep85		X		Projection
Radiation code sees piControl CO , concentration, but carbon cyele sees $1 \% \mathrm{yr}^{-1}$ rise	esmFixCliml ${ }^{\text {c }}$		X		Carbon feedback
Carben cycle sees piControl CO_{2} concentration, but radiation sees $1 \% \mathrm{yr}^{-1}$ rise	esmFdbkl ${ }^{\text {c }}$		X		Carbon feedback
As in AMIP, but with radiation code seeing $4 \times \mathrm{CO}_{2}$	2 miptacO	x	x	x	Clouds, fast responses*
Patterned SST anomalies added to AMIP conditions (as called for by CFMIP)	amipFuture	X	X	\times	Cloud feedbucks
Zonally uniform SSTs imposed on an ocean-covered Earth (as called for by CFMIP)	aquaControl	X	X	x	Clouds
As in aquaControl, but with $4 \times \mathrm{CO} 2$	aqua $4 \times \mathrm{CO} 2$	X	x	x	Clouds, fast responses
As in aquaControl, but with a uniform 4 -K increase in SST	2qua 4 K	X	x	x	Cloud feedbacks
As in AMIP, but with a uniform 4-K increase in 5ST	amip4K	X	X	X	Cloud feedbacks
Historical simulation but with natural forring ooly	historitalNat	X	X		Detection and attribution
Historical simulation but with GHG forting enly	histericalGHG	X	X		Detection and attribution
Historical simulation but with other individual forcing agents or combinations of forcings	historicalMise	X	X		Detection and attribution
Extension of historical through year 2012	historical Ext	X	x		Evaluation, detection, attribution

Table I. List of experiments with official CMIP5 identifying labels, type of model(s) used to perform experiments, and major purposes (with the overall purpose of all experiments being to further scientific understanding of the climate system).

Experiment description	CMIP5 label	\sum U 0 0			Major purposes
Preindustrial control run	piControl	X	X		Evaluation, unforced variability
Past ~ 1.5 centuries (1850-2005)	historical	X	X		Evaluation
AMIP run (observed SSTs and sea ice prescribed for 1979-present)	amip	X	X	X	Evaluation
Future projection (2006-2300) forced by RCP4.5	rcp45	X	X		Projection
Future projection (2006-2300) forced by RCP8.5	rcp85	X	X		Projection
Future projection (2006-2300) forced by RCP2.6	rcp26	X	X		Projection
Future projection (2006-2100) forced by RCP6	rcp60	X	X		Projection
Benchmark $1 \% \mathrm{yr}^{-1}$ increase in CO_{2} (to quadrupling)	IpctCO2	X	X		Climate sensitivity, feedbacks

I. Get the source code and related scripts

- Registration required
- svn the tarball and unpack
- CESM I.2.I:
- 5274 files
- 2314 of the files are Fortran
- 1673016 lines in the Fortran files
- 581 Mb unpacked w/o data or build
- CAM5 active atmosphere
- 1750 files
- II75 of the files are Fortran
- 76725 I lines in the Fortran files

CESM User's Guide (CESM1.2 Release Series User's Guide) (PDF)

CESM Software Engineering Group (CSEG)
NCAR
Table of Contents

1. Introduction

How To Use This Document
CESM Model Version Naming Conventions
CESM Overview
5. Porting and Validating CESM on a new platform

Porting Overview
Step 1: Use create newcase with a userdefined machine name
Step 2: Enabling out-of-the box capability for your machine
Step 3: Port Validation
http://www.cesm.ucar.edu/models/cesm l.2/cesm/doc/usersguide/bookl.html

Step 1: Use create_newcase with a userdefined machine name

This section describes how to set up a case using a userdefined machine name and then within that case, how to modify the scripts to get that case running on a local machine.

1. Run create_newcase wtih a "userdefined" machine name. Then run cesm_setup in the new case directory.
[(geography:hanson)@mi11s hanson]\$ cd cesm1_2_1/scripts
[(geography:hanson)@mi11s scripts]\$./create_newcase -case test4 -res f45_g37 -compset X -mach userdefined
For a list of potential issues in the current tag, please point your web browser to:
https://svn-ccsm-models.cgd.ucar.edu/cesm1/known_problems/
grid longname is f45_g37
Component set: longname (shortname) (alias)
2000_XATM_XLND_XICE_XOCN_XROF_XGLC_XWAV (X) (X)
Component set Description:
XATM: XLND: Xrof: XICE: XOCN: XGLC: XWAV: present day:
Grid:
a\%4x5_1\%4x5_oi\%gx3v7_r\%r05_m\%gx3v7_g\%nu11_w\%nu11 (4x5_gx3v7)
ATM_GRID $=4 \times 5$ NX_ATM=72 NY_ATM=46
LND_GRID $=4 \times 5$ NX_LND=72 NX_LND=46
ICE_GRID $=\mathrm{gx} 3 \mathrm{v} 7$ NX_ICE=100 NX_ICE=116
OCN_GRID = gx3v7 NX_OCN=100 NX_OCN=116
ROF_GRID = r05 NX_ROF=720 NX_ROF=360
GLC_GRID $=4 \times 5$ NX_GLC= 72 NX_GLC=46
WAV_GRID = nul1 NX_WAV=0 NX_WAV=0
Grid Description:
null is no grid: 4×5 is FV 4-deg grid: gx3v7 is Greenland pole v7 3-deg grid: r05 is $1 / 2$ degree river routing grid:
Non-Default Options:
ATM_NCPL: 48
BUDGETS: FALSE
CCSM_CO2_PPMV: 379.000
COMP_ATM: xatm
COMP_GLC: xg1c
COMP_ICE: xice
COMP_LND: x7nd
COMP_OCN: xocn
COMP_ROF: xrof
COMP_WAV: xwav
CPL_ALBAV: false
CPL_EPBAL: off
GLC_NEC: 10
OCN_NCPL: 1
OCN_TIGHT_COUPLING: FALSE
ROF_NCPL: \$ATM_NCPL
SCIENCE_SUPPORT: NO
The PE layout for this case match these options:
GRID $=\mathrm{a} \% 4 \times 5$
CCSM_LCOMPSET = XATM
Creating /lustre/work/geography/hanson/cesm1_2_1/scripts/test4
Created /lustre/work/geography/hanson/cesm1_2_1/scripts/test4/env_case.xm1
Created /lustre/work/geography/hanson/cesm1_2_1/scripts/test4/env_mach_pes.xm1
Created /lustre/work/geography/hanson/cesm1_2_1/scripts/test4/env_build.xm1
Created /lustre/work/geography/hanson/cesm1_2_1/scripts/test4/env_run.xm1
Locking file /lustre/work/geography/hanson/cesm1_2_1/scripts/test4/env_case.xm1
Successfully created the case for userdefined
[(geography:hanson)@mi11s scripts]\$
```
[(geography:hanson)@mi11s scripts]$ cd test4
[(geography:hanson)@mil1s test4]$ 1s
archive_metadata.sh CaseStatus check_case create_production_test env_case.xm1 env_mach_specific
LockedFiles README.case SourceMods test4.clean_build Tools xmlquery
Buildconf cesm_setup check_input_data env_build.xm1
preview_namelists README.science_support test4.build test4.submit
[(geography:hanson)@mi11s test4]$./cesm_setup
ERROR: must set xml variable OS to generate Macros file
ERROR: must set xm1 variable MPILIB to build the model
ERROR: must set xm1 variable RUNDIR to build the model
ERROR: must set xm1 variable DIN_LOC_ROOT to build the mode1
ERROR: must set xm7 variable COMPILER to build the model
ERROR: must set xml variable EXEROOT to build the model
ERROR: must set xm7 variable MAX_TASKS_PER_NODE to build the model
Correct above and issue cesm_setup again
[(geography:hanson)@mil1s test4]$ x env_build.xm1
[(geography:hanson)@mills test4]$ x env_case.xm1
[(geography:hanson)@mi11s test4]$ x env_mach_pes.xm1
[(geography:hanson)@mills test4]$ x env_run.xm1
<!--"operating system - DO NOT EDIT UNLESS for userdefined machine - ignored once Macros has been created (char) " -->
<entry id="OS" value="USERDEFINED_required_macrosLINUX" />
<!--"Machine compiler (must match one the supported compilers) (char) " -->
<entry id="COMPILER" value="USERDEFINED_required_buildpgi" />
<!-"mpi library (must match one of the supported libraries) - ignored once Macros has been created (char) " -->
<entry id="MPILIB" value="USERDEFINED_required_buildopenmpi" />
```

```
[(geography:hanson)@mi11s test4]$ ./cesm_setup
```

LockedFiles/env_case.xm1.locked has been modified and is different than the LockedFiles version
Cannot change env_case.xm1, please recover the original copy from LockedFiles
Creating batch script test3.run
Locking file env_mach_pes.xm7
Creating user_n1_xxx files for components and cpl
Running preview_namelist script
infile is /lustre/work/geography/hanson/cesm1_2_1/scripts/test3/Buildconf/cp1conf/cesm_namelist
See ./CaseDoc for component namelists
If an old case build already exists, might want to run test3.clean_build before building
[(geography:hanson)@mi11s test4]\$
[(geography:hanson)@mi11s test4]\$ x Macros
SLIBS+= -L\$(NETCDF_PATH)/lib -Inetcdf -Inetcdff
CFLAGS:= -gopt -Mlist -time -O -Mvect=nosse
CONFIG_ARGS:=
MPI_PATH:= /opt/shared/openmpi/1.6.1-pgi1 1
NETCDF_PATH:= /home/software/netcdf/4.1.3-pgi
[(geography:hanson)@mi11s test4]\$./test4.build
CESM BUILDNML SCRIPT STARTING

- To prestage restarts, untar a restart.tar file into /lustre/work/geography/hanson/cam/run infile is /lustre/work/geography/hanson/cesm1_2_1/scripts/test4/Buildconf/cplconf/cesm_namelist CESM BUILDNML SCRIPT HAS FINISHED SUCCESSFULLY

CESM PRESTAGE SCRIPT STARTING

- Case input data directory, DIN_LOC_ROOT, is /lustre/work/geography/hanson/inputdata
- Checking the existence of input datasets in DIN_LOC_ROOT CESM PRESTAGE SCRIPT HAS FINISHED SUCCESSFULLY

CESM BUILDEXE SCRIPT STARTING

COMPILER is pgi

- Build Libraries: mct gpt1 pio csm_share

Tue Apr 28 12:43:40 EDT 2015 /lustre/work/geography/hanson/cam/mct/mct.bldlog.150428-124337
Tue Apr 28 12:44:16 EDT 2015 /lustre/work/geography/hanson/cam/gpt1/gpt1.b1dlog.150428-124337
Tue Apr 28 12:44:18 EDT 2015 /lustre/work/geography/hanson/cam/pio/pio.bldlog.150428-124337
Tue Apr 28 12:45:19 EDT 2015 /lustre/work/geography/hanson/cam/csm_share/csm_share.bldlog.
150428-124337
Tue Apr 28 12:48:56 EDT 2015 /lustre/work/geography/hanson/cam/atm.b1d1og.150428-124337
Tue Apr 28 12:48:58 EDT 2015 /lustre/work/geography/hanson/cam/lnd.bldlog.150428-124337
Tue Apr 28 12:48:59 EDT 2015 /lustre/work/geography/hanson/cam/ice.bldlog.150428-124337
Tue Apr 28 12:49:00 EDT 2015 /lustre/work/geography/hanson/cam/ocn.bldlog.150428-124337
Tue Apr 28 12:49:02 EDT 2015 /lustre/work/geography/hanson/cam/g1c.b1d1og.150428-124337
Tue Apr 28 12:49:03 EDT 2015 /lustre/work/geography/hanson/cam/wav.bldlog.150428-124337
Tue Apr 28 12:49:04 EDT 2015 /lustre/work/geography/hanson/cam/rof.bldlog.150428-124337
Tue Apr 28 12:49:06 EDT 2015 /lustre/work/geography/hanson/cam/cesm.bldlog.150428-124337

- Locking file env_build.xm7

CESM BUILDEXE SCRIPT HAS FINISHED SUCCESSFULLY
[(geography:hanson)@mi11s test4]\$

casename.run script

```
#===================================================================================
# USERDEFINED
# edit job launching
#====================================================================================
#mpiexec -n 16 $EXEROOT/cesm.exe >&! cesm.log.$LID
#mpirun -np 16 $EXEROOT/cesm.exe >&! cesm.log.$LID
set OPENMPI_FLAGS="--display-map --mca bt1 ^tcp --mca mt1 ^psm"
#mpiexec -n 16 $EXEROOT/cesm.exe >&! cesm.log.$LID
/home/software/openmpi/1.6.1-pgi11/bin/mpirun -np 16 ${OPENMPI_FLAGS} $EXEROOT/
cesm.exe >&! cesm.log.$LID
```

```
[(geography:hanson)@mi11s test3]$ qsub -S /bin/csh test3.run
Your job 955144 ("test3.run") has been submitted
[(geography:hanson)@mi11s test3]$ more test3.run.o955144
Warning: no access to tty (Bad file descriptor).
Thus no job control in this shell.
CESM BUILDNML SCRIPT STARTING
- To prestage restarts, untar a restart.tar file into /lustre/work/geography/hanson/cam/run
infile is /lustre/work/geography/hanson/cesm1_2_1/scripts/test3/Buildconf/cplconf/cesm_namelist
CESM BUILDNML SCRIPT HAS FINISHED SUCCESSFULLY
```


CESM PRESTAGE SCRIPT STARTING

```
- Case input data directory, DIN_LOC_ROOT, is /lustre/work/geography/hanson/inputdata
- Checking the existence of input datasets in DIN_LOC_ROOT
CESM PRESTAGE SCRIPT HAS FINISHED SUCCESSFULLY
Tue Apr 28 13:13:04 EDT 2015 -- CSM EXECUTION BEGINS HERE
Tue Apr 28 13:13:04 EDT 2015 -- CSM EXECUTION HAS FINISHED
grep: cp1.log.150428-131238: No such file or directory
Mode1 did not complete - see /lustre/work/geography/hanson/cam/run/cesm.1og.150428-131238
[(geography:hanson)@mi11s test3]\$
```

Data for node: n185 Num procs: 16
Process OMPI jobid: [32415,1] Process rank: 0
Process OMPI jobid: [32415,1] Process rank: 1
Process OMPI jobid: [32415,1] Process rank: 2
Process OMPI jobid: [32415,1] Process rank: 3
Process OMPI jobid: [32415,1] Process rank: 4
Process OMPI jobid: [32415,1] Process rank: 5
Process OMPI jobid: [32415,1] Process rank: 6
Process OMPI jobid: [32415,1] Process rank: 7
Process OMPI jobid: [32415,1] Process rank: 8
Process OMPI jobid: [32415,1] Process rank: 9
Process OMPI jobid: [32415,1] Process rank: 10
Process OMPI jobid: [32415,1] Process rank: 11
Process OMPI jobid: [32415,1] Process rank: 12
Process OMPI jobid: [32415,1] Process rank: 13
Process OMPI jobid: [32415,1] Process rank: 14
Process OMPI jobid: [32415,1] Process rank: 15

mpirun noticed that the job aborted, but has no info as to the process
that caused that situation.

[(geography:hanson)@mi11s test3]\$

Ongoing questions (to me):

- valet on csh, path to vpkg_require
- csh in general
- pio: pnetcdf
- LibXML

