

Figure 4. Distribution of 1,000-mb contour height at 200-foot intervals (solid lines) and 500-mb temperature at 5°C intervals (dashed lines) at 11 days. The small rectangle in the lower right corner shows the size of the finite-difference grid intervals Δx and Δy .

Figure 5. Distribution of 1,000-mb contour height at 200-foot intervals (solid lines) and 500-mb temperature at 5°C intervals (dashed lines) at 14 days. The small rectangle in the lower right corner shows the size of the finite-difference grid intervals Δx and Δy .

so as to allow rapid recovery after recognized errors) resulted in a choice of a 17×16 lattice of grid points, 17 in the y-direction, and 16 in the x-direction. Δy was set equal to 625 km, so that the distance 2W was equal to 10,000 km. A large value for Δx would presumably allow several eddies to form in the distance $L = 16\Delta x$, but would produce

FIG. 1. Diagram illustrating the distribution of continent and "ocean." Cyclic continuity is assumed at the eastern and western ends of the domain.

The Effects of Doubling the CO₂ Concentration on the Climate of a General Circulation Model¹

SYUKURO MANABE AND RICHARD T. WETHERALD

VOL. 32, NO. 1 JOURNAL OF THE ATMOSPHERIC SCIENCES JANUARY 1975

Atmosphere: Six (+n) equations in Six (+n) unknowns

- •Conservation of Momentum: 3 equations. Hydrostatic in vertical and timedependent momentum equations in each horizontal dimension.
- •Conservation of Mass: 2 + *n* equations keeping track of dry air and water. Add in equations for additional trace species (recent).
- •Conservation of Thermal energy.

Unknowns in this formulation: two horizontal velocity components, pressure, temperature, density, water mixing ratio, and as many other mixing ratios as needed for the trace gases.

Conservative Remapping on the Sphere

- Grid-to-Grid conservative Remapping based on Cascade interpolation
- Model pre/post-processing applications (data transfer)
- Regular latitude-longitude sphere to various cubed-sphere grids or vice versa
- Option for monotonic and high-order accurate data transfer

CAM5: nominal 0.9° lat by 1.25° longitude, 30 vertical levels

POP (Parallel Ocean Program) 60 vertical levels zonal: 1.11° spacing meridional: 0.27° at equator, increases to 0.54° poleward of 35°.

Poles shifted to be on land

NCAR Community Model Version History

- CCM0 Community Climate Model, 1982 Spectral solution, R15 "Community" was NCAR + universities and national labs
 CCM1 1007
- •CCM1, 1987
- CCM2, 1992 portable beyond Crays, Biosphere submodel
- •CCM3, 1995 first version run at UD (Strauss)
- CAM2 Community Atmospheric Model, 2003 Name change: Atmospheric part of CCSM2 – Community Climate System Model (Klingaman, Sklut)
- •CAM3, 2004
- CAM4, 2010 Finite Volume numerical formulation, urban land type
- •CAM5, 2010 beginning of CESM1

Community Environment System Model

Billions of Floating Point Operations per Simulated Day

Physics

High Res

Low Res

RANK	SITE	SYSTEM	CORES	RMAX (TFLOP/S)	RPEAK (TFLOP/S)	POWER (KW)
36	NCAR (National Center for Atmospheric Research) United States	Yellowstone - iDataPlex DX360M4, Xeon E5-2670 8C 2.600GHz, Infiniband FDR IBM	72,288	1,257.6	1,503.6	1,437

CESM Components:

Active Climate System Elements:

- CAM: Atmosphere, including dynamics, clouds, radiation
- CLM: Vegetation and soil
- OCN: Ocean
- ROF: River-runoff
- ICE: Sea Ice
- GLC: Land Ice

Four versions of each component: Active, Data, Dead, and Stub:

CPL: Coupler, ties combinations together

Perturbed - Control, Annual Average

Perturbed - Control, Annual Average

CAM3: 5x methane, difference from control run. 10 year single simulations. Data ocean model

Porting CAM5

- I. Get the source code and related scripts
- 2. Configure a case combination starting with dead
- 3. Build the appropriate components
- 4. Run the model to test a dead model
- 5. Generalize the configuration into a machine type.
- 6. Proceed with useful modeling.

Goal at UD:

• get CAM5 with DOM operating on one of our clusters

Purpose:

- Education of any climate students GEOG 657 Climate Dynamics (Currently using CAM3 on departmental Linux server)
- Education of students who will use CMIP data (More on next slide)
- Education of students who will do global climate modeling for thesis research, at least for proof-of-concept runs

TABLE 1. List of experiments with official CMIP5 identifying labels, type of model(s) used to perform experiments, and major purposes (with the overall purpose of all experiments being to further scientific understanding of the climate system).

Experiment description	CMIP5 label	AOGCM	ESM or EMIC	High resolution*	Major purposes
Preindustrial control run	piControl	х	х		Evaluation, unforced variability
Past ~1.5 centuries (1850-2005)	historical	х	х		Evaluation
AMIP run (observed SSTs and sea ice prescribed for 1979-present)	amip	x	x	×	Evaluation
Future projection (2006–2300) forced by RCP4.5	rcp45	х	х		Projection
Future projection (2006–2300) forced by RCP8.5	rcp85	х	х		Projection
Future projection (2006–2300) forced by RCP2.6	rcp26	x	×		Projection
Future projection (2006-2100) forced by RCP6	rcp60	х	х		Projection
Benchmark 1% yr-1 increase in CO, (to quadrupling)	IpetCO2	х	х		Climate sensitivity, feedbacks
Quadruple CO ₂ abruptly, then hold fixed	abrupt4xCO2	x	×		Climate sensitivity, feedbacks, fast responses ⁶
Climatological SSTs and sea ice imposed from piControl	sstClim	х	х		Fast responses ^b
As in sstClim, but with 4XCO ₂ imposed	sstClim4xCO2	х	х		Fast responses ^b
As in sstClim, but with aerosols specified from year 2000 of the historical run	sstClimAerosol	x	x		Fast responses ^b
As in sstClim, but with sulfate aerosols specified from year 2000 of the historical run	sstClimSulfate	x	x		Fast responses ⁵
Preindustrial conditions imposed as in piControl, but with atmospheric CO ₂ determined by the model itself	esmControl		x		Evaluation, carbon cycle
Simulation of past, as in historical, but driven by $\mathrm{CO}_{\rm 2}$ emissions rather than concentrations	esmHistorical		×		Evaluation, carbon cycle
Future projection as in rcp85, but driven by $\rm CO_2$ emissions rather than concentrations	esmrcp85		x		Projection
Radiation code sees piControl CO $_{\rm 2}$ concentration, but carbon cycle sees 1% yr $^{-1}$ rise	esmFixClim1 ^c		x		Carbon feedback
Carbon cycle sees piControl CO $_{\rm 2}$ concentration, but radiation sees 1% yr $^{-1}$ rise	esmFdbk1*		x		Carbon feedback
As in AMIP, but with radiation code seeing 4 × CO ₂	amip4xCO ₂	х	х	×	Clouds, fast responses ^b
Patterned SST anomalies added to AMIP conditions (as called for by CFMIP)	amipFuture	×	x	×	Cloud feedbacks
Zonally uniform SSTs imposed on an ocean-covered Earth (as called for by CFMIP)	aquaControl	x	x	×	Clouds
As in aquaControl, but with 4 × CO2	aqua4xCO2	х	х	×	Clouds, fast responses ^b
As in aquaControl, but with a uniform 4-K increase in SST	aqua4K	х	х	×	Cloud feedbacks
As in AMIP, but with a uniform 4-K increase in SST	amip4K	х	х	X	Cloud feedbacks
Historical simulation but with natural forcing only	historicalNat	х	х		Detection and attribution
Historical simulation but with GHG forcing only	historicalGHG	х	х		Detection and attribution
Historical simulation but with other individual forcing agents or combinations of forcings	historicalMisc	×	x		Detection and attribution
Extension of historical through year 2012	historicalExt	×	×		Evaluation, detection, attribution

Taylor, Stouffer, & Meehl, 2012

TABLE I. List of experiments with official CMIP5 identifying labels, type of model(s) used to perform experiments, and major purposes (with the overall purpose of all experiments being to further scientific understanding of the climate system).

Experiment description	CMIP5 label	AOGCM	ESM or EMIC	High resolution ^a	Major purposes
Preindustrial control run	piControl	X	X		Evaluation, unforced variability
Past ~1.5 centuries (1850-2005)	historical	X	X		Evaluation
AMIP run (observed SSTs and sea ice prescribed for 1979–present)	amip	x	x	×	Evaluation
Future projection (2006–2300) forced by RCP4.5	rcp45	X	X		Projection
Future projection (2006–2300) forced by RCP8.5	rcp85	X	X		Projection
Future projection (2006–2300) forced by RCP2.6	rcp 26	X	X		Projection
Future projection (2006–2100) forced by RCP6	rcp60	X	X		Projection
Benchmark 1% yr ⁻¹ increase in CO ₂ (to quadrupling)	IpctCO2	х	Х		Climate sensitivity, feedbacks

Taylor, Stouffer, & Meehl, 2012

- I. Get the source code and related scripts
 - Registration required
 - svn the tarball and unpack
 - CESM 1.2.1:
 - 5274 files
 - 2314 of the files are Fortran
 - 1673016 lines in the Fortran files
 - 581 Mb unpacked w/o data or build
 - CAM5 active atmosphere
 - 1750 files
 - 1175 of the files are Fortran
 - 767251 lines in the Fortran files

CESM User's Guide (CESM1.2 Release Series User's Guide) (PDF)

CESM Software Engineering Group (CSEG)

NCAR

Table of Contents

1. Introduction

How To Use This Document

CESM Model Version Naming Conventions

CESM Overview

• • •

5. Porting and Validating CESM on a new platform

<u>Porting Overview</u> <u>Step 1: Use create_newcase with a userdefined machine name</u> <u>Step 2: Enabling out-of-the box capability for your machine</u> <u>Step 3: Port Validation</u>

http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/usersguide/book1.html

Step 1: Use create_newcase with a userdefined machine name

This section describes how to set up a case using a userdefined machine name and then within that case, how to modify the scripts to get that case running on a local machine.

1. Run create_newcase with a "userdefined" machine name. Then run cesm_setup in the new case directory.

http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/usersguide/x1748.html

[(geography:hanson)@mills hanson]\$ cd cesm1_2_1/scripts [(geography:hanson)@mills scripts]\$./create_newcase -case test4 -res f45_g37 -compset X -mach userdefined For a list of potential issues in the current tag, please point your web browser to: https://svn-ccsm-models.cgd.ucar.edu/cesm1/known_problems/ _____ grid longname is f45_g37 Component set: longname (shortname) (alias) 2000_XATM_XLND_XICE_XOCN_XROF_XGLC_XWAV (X) (X) Component set Description: XATM: XLND: Xrof: XICE: XOCN: XGLC: XWAV: present day: Grid: a%4x5_1%4x5_oi%gx3v7_r%r05_m%gx3v7_g%null_w%null (4x5_gx3v7) $ATM_GRID = 4x5$ NX_ATM=72 NY_ATM=46 $LND_GRID = 4x5$ NX_LND=72 NX_LND=46 ICE_GRID = qx3v7 NX_ICE=100 NX_ICE=116 $OCN_GRID = gx3v7$ NX_OCN=100 NX_OCN=116 ROF_GRID = r05 NX_ROF=720 NX_ROF=360 $GLC_GRID = 4x5$ NX_GLC=72 NX_GLC=46 WAV_GRID = null NX_WAV=0 NX_WAV=0 Grid Description: null is no grid: 4x5 is FV 4-deg grid: gx3v7 is Greenland pole v7 3-deg grid: r05 is 1/2 degree river routing grid: Non-Default Options: ATM_NCPL: 48 BUDGETS: FALSE CCSM_CO2_PPMV: 379.000 COMP_ATM: xatm COMP GLC: xalc COMP_ICE: xice COMP_LND: x1nd COMP_OCN: xocn COMP_ROF: xrof COMP_WAV: xwav CPL ALBAV: false CPL_EPBAL: off GLC_NEC: 10 OCN_NCPL: 1 OCN_TIGHT_COUPLING: FALSE ROF_NCPL: \$ATM_NCPL SCIENCE_SUPPORT: NO The PE layout for this case match these options: GRID = a%4x5CCSM_LCOMPSET = XATM Creating /lustre/work/geography/hanson/cesm1_2_1/scripts/test4 Created /lustre/work/geography/hanson/cesm1_2_1/scripts/test4/env_case.xml Created /lustre/work/geography/hanson/cesm1_2_1/scripts/test4/env_mach_pes.xml Created /lustre/work/geography/hanson/cesm1_2_1/scripts/test4/env_build.xml Created /lustre/work/geography/hanson/cesm1 2 1/scripts/test4/env run.xm] Locking file /lustre/work/geography/hanson/cesm1_2_1/scripts/test4/env_case.xml Successfully created the case for userdefined [(geography:hanson)@mills scripts]\$

[(geography:hanson)@mills scripts]\$ cd test4 [(geography:hanson)@mills test4]\$ ls create_production_test env_case.xml archive_metadata.sh CaseStatus check_case env_mach_specific xmlquery LockedFiles README.case SourceMods test4.clean_build Tools cesm_setup check_input_data env_build.xml env_mach_pes.xml env_run.xml Buildconf preview_namelists README.science_support test4.build test4.submit xmlchange [(geography:hanson)@mills test4]\$./cesm_setup ERROR: must set xml variable OS to generate Macros file ERROR: must set xml variable MPILIB to build the model ERROR: must set xml variable RUNDIR to build the model ERROR: must set xml variable DIN_LOC_ROOT to build the model ERROR: must set xml variable COMPILER to build the model ERROR: must set xml variable EXEROOT to build the model ERROR: must set xml variable MAX_TASKS_PER_NODE to build the model Correct above and issue cesm_setup again [(geography:hanson)@mills test4]\$ x env_build.xm]

[(geography:hanson)@mills test4]\$ x env_bulld.xml [(geography:hanson)@mills test4]\$ x env_case.xml [(geography:hanson)@mills test4]\$ x env_mach_pes.xml [(geography:hanson)@mills test4]\$ x env_run.xml

<!--"operating system - DO NOT EDIT UNLESS for userdefined machine - ignored once Macros has been created (char) " -->
<entry id="OS" value="USERDEFINED_required_macrosLINUX" />
<!--"Machine compiler (must match one the supported compilers) (char) " -->
<entry id="COMPILER" value="USERDEFINED_required_buildpgi" />
<!--"mpi library (must match one of the supported libraries) - ignored once Macros has been created (char) " -->
<entry id="MPILIB" value="USERDEFINED_required_buildpgi" />

[(geography:hanson)@mills test4]\$./cesm_setup LockedFiles/env_case.xml.locked has been modified and is different than the LockedFiles version Cannot change env_case.xml, please recover the original copy from LockedFiles Creating batch script test3.run Locking file env_mach_pes.xml Creating user_nl_xxx files for components and cpl Running preview_namelist script infile is /lustre/work/geography/hanson/cesm1_2_1/scripts/test3/Buildconf/cplconf/cesm_namelist See ./CaseDoc for component namelists If an old case build already exists, might want to run test3.clean_build before building [(geography:hanson)@mills test4]\$ [(geography:hanson)@mills test4]\$ x Macros

SLIBS+= -L\$(NETCDF_PATH)/lib -lnetcdf -lnetcdff

CFLAGS:= -gopt -Mlist -time -O -Mvect=nosse

CONFIG_ARGS:=

• • •

MPI_PATH:= /opt/shared/openmpi/1.6.1-pgi11

NETCDF_PATH:= /home/software/netcdf/4.1.3-pgi

[(geography:hanson)@mills test4]\$./test4.build

CESM BUILDNML SCRIPT STARTING - To prestage restarts, untar a restart.tar file into /lustre/work/geography/hanson/cam/run infile is /lustre/work/geography/hanson/cesm1_2_1/scripts/test4/Buildconf/cplconf/cesm_namelist CESM BUILDNML SCRIPT HAS FINISHED SUCCESSFULLY CESM PRESTAGE SCRIPT STARTING - Case input data directory, DIN_LOC_ROOT, is /lustre/work/geography/hanson/inputdata - Checking the existence of input datasets in DIN_LOC_ROOT CESM PRESTAGE SCRIPT HAS FINISHED SUCCESSFULLY CESM BUILDEXE SCRIPT STARTING COMPILER is pgi - Build Libraries: mct gptl pio csm_share Tue Apr 28 12:43:40 EDT 2015 /lustre/work/geography/hanson/cam/mct/mct.bldlog.150428-124337 Tue Apr 28 12:44:16 EDT 2015 /lustre/work/geography/hanson/cam/gptl/gptl.bldlog.150428-124337 Tue Apr 28 12:44:18 EDT 2015 /lustre/work/geography/hanson/cam/pio/pio.bldlog.150428-124337 Tue Apr 28 12:45:19 EDT 2015 /lustre/work/geography/hanson/cam/csm_share/csm_share.bldlog. 150428-124337 Tue Apr 28 12:48:56 EDT 2015 /lustre/work/geography/hanson/cam/atm.bldlog.150428-124337 Tue Apr 28 12:48:58 EDT 2015 /lustre/work/geography/hanson/cam/lnd.bldlog.150428-124337 Tue Apr 28 12:48:59 EDT 2015 /lustre/work/geography/hanson/cam/ice.bldlog.150428-124337 Tue Apr 28 12:49:00 EDT 2015 /lustre/work/geography/hanson/cam/ocn.bldlog.150428-124337 Tue Apr 28 12:49:02 EDT 2015 /lustre/work/geography/hanson/cam/glc.bldlog.150428-124337 Tue Apr 28 12:49:03 EDT 2015 /lustre/work/geography/hanson/cam/wav.bldlog.150428-124337 Tue Apr 28 12:49:04 EDT 2015 /lustre/work/geography/hanson/cam/rof.bldlog.150428-124337 Tue Apr 28 12:49:06 EDT 2015 /lustre/work/geography/hanson/cam/cesm.bldlog.150428-124337 Locking file env_build.xml CESM BUILDEXE SCRIPT HAS FINISHED SUCCESSFULLY

[(geography:hanson)@mills test4]\$

casename.run script

#mpiexec -n 16 \$EXEROOT/cesm.exe >&! cesm.log.\$LID
#mpirun -np 16 \$EXEROOT/cesm.exe >&! cesm.log.\$LID

set OPENMPI_FLAGS="--display-map --mca btl ^tcp --mca mtl ^psm"

#mpiexec -n 16 \$EXEROOT/cesm.exe >&! cesm.log.\$LID
/home/software/openmpi/1.6.1-pgi11/bin/mpirun -np 16 \${OPENMPI_FLAGS} \$EXEROOT/
cesm.exe >&! cesm.log.\$LID

[(geography:hanson)@mills test3]\$ gsub -S /bin/csh test3.run Your job 955144 ("test3.run") has been submitted [(geography:hanson)@mills test3]\$ more test3.run.o955144 Warning: no access to tty (Bad file descriptor). Thus no job control in this shell. CESM BUILDNML SCRIPT STARTING - To prestage restarts, untar a restart.tar file into /lustre/work/geography/hanson/cam/run infile is /lustre/work/geography/hanson/cesm1_2_1/scripts/test3/Buildconf/cplconf/cesm_namelist CESM BUILDNML SCRIPT HAS FINISHED SUCCESSFULLY CESM PRESTAGE SCRIPT STARTING - Case input data directory, DIN_LOC_ROOT, is /lustre/work/geography/hanson/inputdata - Checking the existence of input datasets in DIN_LOC_ROOT CESM PRESTAGE SCRIPT HAS FINISHED SUCCESSFULLY Tue Apr 28 13:13:04 EDT 2015 -- CSM EXECUTION BEGINS HERE Tue Apr 28 13:13:04 EDT 2015 -- CSM EXECUTION HAS FINISHED grep: cpl.log.150428-131238: No such file or directory Model did not complete - see /lustre/work/geography/hanson/cam/run/cesm.log.150428-131238 [(geography:hanson)@mills test3]\$

[(geography:hanson)@mills test3]\$ more /lustre/work/geography/hanson/cam/run/cesm.log.150428-131238 _____

Data for node: n185 Num procs: 16 Process OMPI jobid: [32415,1] Process rank: 0 Process OMPI jobid: [32415.1] Process rank: 1 Process OMPI jobid: [32415,1] Process rank: 2 Process OMPI jobid: [32415,1] Process rank: 3 Process OMPI jobid: [32415.1] Process rank: 4 Process OMPI iobid: [32415.1] Process rank: 5 Process OMPI jobid: [32415,1] Process rank: 6 Process OMPI jobid: [32415.1] Process rank: 7 Process OMPI jobid: [32415,1] Process rank: 8 Process OMPI jobid: [32415,1] Process rank: 9 Process OMPI jobid: [32415.1] Process rank: 10 Process OMPI jobid: [32415,1] Process rank: 11 Process OMPI jobid: [32415,1] Process rank: 12 Process OMPI jobid: [32415.1] Process rank: 13 Process OMPI jobid: [32415,1] Process rank: 14 Process OMPI jobid: [32415,1] Process rank: 15

JOB MAP

/lustre/work/geography/hanson/cam/cesm.exe: error while loading shared libraries: libnetcdf.so.7: cannot open shared object file: No such file or directory /lustre/work/geography/hanson/cam/cesm.exe: error while loading shared libraries: libnetcdf.so.7: cannot open shared object file: No such file or directory /lustre/work/geography/hanson/cam/cesm.exe: error while loading shared libraries: libnetcdf.so.7: cannot open shared object file: No such file or directory /lustre/work/geography/hanson/cam/cesm.exe: error while loading shared libraries: libnetcdf.so.7: cannot open shared object file: No such file or directory /lustre/work/geography/hanson/cam/cesm.exe: error while loading shared libraries: libnetcdf.so.7: cannot open shared object file: No such file or directory /lustre/work/geography/hanson/cam/cesm.exe: error while loading shared libraries: libnetcdf.so.7: cannot open shared object file: No such file or directory /lustre/work/geography/hanson/cam/cesm.exe: error while loading shared libraries: libnetcdf.so.7: cannot open shared object file: No such file or directory /lustre/work/geography/hanson/cam/cesm.exe: error while loading shared libraries: libnetcdf.so.7: cannot open shared object file: No such file or directory /lustre/work/geography/hanson/cam/cesm.exe: error while loading shared libraries: libnetcdf.so.7: cannot open shared object file: No such file or directory /lustre/work/geography/hanson/cam/cesm.exe: error while loading shared libraries: libnetcdf.so.7: cannot open shared object file: No such file or directory /lustre/work/geography/hanson/cam/cesm.exe: error while loading shared libraries: libnetcdf.so.7: cannot open shared object file: No such file or directory /lustre/work/geography/hanson/cam/cesm.exe: error while loading shared libraries: libnetcdf.so.7: cannot open shared object file: No such file or directory /lustre/work/geography/hanson/cam/cesm.exe: error while loading shared libraries: libnetcdf.so.7: cannot open shared object file: No such file or directory /lustre/work/geography/hanson/cam/cesm.exe: error while loading shared libraries: libnetcdf.so.7: cannot open shared object file: No such file or directory /lustre/work/geography/hanson/cam/cesm.exe: error while loading shared libraries: libnetcdf.so.7: cannot open shared object file: No such file or directory /lustre/work/geography/hanson/cam/cesm.exe: error while loading shared libraries: libnetcdf.so.7: cannot open shared object file: No such file or directory

mpirun noticed that the job aborted, but has no info as to the process that caused that situation.

[(geography:hanson)@mills test3]\$

Ongoing questions (to me):

- valet on csh, path to vpkg_require
- csh in general
- pio: pnetcdf
- LibXML