
UNIX Workshop Series:

Shell Programming

Part II

Objectives

 Overview – Connecting with ssh

 Bash Shell

 Script Basics

 Script Project

 This project is based on using the gnuplot
program which reads a command file, a data file
and writes an image file as an x-y plot.

Overview

Connecting with ssh

 Open a Terminal program

Mac: Applications > Utilities > Terminal
ssh –Y username@centos.css.udel.edu

 Linux: In local shell
ssh –Y username@centos.css.udel.edu

 Windows: Start Xming and PuTTY
Create a saved session for the remote host
name centos.css.udel.edu using username

Connecting with ssh

 First time you connect

Shell Basics

 The shell is a command interpreter. We
are using the bash shell (/bin/bash).

 It is the insulating layer between the
operating system kernel and the user.

 It is also a powerful programming
language.

 A shell program is called a script.

What is a script?

 Nothing more than a list of system
commands stored in a file.

 More than just saving time for repetitive
tasks.

 Can be modified and customized for
particular applications.

 Documents work flow.

Script Basics: source

 hello1

Script Basics: sha-bang
& export
 hello2

Script Basics: Special
Characters
 # comment except #! (sha-bang)

 ' ' suppress all meaning (single quotes)

 " " suppress all meaning except $, \, ` (double
quotes)

 ` ` value of string is output of the command
(back quotes)

 \ to get a literal special character - escape
(backslash)

 ; command separator

 spaces are important

Script Basics: Special
Characters
 hello3

Script Project

Part 1: Build a gnuplot command file (STDOUT).

Part 2: Read a data file (STDIN) and create a
new data file suitable for gnuplot using an x, y
pair on each line (STDOUT) with error checking
(STDERR).

Part 3: Execute the gnuplot command with the
command file as the argument.

Part 1: echo

Display message on screen.

echo [options]... [string]...

-n Do not output the trailing
newline.

Part 1: echo

Part 1: source & if – then

Run commands from a file.

source filename [arguments]

Conditionally perform a command.

if [test-commands]; then

 consequent-commands

else

 alternate-consequents

fi

Part 1: source & if – then

Part 1: Testing

Part 1: Testing

Part 1: case

Conditionally perform a command.

case word in

pattern)

command-list

;;

pattern)

command-list

;;

esac

Part 1: case

Part 1: Testing

Part 1: function

Part 2: read

Read a line from standard input.

read [-ers] [-a aname] [-p prompt]

[-t timeout] [-n nchars] [-d delim]
[name...]

-r If this option is given, backslash does
not act as an escape character.

Part 2: read

Part 2: if – then – elif

Conditionally perform a command.

if [test-commands]; then

 consequent-commands

elif [more-test-commands]; then

 more-consequents

fi

-n True if tests nonzero (contains data).

-z True if tests zero (no data).

Part 2: if – then – elif

Part 2: while

Execute consequent-commands as
long as test-commands has an exit
status of zero

while test-commands; do

consequent-commands

done

Part 2: while

Part 2: Testing

Part 2: Testing

Part 2: Testing

Part 2: let & if

Perform arithmetic on shell variables.

let expression [expression]

Test-commands using and

if [expr1 -a expr2]; then

 if both expr1 and expr2 are true.

 consequent-commands

 fi

Part 2: let & if

Part 2: return

Cause a shell function to exit with the
return value n.

return [n]

Part 2: function

Part 3: Putting it all
together

Part 3: functions.sh

Part 3: Testing

Part 3: Testing

Part 3: command line
options

Part 3: command line
options

Part 3: command line
options

Part 3: Testing

Part 3: Testing

Resources

 Bash scripting Tutorial
http://www.linuxconfig.org/Bash_scripting_Tutorial

 Advanced Bash-Scripting Guide
http://tldp.org/LDP/abs/html/

 VTC (Unix Shell Scripting Advanced) – need to
request an account
http://www.udel.edu/it/learnit/course/vtccom.
html

	Slide 1
	Objectives
	Overview
	Connecting with ssh
	Connecting with ssh
	Shell Basics
	What is a script?
	Script Basics: source
	Script Basics: sha-bang & export
	Script Basics: Special Characters
	Script Basics: Special Characters
	Script Project
	Part 1: echo
	Part 1: echo
	Part 1: source & if – then
	Part 1: source & if – then
	Part 1: Testing
	Part 1: Testing
	Part 1: case
	Part 1: case
	Part 1: Testing
	Part 1: function
	Part 2: read
	Part 2: read
	Part 2: if – then – elif
	Part 2: if – then – elif
	Part 2: while
	Part 2: while
	Part 2: Testing
	Part 2: Testing
	Part 2: Testing
	Part 2: let & if
	Part 2: let & if
	Part 2: return
	Part 2: function
	Part 3: Putting it all together
	Part 3: functions.sh
	Part 3: Testing
	Part 3: Testing
	Part 3: command line options
	Part 3: command line options
	Part 3: command line options
	Part 3: Testing
	Part 3: Testing
	Resources

