
chapter

9
Making Web

Pages
Accessible

“The power of the Web is in its
universality. Access by everyone
regardless of disability is an essential
aspect.”

—Tim Berners-Lee,

director of the W3C and

inventor of the World Wide Web

2

In this chapter, you will
learn how to:

■ Define the concept of Web
accessibility and list applicable
guidelines and standards for
making Web sites accessible.

■ List the HTML coding practices
you must follow to make a Web
site meet the Section 508
accessibility standards.

■ Identify resources other than
HTML pages that must adhere
to the accessibility guidelines in
order for a Web site to be
accessible.

■ Define how style sheets can
enhance a Web site’s
accessibility.

■ List the tools you can use to
assess the extent to which a
site follows Web accessibility
standards.

AC C E S S to the Internet is vitally important for anyone who
plans to participate in the twenty-first century information economy. So
essential is the Web that to be denied access is to be disenfranchised. To
help ensure that all U.S. citizens have access, the U.S. government has en-
acted laws mandating that certain accessibility features must be built into
any Web site that receives public funding or serves constituents of federally
funded programs. Because the need is worldwide, the W3C has initiated a
Web Accessibility Initiative (WAI) that works with organizations around
the world to coordinate efforts to enable all users to access the Web, re-
gardless of disability or special needs.

Making the Web truly accessible to everyone is a great challenge, be-
cause users with special needs have many different kinds of disabilities.
This chapter begins by making you aware of guidelines you can follow to
make your Web pages accessible. Tutorial exercises will step you through
the process of implementing HTML coding practices that bring a Web site
into compliance with federally mandated accessibility standards. Because
a Web site can include many kinds of multimedia documents, however, ac-
cessibility goes beyond HTML. In order for a site to be truly accessible, all
of its printed, audio, and video formats must also comply with accessibil-
ity rules. This chapter will identify multimedia accessibility guidelines that
are emerging for non-HTML resources typically found on the Web.

In the long run, however, creating alternate representations may not
be the best approach. Rather, the key to achieving true accessibility may be
for the computer industry to provide a way for end users to specify the
kind of accessibility they need. Imagine how a style sheet, for example,
could invoke an XML module to transform a certain class of Web content
into a representation suited to the special needs of the viewer. After provid-
ing some examples of style sheets that provide new avenues for Web acces-
sibility in the future, this chapter will conclude by providing tools you can
use to evaluate the extent to which a Web page follows the guidelines cur-
rently in force.

Defining Web Accessibility

Web accessibility is the capability that makes it possible for users with spe-
cial needs to receive, understand, and navigate content that people with-
out handicaps can process without special assistance. Users with special

Chapter 9: Making Web Pages Accessible

needs have many different kinds of handicaps. As you will learn in this
chapter, the Web accessibility guidelines currently in force address primar-
ily the needs of seeing- or hearing-impaired users. The current guidelines
fall short for other kinds of handicaps, such as physical motion impair-
ments and mental cognitive differences. Making Web sites truly accessible
to all users is an ongoing challenge, especially for people with multiple
handicaps. After presenting the guidelines currently in force, this chapter
will discuss efforts that are underway to build in accessibility to the Web
from an architectural perspective known as universal design.

Accessibility Is a Right

In the United States, Web accessibility is a right that is guaranteed by law
under Section 508 of the Rehabilitation Act of 1973, as amended in 1998.
According to the Section 508 law, a Web site is accessible when users with
special needs can access it as well as people without disabilities. The law
requires that all Web sites (as well as other forms of information technol-
ogy) used, procured, developed, or maintained by government agencies
and departments must be accessible. If your school or business receives
any kind of federal funding, therefore, the law may require you to follow
the Section 508 accessibility standards presented in this chapter. Whether
or not the law applies to your particular situation, the Section 508 stan-
dards are not difficult to implement. This chapter’s tutorial will provide
you with step-by-step instructions for creating Web pages that are Section
508 compliant. On behalf of users with special needs, I encourage you to
follow these guidelines, regardless of whether the law requires them in
your workplace.

W3C Web Accessibility Initiative (WAI)

Before diving into the Section 508 accessibility standards, you need to
learn a little historical background on the source of those standards. In
1997, the W3C launched the Web Accessibility Initiative (WAI), which
coordinates the Web’s official efforts to achieve accessibility. WAI went
right to work on HTML version 4.0, which introduced new mechanisms
for making Web page elements accessible. To provide Web authors with
guidance in using the new accessibility features, the WAI issued a set of
guidelines called the WAI Web Content Accessibility Guidelines version
1.0. These guidelines influenced the formulation of the Section 508 guide-
lines that this chapter will present. The work of the WAI is documented at
www.w3.org/WAI.

WAI Web Content Accessibility Guidelines

The Web Content Accessibility Guidelines (WCAG) consist of 65 check-
points organized under 14 general guidelines. Each checkpoint is assigned
to one of three priority levels, which define the degree to which the site is
accessible. Priority 1 is defined as a checkpoint that must be met, otherwise
many users with disabilities will find it impossible to access the material.
Priority 2 is a checkpoint that should be met, otherwise users will find it

difficult, but not impossible, to access the material. Priority 3 is a check-
point that may be met, in order to further access to Web documents. The
three levels of conformance are designated A, AA, and AAA, respectively.
Conformance level A requires that a site pass all Priority 1 checkpoints.
Conformance level AA (pronounced double-A) requires the passing of all
Priority 1 and 2 checkpoints. Level AAA (triple-A) requires that a site pass
all of the checkpoints at Priorities 1, 2, and 3. Depending on the level at
which a Web site claims to conform, the site’s pages can display one of
three conformance logos described in Table 9-1.

Section 508 Accessibility Standards

The Section 508 accessibility standards do not include levels of confor-
mance and as many checkpoints as the WCAG guidelines. Instead, Section
508 includes 16 Web accessibility requirements, all of which must be met
in order for a Web site to be considered accessible. To see the standards, go
to www.section508.gov and follow the link to the 508 law, which will give
you the choice of viewing either a summary or a detailed presentation of
the regulations. The next part of this chapter is a tutorial in making Web
pages comply with the 16 Web accessibility standards in the Section 508
guidelines.

Coding to the Section 508 Web Accessibility Standards

Table 9-2 lists the 16 rules of the Section 508 Web accessibility standards.
These rules are lettered from (a) through (p) in section §1194.21 of the
law. The following sections of this chapter are a brief guide to creating ac-
cessible Web pages that comply with these rules. The tutorial exercises
cover the rules in the order in which they appear in the law. For more de-
tailed examples, go to www.section508.gov and follow the link to 508
Training.

Textual Equivalents for Nontext Elements

Section 508 Web accessibility rule (a) requires that you must provide a tex-
tual equivalent for every nontext element onscreen. HTML has two attrib-
utes that you can use to create textual equivalents for nontext elements:
the alt attribute and the longdesc attribute. The attribute alt stands for

Internet Technologies at Work

Logo What the Logo Means

Conformance Level A: this page satisfies all Priority 1 checkpoints.

Conformance Level Double-A: this page satisfies all Priority 1 and 2
checkpoints.

Conformance Level Triple-A: this page satisfies all Priority 1, 2, and 3
checkpoints.

TABLE 9-1 W3C Web Content Accessibility Guidelines 1.0 Conformance Logos �

alternate; true to its name, you use the alt attribute when you want to
provide alternate text for a nontext element, such as an image. When a
sighted user mouses over the element, the alternate text pops up in a tool-
tip window the user can see onscreen. When a seeing-impaired user ac-
cesses the page with a screen reader, it speaks the text aloud, thereby pro-
viding a way for users with vision impairments to know what is pictured in
the image.

When you use the alt attribute, the alternate text should be brief. If the
textual description is longer than 150 characters, you should use the at-
tribute longdesc, which stands for long description.

Using the alt Attribute

Using the alt attribute is very straightforward. To provide alternate text
for any image onscreen, follow these steps:

1. Use the Notepad to open the file containing the image. In this
example, open the resume.html page you created in Chapter 6.

Chapter 9: Making Web Pages Accessible

Rule Web Accessibility Requirement

(a) A text equivalent for every non-text element shall be provided (e.g., via alt, longdesc, or in element content).

(b) Equivalent alternatives for any multimedia presentation shall be synchronized with the presentation.

(c) Web pages shall be designed so that all information conveyed with color is also available without color, for example from
context or markup.

(d) Documents shall be organized so they are readable without requiring an associated style sheet.

(e) Redundant text links shall be provided for each active region of a server-side image map.

(f) Client-side image maps shall be provided instead of server-side image maps except where the regions cannot be defined
with an available geometric shape.

(g) Row and column headers shall be identified for data tables.

(h) Markup shall be used to associate data cells and header cells for data tables that have two or more logical levels of row or
column headers.

(i) Frames shall be titled with text that facilitates frame identification and navigation.

(j) Pages shall be designed to avoid causing the screen to flicker with a frequency greater than 2 Hz and lower than 55 Hz.

(k) A text-only page, with equivalent information or functionality, shall be provided to make a web site comply with the
provisions of this part, when compliance cannot be accomplished in any other way. The content of the text-only page shall
be updated whenever the primary page changes.

(l) When pages utilize scripting languages to display content, or to create interface elements, the information provided by the
script shall be identified with functional text that can be read by assistive technology.

(m) When a web page requires that an applet, plug-in or other application be present on the client system to interpret page
content, the page must provide a link to a plug-in or applet that complies with §1194.21(a) through (l).

(n) When electronic forms are designed to be completed on-line, the form shall allow people using assistive technology to
access the information, field elements, and functionality required for completion and submission of the form, including all
directions and cues.

(o) A method shall be provided that permits users to skip repetitive navigation links.

(p) When a timed response is required, the user shall be alerted and given sufficient time to indicate more time is required.

TABLE 9-2 The 16 Rules of the Section 508 Web Accessibility Standards �

2. Click to position your cursor inside the tag of the image
for which you want to provide alternate text. In this example,
position your cursor before the closing bracket of the tag
that displays your picture onscreen.

3. Using the alt attribute, type the alternate text you want the
image to have. In this example, type an explanation that identifies
who is pictured onscreen:

4. Save the file, and then open it with your Web browser. Use your
mouse to hover over the image until the tool-tip window appears.
Notice how the alternate text appears in the tool-tip window.

Using the longdesc Attribute

If an image conveys more information than you can describe in 150 char-
acters, you should use the longdesc attribute, which tells assistive de-
vices the location of the HTML file that contains the long description. In
conjunction with longdesc, you should also provide an alt attribute,
which can identify the topic that the long description describes. The com-
mand syntax is as follows:

Internet Technologies at Work

This is the filename of your image. Type the alternate text between the quote signs.

L 9-1

Synchronized Alternatives for Multimedia Presentation

Section 508 Web accessibility rule (b) requires that “Equivalent alterna-
tives for any multimedia presentation shall be synchronized with the pre-
sentation.” In the previous chapter, you learned how to use the XHTML+
SMIL timing module to write synchronized text onscreen to caption a
video clip from President John F. Kennedy’s famous moon challenge
speech. If you tried to caption another video following that same tech-
nique, you probably found that it can take quite some time to figure out
the timing values. To save time, you can use captioning tools that can de-
termine these timings more efficiently.

One of the most popular tools is called MAGpie, which you can down-
load from the National Center for Accessible Media (NCAM) at
ncam.wgbh.org/webaccess/magpie. The MAG in MAGpie stands for Me-
dia Access Generator. Figure 9-1 shows how MAGpie makes it easy to cre-
ate closed captions for audio tracks and videos recorded for playback by
Apple’s QuickTime Player, Real Networks’ Real Player, and Microsoft’s
Windows Media Player. MAGpie can also create captions for integration
into SMIL presentations. In 2003, MAGpie won an honorable mention
for best educational streaming program in Streaming magazine’s reader’s
choice awards.

The longdesc attribute specifies the URL of the file
containing the full description of the election results.

In this example, the image displays election
results that require several paragraphs of text to describe. The alt attribute contains alternate text identifying the topic of the image.

Conveying Color-Coded Information from Context or Markup

A significant number of users are color blind. About 10 percent of males,
for example, are unable to perceive red or green. About half of a percent of
females have similar difficulties distinguishing between red and green.
That is why rule (c) forbids using color to convey information that cannot
be understood in the absence of color. Whenever you are color-coding a
chart or a graph, therefore, make sure you provide an alternate way in
which someone who is color blind can understand the color-coded infor-
mation. In the section “Table Row and Column Headers” later in this
chapter, for example, you will learn how to create row and column headers
in an HTML table. You can use these headers to explain any categoriza-
tion conveyed by color-coded data cells.

You must also avoid navigational instructions that rely solely on color.
Telling the user to press the red button, for example, violates rule (c). To
bring such a statement into compliance, you could print the word stop in-
side the button and tell the user to press the red stop button. Thus, users
who cannot see red can identify the button via the word stop.

When printing text on colored backgrounds, you must make sure that
your color choices have enough contrast. On the left side of Figure 9-2,
you see how people with different kinds of color blindness perceive a color
combination which seems to have enough contrast but is lacking in blue hues.
On the right side of the figure, you see the same image with more blue hues.

Making Web Pages Readable Without Requiring Style Sheets

The previous chapter touted the fanciful features of style sheets. Note
however that Section 508 Web accessibility rule (d) requires that Web
pages must be readable without requiring style sheets. Is this a contradic-
tion? It depends on how you are using the style sheet. Rule (d) means that
you must not use a style sheet so that it changes the meaning that the page
would convey without the style sheet.

Chapter 9: Making Web Pages Accessible

FIGURE 9-1 MAGpie makes it easy to mark timings and type the captions that will appear onscreen when the clip reaches each time
segment. MAGpie was created by the CPB/WGBH National Center for Accessible Media with funding from the Mitsubishi

Electric America Foundation and the U.S. Department of Education’s National Institute on Disability and Rehabilitation Research. �

Internet Technologies at Work

Regardless of what style sheets the page may already call upon, the user
can always add another style sheet by editing the browser’s accessibility
settings. Figure 9-3 shows how to do this via the IE browser’s Accessibility
dialog. Because the style sheet specified in the Accessibility dialog is always
last on the cascade, the end user can redefine or override any style on the
page. Thus, every user has the right to add a special style sheet to enhance
the presentation of any Web page.

Text Links for Active Regions of Server-Side Image Maps

Because the image coordinates in a server-side image map are not pro-
cessed by the server until the user clicks the mouse, the alternate text at-
tribute does not work with server-side image maps. To provide a textual

Source image
(normal vision)

Protanopia
(red color deficit)

Deuteranopia
(green color deficit)

Tritanopia
(blue color deficit)

FIGURE 9-2 Color combinations that seem to have enough contrast for normal vision
may cause serious problems for users with certain kinds of color blindness.

Notice how the green text in the source image on the left is indecipherable by someone with
deuteranopia. The foreground text in the source image on the right contains more blue, thereby
creating much better contrast. �

FIGURE 9-3 In the IE Web browser, the Accessibility dialog enables the end user to add
a style sheet to the end of the cascade. To bring up this Accessibility dialog, pull

down the IE browser’s Tools menu, choose Internet Options, and click the Accessibility button. �

Check this box to add a style
sheet to the end of the cascade.

Type the name of the style sheet here.

alternative to users with special needs, rule (e) of the Section 508 Web ac-
cessibility guidelines requires that you provide a text link for each active
region of a server-side image map. Depending on the layout of the active
regions in the map, printing text links onscreen may or may not work well
with your page design. Before you fret about this requirement, read the
next section of this chapter, “When to Use Client-Side Versus Server-Side
Image Maps,” where you will learn that server-side image maps are pretty
much a thing of the past.

When to Use Client-Side vs. Server-Side Image Maps

Section 508 Web accessibility rule (f) requires that “Client-side image
maps shall be provided instead of server-side image maps except where the
regions cannot be defined with an available geometric shape.” When you
studied image maps in Chapter 7, you learned how to create round, rectan-
gular, and polygonal shapes. Anyone who knows their math realizes that
because a polygon can have any number of sides with any direction or
length, you can define any conceivable shape with a polygon. One could
argue, therefore, that there is no situation that requires a server-side image
map. Whether or not this is always true, chances are that you will never en-
counter a situation in which a client-side image map cannot do the job.
Rule (f) is saying that if a client-side image map can do it, you are not per-
mitted to use a server-side map instead. In other words, use client-side in-
stead of server-side image maps whenever possible.

To make a client-side image map accessible,
you use the alt attribute to specify the alter-
nate text for each area in the map. You can also
use the longdesc attribute for any area that
needs further explanation.

Imagine that you want to make accessible
the music keyboard image map that you stud-
ied in Chapter 7. Figure 9-4 shows the modified
code, and Figure 9-5 shows the effect of a user
hovering over the first area defined by that
code. Screen readers verbalize the alternate text
when users with screen readers tab over the im-
age map areas.

Chapter 9: Making Web Pages Accessible

FIGURE 9-4 You make an image map accessible by providing alternate text for each area in the map. Compare this code to Figure 9-5,
which shows a user hovering over the part of the keyboard below middle C. �

FIGURE 9-5

When a user

hovers over an

image map area

that has alternate

text, the browser

displays the text in

a tool-tip window. In

this example, the

user is hovering

over the keys below

middle C.This text appears in the tool-tip window when the
user hovers over the keys below middle C.

Internet Technologies at Work

Table Row and Column Headers

Section 508 Web accessibility rule (g) requires that data tables must have
clearly identified row and column headers. This requirement applies only
to tables containing data that, in order to be understood, require that users
know what specific row or column they are in. Out on the Web, most of
the tables are used for page layout. When you learned how to design Web
pages in Chapter 5, you saw an example of a table used purely for layout in
Figure 5-14. Tables that are used purely for layout do not need row and
column headers.

In Chapter 6, on the other hand, a step-by-step tutorial had you create a ta-
ble of the world’s highest mountains. In order to understand the information
in this table, the user must be able to identify the category represented by the
row and column of each data cell. Suppose you want to make this table acces-
sible. To define the table headers, you use the HTML table header <th> start
and </th> stop tags. To make the world’s highest mountains table use these
tags, you can modify the first row of the table. Instead of using the <td>
and </td> tags to create the title cells in the first row, you use the <th>
start and </th> stop tags. These table header tags both create a data cell
and define it as a table header. The modified code appears as follows:

L 9-2 <tr align="center" valign="middle" bgcolor="#CCFFFF">

<th>Mountain</th>

<th>Country</th>

<th>Feet</th>

<th>Meters</th>

</tr>

Related Table Row and Column Headers

Situations can arise in which a data table contains
groups of rows or columns that contain related data.
The train schedule illustrated in Figure 9-6 has two
main groupings: one for northbound and the other for
southbound trains. A sighted person can clearly see
these groupings onscreen, but imagine the difficulty
someone using a screen reader would have trying to fol-
low the information in such a table.

To provide assistive devices with a way to identify the
structure of such a table, rule (h) requires that you use
HTML markup to associate the data cells with their
corresponding header cells. While this may sound com-
plicated, it is easily achieved, thanks to the id and
headers attributes. Whenever you have a table in
which the association between the data cells and their
corresponding headers is not straightforward, you use
the id attribute to assign a unique identifier to each table

FIGURE 9-6 In order for assistive devices to make sense of
tables that require the user to understand the

relationship between multiple headings, you use the id and headers
attributes to associate each table cell with its corresponding headings. In
this example, the user who is reading 12:20 pm should understand that it
indicates the Philadelphia arrival time for a southbound train. See Figure
9-7 for the code that makes it possible for assistive devices to understand
this relationship and communicate it to users with special needs. �

The <th> start and </th> stop
tags create a data cell that functions
as a table header. This is the table
header for the first data column.

This is the table header for the
second data column.

This is the table header for
the third data column. This is the table header for

the fourth data column.

Chapter 9: Making Web Pages Accessible

header. Then you add to each <td> tag a headers attribute that identifies
the header(s) associated with each data cell. To see how this works, study
the callouts in Figure 9-7, which displays the code that creates the train
schedule illustrated in Figure 9-6.

Frame Titling

Screen readers and other kinds of assistive devices use the text you type in a
frame’s title attribute to identify the frame to users with special needs. Sec-
tion 508 Web accessibility rule (i) requires that when you create a
frameset, you must give each frame a title that identifies the purpose and
function of the frame. In addition to the title attribute, some assistive
devices use the name attribute to identify the frames. You should there-
fore set both thetitle andname attributes. Imagine a frameset that has a
top frame displaying a banner, a left sidebar containing navigation op-
tions, and a main content frame. The following HTML satisfies rule (h) by

FIGURE 9-7 Behind the scenes of the train schedule, id and header attributes maintain the
association between the train direction and the city. Thus, users with screen readers

can work their way down and across the columns, without losing track of these critical row and column
relationships. �

The summary attribute contains
an explanation of how the table
works. Assistive devices use the
summary to explain the table to
users with special needs.

The id attribute assigns a unique
ID to each header in the table.

The headers attribute contains
the IDs of the headers that apply
to this particular table cell.

These headers, for example,
enable the screen reader to see
that this is the southbound
Washington arrival time.

Internet Technologies at Work

using the title and name attributes to give each frame a title that facili-
tates frame identification and navigation:

L 9-3 <frameset rows="64,*" title="Making Web Sites Accessible">

<frame title="Top Banner" name="Top Banner" scrolling="no" noresize

target="Sidebar Navigation" src="Banner.html">

<frameset cols="150,*">

<frame title="Sidebar Navigation" name="Sidebar Navigation" target="Main Content" src="Navigation.html">

<frame title="Main Content" name="Main Content" src="Main.html">

</frameset>

<noframes>

<body>

This page uses frames. You can also use a version of

this page without frames.

</body>

</noframes>

</frameset>

You should also make sure that each page displayed in a frameset has an
appropriately descriptive <title> tag in the <head> section of the page.
Even though these titles do not appear onscreen in the frameset, assistive
devices may make use of them. Thus, the <head> sections of the three
pages in the frameset just described should read as follows:

Main.html: <title>Main Content</title>
Banner.html: <title>Top Banner</title>

Navigation.html: <title>Sidebar Navigation</title>

Avoiding Screen Flicker in the Range of 2 Hz to 55 Hz

Strobing, flashing, blinking, or flickering at a frequency of 2 to 55 times
per second can induce seizures in users with certain genetic dispositions.
To avoid the possibility of Web sites inducing seizures, Section 508 Web
accessibility rule (j) forbids flicker in the range of 2 Hz to 55 Hz. The term
Hz stands for hertz, which means vibrations per second.

Animations that blink are not particularly desirable at a Web site. Most
users quickly tire of the repetition, and people who are easily distracted
have a hard time concentrating on a text when something is moving in
their field of vision onscreen. To learn more about the risk of inducing sei-
zures from flicker at a Web site, go to usability.gov/web_508/tut-j.html.

Providing Text-Only Page Alternatives for Noncompliant Pages

Rule (k) requires that you must provide a text-only page to substitute for
any Web page that you cannot make comply with all of the other rules in
the Section 508 Web accessibility guidelines. Furthermore, rule (k) re-
quires that you must update the text any time a change is made to the page
for which it substitutes.

Please do not assume, however, that you can use rule (k) as an easy way
out any time you cannot meet the rest of the guidelines. Rule (k) is a last re-
sort. Whenever you find yourself resorting to rule (k), you should rethink
the design of your page and make an honest effort to make the document
accessible.

Chapter 9: Making Web Pages Accessible

Describing Scripts with Functional Text

Section 508 Web accessibility rule (l) addresses the problem of making
scripts accessible. Scripts can make things happen onscreen that assistive
devices cannot interpret. Whenever you have a script doing something that
displays content or provides interface elements onscreen, rule (l) requires
that you identify this information with functional text that can be read by
assistive technology. The HTML codes that you use to provide this text are
the <noscript> start and </noscript> stop tags. You put these tags immedi-
ately after the </script> end tag of the script that you are describing.
The syntax is

L 9-4 <script language="javascript">

//The script goes here.

</script>

<noscript>

<p>Describe what the script does here, or provide a link to an accessible

document that provides the data generated by the script.</p>

</noscript>

When creating user interface elements with JavaScript, you need to
make sure that users can operate them without a mouse, which is easy to
test: Put your mouse aside, and make sure you can operate the controls via
the computer keyboard.

Avoid using the onDblClick event handler, for which there is no key-
board equivalent. If you use the onMouseDown event handler, provide an
onKeyDown handler so the mouse down event has a keyboard equivalent.
In like manner, pair onMouseUp with onKeyUp.

Avoid using popup windows, which can cause users with assistive tech-
nology to lose track of where they are.

Applet and Plug-In Accessibility

In Chapter 2, you learned how applets and plug-ins can extend the multi-
media capabilities of a Web page. In order for such a page to be accessible,
the applets and plug-ins must follow the same accessibility guidelines as
the other Web page elements onscreen. That is why Section 508 Web ac-
cessibility rule (m) requires that whenever an applet, a plug-in, or another
application is called upon to interpret page content on the user’s computer,
the page must provide a link to a plug-in or an applet that complies with
rules (a) through (l).

You should keep in mind three key points with regard to applet and
plug-in accessibility. First, users with special needs must be able to navi-
gate the page without a mouse. You can test this by putting your mouse
aside and using the keyboard to operate the applet and navigate the page.
Second, the user should be able to move from element to element onscreen.
Once again, you can test this by putting your mouse aside and pressing the
TAB key to make sure it lets the user move from item to item onscreen.
Finally, you must remember that for every graphical element that conveys
meaning or navigation in an applet or a plug-in, a textual equivalent that
can be understood by assistive technologies must also be present.

The <noscript> start tag must appear immediately after the
</script> end tag of the script it is describing.

Internet Technologies at Work

Form Elements, Directions, and Cues

In Chapter 7, you learned how HTML forms enable the Web author to in-
teract with and receive information from users at a Web site. Rule (n) re-
quires that any time users complete a form, you must present the form in
such a way that users with assistive technology can access the field ele-
ments, read all of the directions, understand the labeling, and follow the
cues to complete and submit the form.

To clarify which instructions and labels go with which form elements
onscreen, the W3C invented the <label> start and </label> stop tags. The
<label> tag has a for attribute that you use to identify the ID of the
<input> element with which the label is associated. Assistive devices use
these attributes to determine which labels go with which form elements
and cue the user accordingly. Consider, for example, the form in the
subscribe.html page you created in Chapter 7. To make that form accessible,
you can modify the code by using the<label> tag’sfor attribute to asso-
ciate each label with the ID of its corresponding input. Study the callouts in
the following example to see how the <label> tag’s for attribute identi-
fies which input has that label:

L 9-5 <p><label for="Name">What is your name?</label>

<input id="Name" type="text" name="Name" size="50" maxlength="150"

style="border-style: inset; border-width: 4">

</p>

<p><label for="Email">What is your e-mail address?</label>

<input id="Email" type="text" name="Email" size="50" maxlength="150"

style="border-style: inset; border-width: 4">

</p>

Many users who cannot use the mouse press the TAB key instead to
move from field to field within a form. When you create a form, therefore,
you should test it by pressing the TAB key repeatedly and observe whether
the tab order is logical. If the focus moves illogically from field to field, you
can clarify the tab order via the <input> field’s tabindex attribute. To
clarify the tab order on the subscribe.html page, for example, you would
modify the input controls as follows:

The for="Name" attribute associates
this label with the input field that has

id="Name".

The for="Email" attribute associates
this label with the input field that has

id="Email".

L 9-6 <input tabindex="1" id="Name" type="text" name="Name" size="50" maxlength="150"

style="border-style: inset; border-width: 4">

<input tabindex="2" id="Email" type="text" name="Email" size="50" maxlength="150"

style="border-style: inset; border-width: 4">

<input tabindex="3" type="radio" name="Frequency" value="daily" checked>Daily

<input tabindex="4" type="radio" name="Frequency" value="weekly">Weekly

<input tabindex="5" type="radio" name="Frequency" value="monthly">Monthly

<input tabindex="6" type="submit" value="Subscribe">

<input tabindex="7"

type="reset">

The tabindex attribute establishes the tab order. You do not need
to use this attribute, however, unless the default tab order is illogical.

A final point about making forms accessible is that you need to avoid
the temptation to use JavaScript event handlers to make the ENTER key
submit form data without requiring the user to click a Submit button.
Users who cannot use the mouse press the ENTER key to input or select in-
formation in a form field. That is why these users need a Submit button to
press when they are done filling out the form. In order to make forms ac-
cessible, therefore, you must provide a Submit button for every form
onscreen. Otherwise, many users with assistive devices have no way of
submitting the information when they are finished filling out the form.

Skip Navigation

Many Web pages have navigational options across the top and down the
left side of the page, with the main content occupying the rest of the page.
When you create this kind of a layout with an HTML table, the top naviga-
tional options go into the first table row, and the sidebar navigation goes
into the first column of the next row onscreen. Only after the sidebar gets
populated does the main content flow onto the rest of the screen. Imagine
someone accessing such a page with a screen reader. Without a way to skip
these navigation options, the user has to tab through all of these naviga-
tion links before getting to the main content on the page.

To solve this problem, Section 508 Web accessibility rule (o) requires
that you provide a way for the user to skip over these kinds of repetitive
navigation links. Most sites do so by placing a skip navigation link at the
start of such a page. A skip navigation link is a hyperlink that, when
clicked, takes the user to a place on the page that is just past the navigation
options that typically appear at the top or on the left of the screen. A user
with a screen reader can follow the skip navigation link to jump to the
main content of the page, just like a sighted user can glance past the navi-
gation link to read the main content onscreen.

To create a skip navigation link, insert the following code at or near the
top of the body of the page. Notice how you can make the link be invisible,
if you do not want it appearing on the page of a sighted user:

Chapter 9: Making Web Pages Accessible

L 9-7 Skip over navigation

After you make the skip navigation link, you need to create the target of
that link. The target of a skip navigation link is a named anchor that you
type at the spot on the page where the main content begins. The HTML
code for such a link appears as follows:

L 9-8

In these examples, the name “main content” is arbitrary. You can make
that name anything you want. I named the anchor “main content” because
it marks the beginning of the main content on the page.

Setting the display style to “none” prevents
this link from displaying onscreen. Assistive

devices, such as screen readers, use this link
to provide users with a way to skip the

navigation.

Timed Responses

Web designers generally frown upon timed responses because you nor-
mally want to give the user as much time as needed to respond. For security
reasons, however, some sites may require users to interact every so often,
otherwise the session times out and the user must log in again to start an-
other session. Such a site should make it possible for a user with special
needs to request a longer timeout interval. That is why Section 508 Web
accessibility rule (p) requires that whenever a Web page requires the user
to respond within a certain amount of time, the user must be informed and
given an opportunity to request more time.

Making Applets, Helpers, and Plug-Ins Accessible

In Chapter 2, you learned that whenever a browser encounters a multime-
dia resource that HTML cannot handle, the browser calls upon the appro-
priate plug-in or helper application to play or display the content
onscreen. So much multimedia content is on the Web that almost every site
includes resources that HTML cannot handle on its own. That is why this
part of the book takes a closer look at how you go about making multime-
dia content accessible.

Flash Accessibility

Flash is the most popular multimedia plug-in on the Web. A large percent-
age of the Web’s multimedia content, therefore, gets handled by the Flash
player. Its parent company, Macromedia, has worked in partnership with
Microsoft to make the latest version of the Flash player conform to
Microsoft Active Accessibility (MSAA), which is an application program-
ming interface (API) that helps Windows applications interoperate with
assistive technology. Flash authors who follow the guidelines can make ac-
cessible to screen readers text elements, buttons, input fields, and movie
clips. Scalable graphics enable users to zoom in on Flash content, which
enables visually impaired users to see small text or graphics. Content con-
trols enable users to stop, fast-forward, rewind, and pause playback.
Mouse-free navigation enables assistive technology to provide keyboard
controls over all these functions. Synchronized audio tracks provide de-
scriptive audio for users who need it. Customized color swatches en-
able developers to customize palettes for users who are color blind.
Guidelines for making Flash movies comply with Section 508 are at
www.macromedia.com/macromedia/accessibility.

Flash movies are inherently more complex than HTML documents.
No matter how carefully you follow Macromedia’s guidelines, you
need to remember that some users will require simpler alternatives.
Happily, the W3C kept this in mind when they invented the <object>
start and </object> stop tags, which you use to put Flash movies (and
other kinds of multimedia content) on a Web page. Consider the follow-
ing <object> tag, which plays a Flash movie called DNAsynthesis.swf.

Internet Technologies at Work

If the user has the Flash player installed, the movie appears onscreen, and
the browser does not display the alternate text. If the user does not have
Flash installed, however, the movie cannot play, so the browser continues
on to display the alternate text onscreen:

Chapter 9: Making Web Pages Accessible

L 9-9 <object title="Core DNA Synthesis"

classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab

#version=6,0,0,0" width="100%" height="100%" align="">

<param name=movie value="coreDNAsynthesis.swf">

<param name=quality value=high>

<param name=salign value=LT>

<param name=bgcolor value=#FFFFFF>

This movie consists of an interactive demonstration of core DNA synthesis.

There is a textual description for users

who do not have Flash installed.

</object>

In their wisdom, the W3C further provided a mechanism whereby you
can specify several alternative representations of an object. The browser
works down the tree of these objects until it finds one it can play. Objects
further down the tree get skipped. The following example shows how this
works. Notice how (1) the content gets played by Flash, if the user has
Flash installed. If not and the user has an MPEG movie player, (2) the con-
tent renders as an MPEG movie. If not, (3) the content appears in an ani-
mated GIF image. If all else fails, (4) alternate text appears onscreen.

You put the alternate text before the
</object> end tag. The browser
displays this text if the user does not

have Flash installed.

L 9-10 <!-- First, try the Flash movie -->

<object title="Core DNA Synthesis"

classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab

#version=6,0,0,0" width="100%" height="100%" align="">

<param name=movie value="coreDNAsynthesis.swf"><param name=quality value=high>

<param name=salign value=LT><param name=bgcolor value=#FFFFFF>

<!-- Else, try the MPEG video -->

<object data=" coreDNAsynthesis.mpeg" type="application/mpeg">

<!-- Else, try the GIF animation -->

<object data=" coreDNAsynthesis.gif" type="image/gif">

<!-- Else render the text -->

This movie consists of an interactive demonstration of core DNA synthesis.

There is a textual description for users

who do not have Flash installed.

</object>

</object>

</object>

When objects are nested, the browser
works its way down through them,

executing the first object it can handle
and skipping the rest.

PDF Accessibility

Partly due to its televised mass-market ad campaign, Adobe’s Portable
Document Format (PDF) is the most popular file format for sharing non-

HTML documents over the Web. So flexible is this format that the prod-
uct’s family name Adobe Acrobat is very befitting this product. For every
major word processor, for example, an Adobe Acrobat plug-in enables
you to “print” to the Adobe distiller, which creates the PDF files. Thus,
anyone who can use a word processor can create a PDF file. Therein lies
the problem of accessibility: Can anyone who can word process make the
file accessible?

The key to making PDF files accessible is to structure the document
properly with your word processor prior to converting it into a PDF file.
Type meaningful headings and subheadings at the beginning of each sec-
tion and subsection of the document. Use the word processor’s Style menu
to give each heading or subheading the appropriate heading style.
Microsoft Word, for example, has heading styles from Heading1 through
Heading 6. These are equivalent to the HTML heading tags <h1> through
<h6>. When you convert an MS Word document into a PDF file, Adobe
Acrobat uses these headings to create structural tags in the PDF file. Screen
readers and other assistive devices use the tagged PDF document to pro-
vide navigational options that make it easy for users with special needs to
go to different sections in the document. If you do not use the heading
styles, on the other hand, the PDF document will not contain these tags,
and the document will not be accessible. Therefore, you should form the
habit of always using heading styles to mark the sections and subsections
of a word-processed document.

To be considered accessible, images in word-processed documents must
have alternate text descriptions. To provide alternate text for an image in
an MS Word document, you (1) right-click the image to pop out the quick
menu, (2) choose Format Picture to display the Format Picture dialog, and
(3) click the Web tab to display the Alternative text box. Figure 9-8 shows
how you type the alternate text. Later, when you convert the document to
a PDF file, Adobe Acrobat will make this alternate text available to users
with screen readers and other kinds of assistive technology.

By default, the accessibility options in Adobe Acrobat are turned on.
These include the options to embed tags in PDF and to create PDF book-
marks for the heading styles that mark the structure of your document. Af-
ter you create the PDF file, it opens in Acrobat. To test the file for
accessibility, run Acrobat’s built-in Accessibility Checker, which checks
the document for Section 508 compatibility and advises you of any
problems. For more on creating accessible PDFs, go to www.adobe.com/
products/acrobat/solutionsacc.html.

Multimedia Accessibility Showcase

The National Center for Accessible Media (NCAM) at the WGBH Boston
public television station is an excellent source for learning about best prac-
tices of accessibility in all things media. By following the links to the rich
media accessibility showcase at ncam.wgbh.org/richmedia, you can read
about the latest innovations and best practices. The showcase contains ex-
amples of accessible media delivered in the following formats: Director,
Flash, PDF, QuickTime, Real Media, Scalable Vector Graphics, SMIL,
Windows Media, and XHTML+SMIL. Accessibility strategies include

Internet Technologies at Work

Chapter 9: Making Web Pages Accessible

assistive devices, audio description, captions, extended audio description,
keyboard access, self-voicing, and text transcript. You can search the
showcase by format and strategy to see or hear examples of all these com-
binations.

Designing Style Sheets for Accessibility

In Chapter 8, you learned that instead of hard-coding presentation ele-
ments into the HTML of a Web page, it is better to separate content from
style by assigning the HTML elements to style classes. At runtime, the
browser looks to the style sheet for the rules that are associated with these
classes. Thus, the style classes determine the look and feel of the HTML el-
ements onscreen.

Separating content from style in this manner has an important ad-
vantage for users with special needs. If the style sheets you provide do not

FIGURE 9-8 Before you convert an MS Word document into a PDF file, you should provide alternative
text for each image in the document. In this example, I am typing alternative text that

explains the MAGpie illustration. The PDF version of this document makes this alternative text available to
screen readers and other kinds of assistive devices. �

Right-click the image to pop
out the quick menu, then
choose Format Picture to

display the dialog.

Click the Web tab to
display the alternative
text box, into which

you type a description
of the picture.

When you type the alternate
text message, try not to exceed
about 150 characters in length.

handle the content appropriate to the user’s needs, the user can use the
browser’s accessibility controls to add another style sheet onto the cas-
cade. By being last on the cascade, this style sheet can redefine any of the
style classes that the user needs to have interpreted differently.

Although users with special needs have this ability to add a style sheet to
the cascade, you should always try your best when authoring Web pages to
create styles that are maximally accessible. The following sections recom-
mend some best practices for creating accessible styles.

Font Selection and Spacing

Most browsers default to the Times Roman font. If you do not specify a
different font, Times Roman is what you get. Studies have shown that the
Times Roman font is one of the best choices if you are creating a document
for printing on paper. The serifs, which are the angled decorations on the
endpoints of the characters, enhance the flow of the text on the printed
page. It is ironic that on the computer screen the serifs, which make Times
Roman look cool on paper, can interfere with readability onscreen. Fonts
without serifs, such as the Arial font, work better on the computer screen.
This may be because the computer screen has far less resolution than the
printed page. This book, for example, is printed at a resolution of 4,800
dots per inch (DPI). The typical computer screen, on the other hand, has a
resolution of about 50 DPI. There is not enough resolution at 50 DPI to
give the serifs the smooth flow they have on paper. Instead, serifs look jag-
ged onscreen.

In an article published in the International Journal of Human-Computer
Studies, Bernard et al. (2003) conducted a controlled experiment that
compared Times New Roman and Arial typefaces in 10- and 12-point,
dot-matrix and anti-aliased (i.e., edge-softened) versions. In terms of over-
all readability and legibility, the 12-point Arial dot matrix typeface was
preferred to all of the other typefaces. The reason for this may be because
Arial simply looks cleaner and neater onscreen. On paper, however, Times
New Roman rules. In 2004, for example, the U.S. State Department issued
an edict declaring Times New Roman as the font for all diplomatic notes
(ABC News Online, January 30, 2004).

Besides choosing Arial to use on a Web page, you want the text onscreen
to appear large enough for the user to read. Text that is large enough for
one user, however, may be too small for another. Instead of hard-coding
the fonts to a specific size, therefore, you should use relative sizing. The
W3C has created two ways for you to do this. First, you can use the adjec-
tives small, smaller, x-small, xx-small, medium, large, larger, x-large, and
xx-large. Or you can specify the font size in a unit called an em, which is
pronounced like the letter m. The setting 3em, for example, is three times
the width of the letter m. Before printing such a font onscreen, the browser
looks to the default text size that the user has specified in the browser’s
View menu. Thus, the font scales automatically to the visual needs of the
user. Figure 9-9 provides examples of font size settings that scale in this
manner, as well as examples that fail to scale. To create pages that are max-
imally acceptable, you should choose font settings that scale.

Internet Technologies at Work

Chapter 9: Making Web Pages Accessible

Color and Contrast

Without sufficient contrast between foreground text and background col-
ors, users have trouble reading Web content, no matter how you style the
font. That is why you must always use colors that are high in contrast.
Figure 9-10 illustrates recommended style sheet settings that create good
contrast onscreen. These examples adhere to the color contrast algorithm
that the W3C recommends for determining whether there is enough con-
trast. According to this algorithm, you determine color brightness by the
formula:

((Red value × 299) + (Green value × 587) + (Blue value × 114)) / 1000

The difference between the brightness of the text and background col-
ors must be greater than 125. If they are, you proceed to determine color
difference by the formula:

(maximum (Red value 1, Red value 2) – minimum (Red value 1, Red value 2)) +
(maximum (Green value 1, Green value 2) – minimum (Green value 1, Green value 2)) +
(maximum (Blue value 1, Blue value 2) – minimum (Blue value 1, Blue value 2))

If the color difference is greater than 500, the colors are sufficiently high
in contrast. A tool you can use to perform these calculations is at
www.juicystudio.com/services/colourcontrast.asp. For more on the W3C
color contrast algorithm, go to www.w3.org/TR/AERT#color-contrast.

FIGURE 9-9 On the left are font size examples displayed at the browser’s default setting. On the right, the same examples appear with
the browser’s View | text-size setting configured to increase the font size. Notice how the font settings with relative values

scale, while the settings that have fixed pixel sizes fail to scale, thereby defeating the browser’s text-size feature. �

The font settings with fixed pixel sizes fail to scale.

FIGURE 9-10 These style sheet
settings satisfy the

W3C recommendation that the difference
between the brightness of the text and
background colors must be greater than
125 and the color difference must be more
than 500. �

Internet Technologies at Work

Web Page Color Blindness Simulator
Vischeck is a tool that simulates human vi-
sion. The simulation models three kinds of
color blindness, namely, protonopia, a red
color deficit; deuteranopia, a green color
deficit; and tritanopia, a very rare blue color
deficit. To run the Vischeck simulation and
see how your Web page will appear to users
with protonopia, deuteranopia, or
tritanopia, follow these steps:

1. Go to www.vischeck.com, follow
the link to Vischeck, and choose
the option to Run Web pages.

2. Vischeck asks you to select the
type of color vision you want
to simulate. The choices are
deuteranope, protanope, and
tritanope. In this example, click
deuteranope.

3. Vischeck will prompt you to type
the URL of a Web page. In this
example, type www.google.com.

4. Click the Run Vischeck button.
You will get a message telling you
to wait while Vischeck processes
the page. Wait patiently while
Vischeck prepares the results.

5. Vischeck will display links to the
simulated page and its original
version. In this example, follow the
link to the Deuteranope simulation
to see how the page appears to
someone who has a green color
deficit.

6. Repeat this process for the other
two forms of color blindness,
namely, protanope and tritanope.
You will probably observe some
striking differences. Figure 9-11,
for example, shows how the
Smithsonian home page appears
through the eyes of a user with
deuteranope. Notice the lack of
greens as compared to Figure 9-12,
which pictures the original page in
full color.

Try This!

FIGURE 9-11 The way the Smithsonian home page appears through the
eyes of a user with deuteranopia, which is a green color deficit.

Compare this to Figure 9-12, which displays the original page in full color. �

FIGURE 9-12 This is the unaltered, full-color version of the Smithsonian
home page. Notice especially the green colors. Compare this

full-color version to Figure 9-11, which pictures the same page viewed through the
eyes of a user with deuteranopia. �

Layering and CSS Page Layout

Layout is one of the most important issues in making Web pages accessi-
ble. At the moment, most of the Web’s pages use HTML tables to lay out
content onscreen. This works fine for sighted users, who can quickly
glance from place to place onscreen. Users with screen readers and other
kinds of assistive devices, however, run into trouble because the order of
the content in the HTML file is not necessarily the order in which the user
wants to read the material.

Linearization is the process of thinking of a Web page in the order in
which the elements occur in the HTML file. Earlier in this chapter, you
learned how users with special needs have difficulty with the order in
which Web page elements are presented in the most common kind of navi-
gational layout, in which the navigation options appear at the top and
down the left-hand column of the screen. Consider how such a design
linearizes when created with tables: The navigational links come first in
the file, followed by the page content that the user would most likely want
to read first. Section 508 Web accessibility rule (o) addresses this problem
by requiring that Web pages have a skip navigation link if the document
begins with these kinds of navigational options. There is a more elegant
way to linearize content on a Web page, however.

In the absolute positioning section of the previous chapter, you learned
how the z-index style sheet property enables you to specify the order in
which the browser prints layers onscreen. Imagine using the z-index prop-
erty to tell the browser the order in which to print the main content layer,
the left sidebar, and the top banner information onscreen. Because the z-in-
dex property determines the dis-
play order, you can put the most
important layer first in the file,
thereby enabling screen readers
and other assistive devices to re-
ceive the main content first. To
provide a way to divide the con-
tent of a page in this manner, the
W3C invented the <div> start and
</div> stop tags. <div> is an ab-
breviation for division. You use
the <div> tag to create structural
divisions onscreen.

Figure 9-13 shows a page that
has three divisions onscreen: a top
banner, a left sidebar, and a main
content layer. When created with
tables, this layout positions the
content 190 lines below the start
of the file. If you use <div> tags
to lay out this page with absolute
positioning, on the other hand,
you can put the content at the
very beginning of the document’s

Chapter 9: Making Web Pages Accessible

FIGURE 9-13 HTML tables create the layout of this Web page. Because table-driven
layout requires that the banner and sidebar precede the main content in

this HTML file, screen readers must wade past more than 190 lines of code to get to the main
content on this page. �

body as shown in Figure 9-14. For sighted users, the page appears
onscreen as illustrated in Figure 9-13. Users with special needs, on the
other hand, get the main content first. The only problem is that some
browsers do not yet properly support absolute positioning. Because of this
uneven support for absolute positioning, you cannot rely on it for public
use. That is why most sites continue to use tables to layout the pages. In fu-
ture years, when CSS rolls out more broadly, absolute positioning may be-
come the preferred way of laying out Web pages. If that happens, absolute
positioning will obviate the need for rule (o), which requires that pages like
this one must have a skip navigation link.

Tools for Assessing Web Site Accessibility

This chapter has presented many rules and suggestions for ways in which
you can increase the accessibility of a Web site. You can spend many hours
working to meet these guidelines. When do you know, however, that you
have done enough for the site to be considered compliant?

Happily, you can use tools to determine the extent to which a Web site
complies with the accessibility guidelines. These tools can analyze the code
of any Web page, report specific rules and guidelines that the page may be
violating, and suggest improvements you can make to bring the page into
compliance.

Internet Technologies at Work

FIGURE 9-14 This code uses absolute positioning to create the page layout illustrated in Figure 9-13. The cascading style sheet
defines three classes of divisions entitled TopBanner, LeftSidebar, and MainContent, respectively. In the body of the

page, <div> tags use the style classes to position the divisions onscreen. Because the style classes do the positioning, the file can contain
the content in the optimal reading order for users with special needs. In the meantime, browsers continue to display the page as illustrated
in Figure 9-13. �

These three style classes use absolute
positioning to create the layout onscreen.

Absolute positioning enables you to put the
main content first in the document’s body,
even though the banner and the sidebar
appear first onscreen.

Bobby

Created by the Center for Applied Special Technology (CAST), Bobby is
a comprehensive Web accessibility tool that can analyze a single page or
an entire Web site. Recently acquired by Watchfire Corporation, Bobby
exposes barriers to accessibility, makes recommendations for necessary re-
pairs, and encourages compliance with existing guidelines. For a demon-
stration of Bobby in action, go to bobby.watchfire.com and follow the
onscreen instructions to enter the URL of a Web page you would like
Bobby to analyze. The options onscreen let you choose whether to test for
compliance with the U.S. Section 508 guidelines or the W3C’s Web Con-
tent Accessibility Guidelines.

The free version of Bobby lets you evaluate only one page at a time, and
it limits you to check no more than one Web page per minute. From
Watchfire, you can purchase a copy of Bobby to run on your own server,
where all of the Web developers at your site can evaluate pages as often as
they want. Web pages that pass the Bobby test are entitled to display the
appropriate Bobby conformance logo. Table 9-3 displays the Bobby con-
formance logos and explains what they signify.

LIFT

Produced by UsableNet and available at www.usablenet.com, LIFT is a
suite of products that can test, monitor, report, and repair Web accessibil-
ity problems. Dreamweaver and FrontPage versions help authors create
Web pages that are Section 508 or WCAG compliant. To try these tools be-
fore you buy, follow the links to request a demo at www.usablenet.com,
where you can get a free accessibility test of the Web page of your choice.

WebKing

Produced by Parasoft, WebKing is a Web verification tool that integrates
with IBM’s WebSphere Studio Application Developer. WebKing performs
(1) static analysis, (2) functional testing, and (3) load testing. As part of
static analysis, WebKing checks to make sure your files do not contain any
broken links or navigational problems. Along the way, WebKing checks

Chapter 9: Making Web Pages Accessible

Logo What the Logo Means

The Web page passes at least the WCAG Priority 1 checkpoints.

The Web page contains no Section 508 accessibility errors.

Conformance Level A: This page satisfies all WCAG Priority 1 checkpoints.

Conformance Level Double-A: This page satisfies all WCAG Priority 1 and 2 checkpoints.

Conformance Level Triple-A: This page satisfies all WCAG Priority 1, 2, and 3 checkpoints.

TABLE 9-3 Bobby Conformance Logos �

your HTML and CSS code for Section 508 and WCAG accessibility. Dur-
ing the functional analysis phase, WebKing follows the user click paths to
make sure they execute correctly. Under load testing, WebKing simulates
virtual users and verifies the number of simultaneous users that the site can
sustain under different kinds of usage patterns.

You can get a demonstration and download free evaluation software by
following the link to WebKing at www.parasoft.com.

STEP508

Created for the federal government by the WGBH National Center for Ac-
cessible Media, STEP508 stands for Simple Tool for Error Prioritization
(STEP) for Section 508 compliance. The STEP508 tool compares and

analyzes the output of compliance tools, in-
cluding Bobby, LIFT, and WebKing. Based
on this analysis, STEP508 determines the se-
verity of the errors and prioritizes the repairs
needed to bring a Web site into compliance
with Section 508. After computing a base-
line compliance score, STEP508 provides a
metric to track progress in improving the
site’s accessibility over time. Figure 9-15
shows how you can download STEP508
from the www.section508.gov Web site.

Learning More about Web Accessibility

If you would like to learn more about Web
accessibility, I recommend an excellent book
by Dr. John M. Slatin and Sharron Bush.
Entitled Maximum Accessibility, this book
presents, discusses, and demonstrates issues
and techniques for making Web sites accessi-
ble. Published by Addison-Wesley, Maximum
Accessibility does a very good job of explain-
ing the relationship between the Section 508
rules and the W3C’s Web Content Accessi-
bility Guidelines.

An excellent online source of information
regarding Web accessibility is the National
Center for Accessible Media (NCAM) site at
ncam.wgbh.org. Another good source is the
Section 508 site at www.section508.gov.
A Section 508 tutorial is at usability.gov/
web_508/tutorial.html.

For the latest on Web accessibility, go to
the W3C’s Web Accessibility Initiative (WAI)
at www.w3.org/WAI.

Internet Technologies at Work

FIGURE 9-15 STEP508 is a tool for prioritizing the repairs needed to bring a
Web site into compliance with Section 508 Web accessibility

guidelines. For the latest version, follow the link to STEP508 at www.section508.gov. �

Chapter 9 Review

■ Chapter Summary
After reading this chapter and completing the step-by-
step tutorials and Try This! exercises, you should un-
derstand the following facts about creating accessible
Web pages:

Defining Web Accessibility

■ Web accessibility is the capability that results
from the process of making it possible for users
with special needs to receive, understand, and
navigate content that people without handicaps
can process in lieu of such special assistance.

■ In the United States, Web accessibility is a right
that is guaranteed by law under Section 508 of
the Rehabilitation Act of 1973, as amended in
1998. Section 508 requires that all Web sites (as
well as other forms of information technology)
used, procured, developed, or maintained by
government agencies and departments must be
accessible.

■ In 1997, the W3C launched the Web Accessibility
Initiative (WAI), which coordinates the Web’s
official efforts to achieve accessibility. This
initiative’s Web Content Accessibility Guidelines
(WCAG) consists of 65 checkpoints organized
under 14 general guidelines. The three levels of
conformance are called A, AA (pronounced
double-A), and AAA (pronounced triple-A),
respectively.

■ The Section 508 accessibility standards do not
contain as many checkpoints as the WCAG
guidelines, and there are no levels of conformance.
Instead, Section 508 includes 16 Web accessibility
rules, all of which must be met in order for a Web
site to be considered accessible. The Section 508
rules are online at www.section508.gov.

Coding to the Section 508 Web Accessibility
Standards

■ You must provide a textual equivalent for every
nontext element onscreen. HTML has two
attributes that you can use to create textual
equivalents for nontext elements, namely, alt
and longdesc.

■ You may not use color to convey information
that cannot be understood in the absence of color.

■ You must not use a style sheet in such a way that
it changes the meaning that the page would
convey without the style sheet.

■ To make an image map accessible, use the alt
attribute to specify the alternate text for each area
in the map. You can also use the longdesc
attribute for any area in the map for which
further explanation is required.

■ Data tables must have clearly identified row and
column headers, which you create via the <th>
start and </th> stop tags. Tables that are used
purely for layout, on the other hand, do not
require header tags.

■ In complex (i.e., nested) data tables, you must use
the headers attribute to identify the header(s)
that are associated with each data cell.

■ When you create a frameset, you must give each
frame a title that identifies the purpose and
function of the frame. In addition to the title
attribute, some assistive devices use the name
attribute to identify the frames. You should
therefore set both the title and name attributes
for each frame.

■ Scripts can make things happen onscreen that
assistive devices cannot interpret. Whenever you
have a script doing something that displays content
or provides interface elements onscreen, you must
use the <noscript> start and </noscript>
stop tags to identify this information with functional
text that can be read by assistive technology.

■ To make forms accessible, you must use the
<label> start and </label> stop tags to
identify the ID of the <input> field with which
the label is associated.

■ When a Web page begins with repetitive
navigation links, you must provide a way for the
user to skip over them. You can accomplish this
by creating skip navigation links.

Chapter 9: Making Web Pages Accessible

Making Applets, Helpers, and Plug-Ins Accessible

■ Flash is the most popular multimedia plug-in
on the Web. A large percentage of the Web’s
multimedia content, therefore, gets handled by
the Flash player. Guidelines for making Flash
movies comply with Section 508 are at
www.macromedia.com/macromedia/accessibility.

■ Adobe’s Portable Document Format (PDF) is the
most popular file format for sharing documents
over the Web. Guidelines for creating accessible
PDFs are at www.adobe.com/products/acrobat/
solutionsacc.html.

■ The rich media accessibility showcase at
ncam.wgbh.org/richmedia contains examples of
accessible media delivered in the following
formats: Director, Flash, PDF, QuickTime, Real
Media, Scalable Vector Graphics, SMIL,
Windows Media, and XHTML+SMIL.

Designing Style Sheets for Accessibility

■ Instead of hard-coding presentation elements into
the HTML of a Web page, it is better to separate
content from style by assigning the HTML
elements to style classes. At runtime, the browser
looks to the style sheet for the rules that are
associated with these classes. Thus, the style
classes determine the look and feel of the HTML
elements onscreen.

■ Separating content from style in this manner has
an important advantage for users with special
needs. If the style sheets you provide do not
handle the content appropriate to the user’s
needs, the user can use the browser’s accessibility
controls to add another style sheet onto the
cascade. By being last on the cascade, this style
sheet can redefine any of the style classes that the
user needs to have interpreted differently.

■ Instead of hard-coding fonts to a specific size, you
should use relative sizes. The W3C has created
two ways for you to do this. First, you can use the
adjectives small, smaller, x-small, xx-small,
medium, large, larger, x-large, and xx-large. Or
you can specify the font size in a unit called an
em, which is pronounced like the letter m. The
setting 3em, for example, is three times the width
of the letter m.

■ Layout is one of the largest issues in making Web
pages accessible. At the moment, most of the

Web’s pages use HTML tables to lay out the
content onscreen. This works fine for sighted
users, who can quickly move their gaze from
place to place onscreen. Users with screen readers
and other kinds of assistive devices, however, can
run into trouble because the order of the content
in the HTML file is not necessarily the order in
which the user would want to read the material.
You can solve this problem by using CSS to create
the layout through absolute positioning, which
can place the document’s structural divisions at
the desired locations onscreen, regardless of the
order in which the divisions appear in the file.

Tools for Assessing Web Site Accessibility

■ Bobby is a comprehensive Web accessibility tool
that can analyze a single page or an entire Web
site. Bobby exposes barriers to accessibility,
makes recommendations for necessary repairs,
and encourages compliance with existing
guidelines. For a demonstration of Bobby in
action, go to bobby.watchfire.com.

■ LIFT is a suite of products that can test, monitor,
report, and repair Web accessibility problems.
Dreamweaver and FrontPage versions help
authors create Web pages that are Section 508 or
WCAG compliant. To try the LIFT tools before
you buy, follow the links at www.usablenet.com.

■ WebKing is a Web verification tool that integrates
with IBM’s WebSphere Studio Application
Developer. WebKing performs (1) static analysis,
(2) functional testing, and (3) load testing. As part
of static analysis, WebKing checks your HTML
and CSS code for Section 508 and WCAG
accessibility. You can get a demonstration and
download free evaluation software by following
the link to WebKing at www.parasoft.com.

■ STEP508 stands for Simple Tool for Error
Prioritization (STEP) for Section 508 compliance.
The STEP508 tool compares and analyzes the
output of compliance tools, including Bobby,
LIFT, and WebKing. Based on this analysis,
STEP508 (1) determines the severity of the errors,
(2) prioritizes the repairs needed to bring a Web
site into compliance with Section 508, and (3)
provides a metric to track progress in improving
the site’s accessibility over time. You can
download STEP508 from www.section508.gov.

Internet Technologies at Work

Chapter 9: Making Web Pages Accessible

■ Key Terms
alt attribute ()
Bobby ()
<div> </div> ()
em ()
for attribute ()
headers attribute ()
hertz (Hz.) ()
id attribute ()
<label> </label> ()
LIFT ()

linearization ()
longdesc attribute ()
MAGpie ()
Microsoft Active Accessibility

(MSAA) ()
name attribute ()
<noscript> </noscript> ()
Section 508 ()
Simple Tool for Error

Prioritization (STEP) ()

skip navigation link ()
<th> </th> ()
title attribute ()
Web accessibility ()
Web Accessibility Initiative

(WAI) ()
Web Content Accessibility

Guidelines (WCAG) ()
WebKing ()

■ Key Terms Quiz
1. ____________________ is the capability that

results from the process of making it possible
for users with special needs to receive,
understand, and navigate content that people
without handicaps can process in lieu of such
special assistance.

2. In the United States, Web accessibility is a right
that is guaranteed by law under _____________
of the Rehabilitation Act of 1973, as amended
in 1998.

3. In 1997, the W3C launched the _____________,
which coordinates the Web’s official efforts to
achieve accessibility. This initiative’s Web
Content Accessibility Guidelines (WCAG)
consists of 65 checkpoints organized under 14
general guidelines.

4. In HTML image tags, you create textual
equivalents that are less than 150 characters via
the ____________________. You should use the
____________________ for longer text
descriptions.

5. Data tables must have clearly identified row
and column headers, which you create via the
<____> start and <____> stop tags.

6. In complex (i.e., nested) data tables, you must
use the ____________________ to identify the
header(s) that are associated with each data cell.

7. Whenever you have a script doing something
that displays content or provides interface
elements onscreen, you must use the <____>
start and <____> stop tags to identify this
information with functional text that can be
read by assistive technology.

8. When a Web page begins with repetitive
navigation links, you must provide a way for
the user to skip over them. You can accomplish
this by creating a(n) ____________________.

9. Available from watchfire.com, ______________ is
a Web accessibility tool that can analyze a single
page or an entire Web site, expose barriers to
accessibility, and make recommendations for
necessary repairs in order to comply with
accessibility guidelines.

10. In the STEP508 accessibility tool, STEP stands
for ____________________.

■ Multiple-Choice Quiz
1. In the W3C’s Web Content Accessibility

Guidelines, what is a checkpoint that should be
met, otherwise users will find it difficult, but
not impossible, to access the material?
a. Priority 1
b. Priority 2
c. Priority 3
d. Priority 4

2. A Web site that passes all Priority 1, 2, and 3
checkpoints is entitled to display which W3C
conformance logo?
a.

b.

c.

3. How many rules are there in the Section 508
Web accessibility standards?
a. 14
b. 16
c. 65
d. 508

4. What does the MAG in MAGpie stand for?
a. Maximum accessibility guidelines
b. Media access generator
c. Multimedia accessibility group
d. Multiple accessibility guidelines

5. About how many people are color blind?
a. 0.5 percent of males and females
b. 10 percent of males and females
c. 10 percent of females and 0.5 percent of

males
d. 10 percent of males and 0.5 percent of

females

6. Regardless of which style sheets the page may
already call upon, the user can always add

another style sheet by editing the browser’s
accessibility settings. Such a style sheet is
always:
a. First on the cascade
b. Second on the cascade
c. Third on the cascade
d. Last on the cascade

7. Which frequency range of screen flicker is
forbidden by the Section 508 guidelines?
a. 0 to 1.5 Hz
b. 2 to 55 Hz
c. 55 to 110 Hz
d. 110 to 440 Hz

8. Which HTML code(s) do you use to describe
functional text information displayed onscreen
by a script?
a. alt
b. longdesc
c. title
d. <noscript> </noscript>

9. When should you take advantage of Section
508 rule (k) and provide a text-only page to
substitute for a Web page that you cannot bring
into compliance with all of the other Section
508 rules?
a. As often as possible
b. Only as a last resort
c. When you are in a hurry
d. When you want an easy way out

10. Which key do you press to move from element
to element as an alternative to clicking the
desired element with a mouse?
a. CTRL

b. ESC

c. ENTER

d. TAB

Internet Technologies at Work

Chapter 9: Making Web Pages Accessible

■ Essay Quiz
1. The Section 508 Web site explains the relationship between the 16 Section 508 Web accessibility rules

and the W3C’s Web Content Accessibility Guidelines (WCAG). In your own words, describe how the
Section 508 rules compare to the WCAG. If you have trouble finding this information, go to
section508.gov, set the search option to search the section 508 Web site, and search for the keyword
WCAG.

2. In the Macintosh operating system, the buttons for closing, minimizing, or maximizing a window
follow a traffic light metaphor according to which these options are color-coded red, yellow, and green:

Ill 9-4

When the user moves the mouse over these options, icons appear inside the buttons:

Ill 9-5

In your opinion, does this color coding violate Section 508 rule (c), which forbids using color to convey
information that cannot be understood in the absence of color? Explain the reasons why you feel Apple
complied with or violated Section 508 rule (c).

3. Many users who cannot use a mouse rely on the keyboard to navigate from element to element on a
Web page. In an HTML form, why should a Web author not program the ENTER key to submit the
form’s data?

4. What cascading style sheet rule can you use to hide from sighted users hyperlinks that you want users
with screen readers to receive? To help answer this question, review and reflect on the section entitled
“Skip Navigation” earlier in this chapter.

5. In your own words, explain why it is important to use heading styles when you word process a
document for which you plan to create a PDF file. To help answer this question, reflect on the kind of
navigational element that will be available to users with special needs as a result of the heading styles.

Lab Projects

• Lab Project 9-1: Designing Accessible Web Sites
Imagine that the government notified your school or company that federal funding will be discontinued in six
months if you do not bring your Web site into compliance with the Section 508 Web accessibility rules. In re-
sponse to this warning, your institution went through the process of bringing the site into compliance. Your em-
ployer is concerned, however, that the site will fall back out of compliance if continued work does not comply
with accessibility guidelines. To address this concern, your employer has assigned you the job of creating an acces-
sibility checklist that Web developers must follow at your site whenever they create or update site content. Use
your word processor to create this checklist. In deciding what to include on the checklist, consider the following
issues:

■ Textual Description for Nontext Elements Section 508 requires that you must provide a textual
description for every nontext element onscreen. Consider the kinds of nontext elements at your Web site,
and create the appropriate checkpoints.

Internet Technologies at Work

■ Forms You must code forms in such a manner that users who do not have a mouse can use the
computer keyboard to navigate, fill in, and submit the form. Be sure to include checkpoints for the
<label> tags, for attributes, and Submit button that every form must have.

■ PDF Accessibility Include a checkpoint that reminds your fellow employees to use heading styles when
word processing documents that will be mounted at your site as PDF files. In the PDF file, these headings
are tagged as bookmarks, which enable users with assistive devices to jump to different sections and
subsections in the document.

■ Accessibility by Design As you learned in this chapter, good Web design principles can obviate the need
for some of the Section 508 rules. By requiring your authors to use client-side image maps, for example,
you can avoid needing to create a checkpoint requiring redundant text links for server-side maps.

If your instructor asked you to hand in the checklist, make sure you put your name at the top of the document,
then copy it onto a disk or follow the other instructions you may have been given for submitting this assignment.

• Lab Project 9-2: Evaluating Web Site Accessibility
Imagine that your employer has heard about Web accessibility tools that can automatically scan all of the pages at
a Web site and report violations of Section 508 or WCAG accessibility guidelines. Your employer wants to get one
of these tools to help ensure that the pages at your school or company Web site are compliant. The stakes are high
because of the federal funding that your organization stands to lose if the site violates the Section 508 rules. Your
employer has asked you to recommend which tool your organization should adopt for periodically scanning the
site for accessibility violations. Use your word processor to write an essay in which you discuss the alternatives
and recommend how your organization should go about evaluating Web site accessibility. In developing this rec-
ommendation, consider the following issues:

■ Alternative Tools In this chapter, you learned about three tools for assessing the accessibility of a Web
site—namely, Bobby, LIFT, and WebKing. There are about thirty other tools you can consider. The W3C
keeps track of these tools at www.w3.org/WAI/ER/existingtools.html. Go there to read the summaries of
what these tools do, and make a list of the tools you want to consider. In your essay, list the tools you
considered, explain why you chose the tool you decided to recommend, and state the reasons why you
rejected the others.

■ Authoring Environments Some of the accessibility tools plug into work with certain Web development
tools. In this chapter, for example, you learned that versions of LIFT for Dreamweaver and FrontPage are
available, while WebKing plugs into IBM’s WebSphere Studio Application Developer. Read the tool
summaries at www.w3.org/WAI/ER/existingtools.html to find out whether other accessibility tools exist
that plug into specific Web development environments. If you find plug-ins for the Web-authoring tools
used at your site, include them on your list of alternatives to be considered.

■ Trial Versions As you learned in this chapter, you can get trial versions of Bobby, LIFT, and WebKing.
Find out whether trial versions exist for other alternatives you are considering. In your recommendation,
consider proposing a trial period during which you test the tool before adopting it for production use at
your Web site.

■ Prioritizing Errors Go to www.section508.gov and read about the STEP508 tool. Consider whether
STEP508 would be useful at your Web site. In your recommendation, state the reasons why you decided
to include or forego STEP508 at this time.

If your instructor asked you to hand in the recommendation, make sure you put your name at the top of the essay,
then copy it onto a disk or follow the other instructions you may have been given for submitting this assignment.

