
chapter

8
Creating Active

Web Pages

“Their behavior, like the behavior
of anything created by a computer
program, is limited only by the
programmer’s imagination.”

—Sherry Turkle,

author of

Second Self: Computers and the Human Spirit

2

In this chapter, you will
learn how to:

■ List the primary scripting
languages, understand the role
of JavaScript, and write a script
that uses variables to display
dynamic messages onscreen.

■ Understand the purpose of the
document object model (DOM),
describe the most popular
JavaScript DOM objects, and
use dot notation to access
those objects in a script.

■ Understand the concept of a
cookie and write a script to
maintain the user’s state by
setting and reading the values
of cookies as the user interacts
with your site.

■ List the three kinds of cascading
style sheets and explain when it
is appropriate to use them on a
Web page.

■ Define how Dynamic HTML
enables you to create animated
Web pages by combining HTML
with style sheets and scripts.

■ Define and understand the
purposes of and relationships
among XML, XSL, XSLT, XHTML,
and SMIL.

WE B developers make a distinction between static and
active Web pages. A static Web page is a document in which the content is
fixed in HTML codes that make the document always read the same
when viewed in a browser. On the Internet are billions of static Web
pages, which are appropriate for presenting documents whose contents
do not change. The Declaration of Independence, for example, is a his-
torical document whose content will never change. It is therefore appropri-
ate for the National Archives to present this document in the static Web
page at www.archives.gov/national_archives_experience/declaration_
transcript.html.

Static Web pages, however, do not unleash the potential of the Web to
provide users with custom screens generated just in time according to the
specific needs of the user. Enter the active Web page, which uses the
browser’s window as a display surface through which the user can interact
with dynamic objects onscreen. These objects can be powered by either cli-
ent-side or server-side processes.

This chapter teaches client-side techniques you can use to create active
Web pages that run in the browser window without requiring any server-
side processing. First, you learn how to use the JavaScript language to
write dynamic messages onscreen. Second, you study the document object
model (DOM), which defines many kinds of objects you can manipulate
onscreen. Third, you learn how cookies enable scripts to remember things
from screen to screen. Fourth, you use cascading style sheets (CSS) to styl-
ize the appearance of objects onscreen. Fifth, you use Dynamic HTML to
bring these objects to life onscreen. Last, but certainly not least, you learn
how to use an XML module called SMIL to caption a video and create
other kinds of multimedia effects onscreen.

Everything you learn in this chapter executes on the client side, meaning
that you do not need access to a Web server to do these things. Chapter 12
shows how server-side scripts use databases to enable users to interact
with data-driven Web applications onscreen.

Introduction to Scripting

Scripting is the act of writing little computer programs that can enhance
the appearance and functionality of a Web page. Browsers render Web
pages by placing objects onscreen. Scripts let you grab hold of those ob-
jects to make them do things. You can grab hold of the browser’s status

Chapter 8: Creating Active Web Pages

bar, for example, and write a message into it. You can make text on your
Web pages display active content, such as the current date and time. You can
create rollover effects that highlight a graphic, make sounds, and pop out
explanatory messages when the user mouses over an object onscreen. When
the user clicks a button to submit something typed into a text field, you can
grab hold of the text field and validate what the user entered. You can also
write scripts that use cookies to remember things as the user navigates from
screen to screen. Later in this book, Chapter 12 provides you with scripts
that can store, query, and update information in server-side databases.

What Scripting Languages Are There?

There are many brands of scripting languages. Most well known is
JavaScript, the language that runs client-side in the browser without re-
quiring any server-side processing. That is why this chapter teaches you
how to use JavaScript.

In Chapter 12, which teaches server-side scripting, you have your choice
of programming in VBScript or JScript, Microsoft’s Active Server Page
(ASP) languages. All of these languages are similar in that they can store
values in variables, manipulate values programmatically, use IF-THEN
statements to make decisions, receive information from HTML forms,
and print text or graphics to communicate with end users onscreen.
JavaScript and JScript share much of the same syntax. You will find, there-
fore, that the JavaScript programming you learn in this chapter helps you
learn JScript more quickly when you get to Chapter 12. Due to the popu-
larity of Visual Basic (VB), Chapter 12 also provides VBScript versions of
each tutorial example, thereby allowing you to choose to program in ei-
ther JScript or VBScript.

Other popular server-side languages include C#, Java, and J#,
Microsoft’s version of Java. The C# and Java programming languages are
for more advanced application development that is beyond the scope of
this book. If you do well in the JavaScript and JScript sections of this book,
however, you may well have the potential to become a successful applica-
tion developer in one of the more advanced languages.

Where Do Scripts Go?

You can put JavaScript in the head or in the body section of a Web page.
Scripts can also reside in a separate file called an include file, which gets in-
cluded in the page at runtime. If you do a lot of scripting, an include file can
save you time. If you need to revise a script, for example, you can make the
change once in the include file instead of changing it on each page that uses
the script.

If a script is brief and is not used a lot, you can simply type it into the
body of the page. If you find yourself typing the same code often, however,
it is better to put it inside a reusable function that goes into the head section
of the Web page. A function is a named procedure you can call upon by
name any time you need to execute the code in the function. When you call
the function, you can pass to it one or more parameters that preset the val-
ues of variables the function manipulates. When the function finishes exe-
cuting, it can return values to the script that called it.

Internet Technologies at Work

Functions you find yourself using on many pages should be put into an
include file. If you copy the code of a frequently used function into the
heads of many Web pages, on the other hand, you will have many Web
pages to modify if you need to update something in that code.

Where Do Scripts Run?

Scripts run either on the client (i.e., in the browser) or on the server that
hosts the Web site. JavaScript is an example of a scripting language that
runs on the client. When a browser encounters JavaScript on a Web page,
the browser processes the script and renders the result onscreen. ASP
scripts, on the other hand, run on the server. When a browser asks a server
to display an ASP page, the server executes any JScript or VBScript on the
page before sending the response to the browser.

When Should You Use JavaScript?

You should use JavaScript whenever the process you are handling can be
accomplished by the browser without requiring any programming on the
server side. Handling these processes on the client side reduces the number
of round trips between the client and the server, thereby saving valuable
bandwidth and speeding response time.

Certain effects can be accomplished only through the use of client-side
scripting. Animated image effects, for example, happen on the client side.
In the Dynamic HTML section of this chapter, therefore, you will use
JavaScript to create animated effects onscreen.

Some situations use both client-side and server-side scripting. When a
user enters information into a form, for example, you can use JavaScript to
check whether the user has entered valid information before submitting
the form data to the server. This eliminates the round-trip that would oth-
erwise be required for the server to tell the user the form was incomplete.

JavaScript “Hello, World!” Project

The simplest script is the quintessential Hello, World! example that begin-
ners typically create as their first programming project. The purpose of the
Hello World! script is to print the words Hello, World! onscreen. Working
through this example will teach you how to use the <script> start and
</script> stop tags and the JavaScript document.write() method
for printing information onscreen. Follow these steps:

1. Pull down the Notepad’s File menu and choose New to create a
new file. Into this new file, type the following code:

<html>

<head>

<title>Hello, World! Project</title>

</head>

Chapter 8: Creating Active Web Pages

<body>

<script language="JavaScript">

document.write("Hello, World!");

</script>

</body>

</html>

2. Pull down the Notepad’s File menu and choose Save As. When the
Save dialog appears, save this file under the filename Hello.html.
Then open the file with your browser. Figure 8-1 shows the completed
Notepad file, and Figure 8-2 shows the browser displaying the
Hello World! greeting onscreen. If you do not see this greeting
onscreen, compare your code to the listing in Figure 8-1, correct
any typographical errors, save the file, and click your browser’s
Refresh button to view the corrected code.

3. Reflect on the Hello, World! script you just created. Notice that
the <script> tag uses the language="JavaScript" attribute
to tell the browser you are programming in JavaScript. Observe
that the document.write() command prints to the screen the
string of characters between the quotation marks, which delimit
the characters in a string.

4. Besides writing predetermined strings of characters onscreen,
the document.write() command can also display dynamic
content onscreen. The next part of this tutorial teaches you how
to do that. Before proceeding, however, study the following code
analysis to make sure you understand the concepts in the Hello,
World! script.

FIGURE 8-1 In the Notepad view of the
Hello.html file, the document.write()

command programs the script to write “Hello World!”
onscreen. �

FIGURE 8-2 In the browser view of the
Hello.html file, the browser

executes the script in Figure 8-1, and you see
“Hello, World!” onscreen. �

document.write(“Hello, World”)
prints this onscreen.

Hello, World! Code Analysis

The Hello, World! script begins with the <script> start tag that you use
to mark the beginning of a script on a Web page. The start tag identifies
JavaScript as the scripting language via the language attribute:
<script language="JavaScript">. You type the script between the
start tag and the </script> stop tag. The script consists of one instruc-
tion, which writes Hello, world! onscreen. The script writes this message
onscreen by invoking the write method of the document object:

L 8-1 document.write("Hello, world!");

The write() method causes a string of characters to be written
onscreen. The string to be written onscreen appears inside the parentheses
and must be delimited with quote signs, which demarcate the characters in
a string. The command concludes with a semicolon, the termination char-
acter that ends a JavaScript statement.

The document object is one of dozens of JavaScript objects available for
you to use in your scripts. Most objects contain methods that can do things
for you and properties that expose the current settings of the object. You
learn a lot more about objects, methods, and properties as this tutorial
continues.

Variables and Assignments

We live in a world full of things that change. Variables enable scripts to
process things that change. In a script that balances a checkbook, for ex-
ample, the bottom line changes every time the user writes a check. Because
the balance varies, it cannot be hard-coded into the script. Instead, the
script must compute the balance and store the result somewhere. This tu-
torial teaches you how to store things in variables. After learning how to
assign values to variables, you find out how to print their values onscreen.
Through a process called concatenation, you learn how to combine vari-
ables into strings. By including style tags in the strings, you can display the
values of your variables onscreen with style. To put variables and assign-
ments to practical use, you learn how to display the current date and time
onscreen by concatenating variables that contain the current year, month,
day, hour, minute, and second.

What Is a Variable?

In computing, a variable is a place in the computer’s RAM that remem-
bers, or stores, the value of something changeable. It is called a variable be-
cause its value is subject to change.

Internet Technologies at Work

The document object’s
write() method prints
characters to the page.

Quotation marks delimit the
string of characters that get

printed to the page.

The semicolon marks
the end of a JavaScript

statement.

What Is a String Variable?

A string is a sequence of one or more alphanumeric characters. A string
variable is a place in computer memory that remembers, or stores, the al-
phanumeric characters in a string.

What Is a Numeric Variable?

A numeric variable is a place in computer memory that remembers, or
stores, a number. In a script, the numbers can be integers or floating point. An
integer is a whole number with no decimal point. A floating point number
has a decimal point with one or more numbers after the decimal point.

What Is a Variable Name?

A variable name is the identifier used to refer to, or call upon, a place in
computer memory that stores the value of a variable. When you write
scripts that use variables, you make up your own names for the variables.
When you name variables, I recommend that you follow a naming conven-
tion whereby integers begin with the letter i, strings begin with the letter s,
and floating point numbers begin with the letter f. This book follows these
naming conventions. Thus, a string that holds the user’s first name might
be named sFirstName, and an integer that holds the user’s ID number
might be named iUserID. A floating point number containing the user’s
account balance might be called fAccountBalance.

The reason you prefix the variable names with an i, s, or f is to help you
keep track of which variables are integers, strings, or floating point num-
bers. If you mix them up, you can cause data-type conflict errors that make
the browser display an error message when you run the script.

What Is an Operator?

An operator is a symbol that causes a script to perform some kind of action
on a variable or a value. The most fundamental operator is the assignment
operator, which assigns values to variables. The assignment operator uses
the = symbol. You may be used to thinking of the = symbol as an equal sign.
In scripts, however, the symbol = means to assign. To understand how this
works, consider the following assignment statement:

L 8-2 sName = "Santa Claus";

This statement assigns the value "Santa Claus" to the variable called
sName. Notice that the assignment goes from right to left. To understand
this, think of the = operator as meaning is assigned the value. Thus, the
statement sName = "Santa Claus" means:

sName is assigned the value "Santa Claus"

sName = "Santa Claus"

Chapter 8: Creating Active Web Pages

Assigning Values to String Variables

The following example teaches you how to use the = operator to assign
values to string variables. In this example, you create variables that hold a
person’s first and last name. Follow these steps:

1. Pull down the Notepad’s File menu and choose New to create a
new file. Into this new file, type the following code:

<html>

<head>

<title>Using Variables</title>

</head>

<body>

<script language="JavaScript">

//Assign values to string variables

sFirstName = "Santa";

sLastName = "Claus";

//Write values to the screen

document.write("First Name: ");

document.write(sFirstName);

document.write("
Last Name: ");

document.write(sLastName);

</script>

</body>

</html>

2. Pull down the Notepad’s File menu, choose Save, and when
the Save As dialog appears, save this file under the filename
variables.html. Then open the file with your browser. Figure 8-3
shows the completed Notepad file, and Figure 8-4 shows how the
browser displays the values of the variables onscreen. If you do not
see these values, compare your code to the listing in Figure 8-3,
correct any typographical errors, save the file, and click your
browser’s Refresh button to view the corrected code.

Using Variables Code Analysis

There are two assignment statements in the variables.html script. First, the
statement sFirstName = "Santa" assigns the value "Santa" to a
string variable called sFirstName. Second, the statement sLastName =
"Claus" assigns the value "Claus" to a string called sLastName. No-
tice that the variable names begin with s to remind you that they will con-
tain strings. Also notice that the names of the variables indicate what they
will hold: sFirstName will hold the person’s first name, and
sLastName will hold the person’s last name. The reason you create vari-
able names that suggest what content the variables will hold is to make the
code self-documenting. If you choose esoteric variable names such as
sVariable1 and sVariable2, on the other hand, your code is harder
to read and understand.

Internet Technologies at Work

To make your code even easier to understand, you can include comment
statements that document what your code does. Comment statements be-
gin with the special symbol //. Two of the lines inside the variables.html
script, for example, begin with the symbol //. Throughout this book, notice
that the examples are full of comment statements. When you write scripts,
you should form the habit of inserting your own comment statements to
document what the code does. Later on, when you need to modify or trou-
bleshoot problems in the code, the comment statements will save you time
by making it easier for you to remember what the code is doing.

Concatenating String Variables

To concatenate means to join strings together via the concatenation oper-
ator. In JavaScript, the concatenation operator is the + sign. To learn how

Chapter 8: Creating Active Web Pages

FIGURE 8-3 In the Notepad view of the
variables.html file, the

script assigns values to the string variables
sFirstName and sLastName, which the
document.write() commands print onscreen. �

FIGURE 8-4 In the browser view of the variables.html file,
the browser executes the script in Figure 8-3. �

document.write("First Name: ")

document.write(sFirstName)

document.write("Last Name: ")

document.write(sLastName)

prints this

prints this

prints this

prints this

Internet Technologies at Work

to use the concatenation operator, you add some code to the variables
script you created earlier in this chapter. Follow these steps:

1. Use the Notepad to open the variables.html page you created in
the previous exercise.

2. Position your cursor at the bottom of the script. Add the
following lines of code to the end of the script by inserting them
just above the </script> stop tag:

document.write(sLastName);

//Concatenation example

sFullName = sFirstName + " " + sLastName;

document.write("
Full Name: ");

document.write(sFullName);

</script>

3. Save the file and then open it with your browser. Figure 8-5 shows
the completed Notepad file, and Figure 8-6 shows how the browser
displays the concatenation onscreen. If you do not see these values,
compare your code to the listing in Figure 8-5, correct any
typographical errors, save the file, and click your browser’s
Refresh button to view the corrected code.

FIGURE 8-5 In the Notepad view of the variables.html
file, the script concatenates the string

variable sFirstName to a space followed by sLastName and
assigns the concatenated result to sFullName, which the
document.write(sFullName) command prints onscreen. �

FIGURE 8-6 In the browser view of the
variables.html file, the

browser executes the script in Figure 8-5, which
concatenates the first and last names into the
full name and prints it onscreen. �

The concatenation operator +
performs the concatenation.

d
o
c
u
m
e
n
t
.
w
r
i
t
e
(
"
<
b
r
>
F
u
l
l
N
a
m
e
:
"
)

pr
in

ts
th

is

document.write(sFullName) prints
the concatenated full name Santa Claus.

Concatenation Code Analysis

The string variable sFullName is so named because it will hold the person’s
full name. Notice that the concatenation inserts a space between the per-
son’s first and last names:

L 8-3 sFullName = sFirstName + " " + sLastName;

Assigning Values to Numeric Variables

You use the = assignment operator to assign values to numeric variables. In
this example, you create variables that hold a person’s age and weight. Fol-
low these steps:

1. Use the Notepad to open the variables.html page you created in
the previous exercise.

2. Position your cursor at the bottom of the script. Add the
following lines of code to the end of the script by inserting them
just above the </script> stop tag:

document.write(sFullName);

//Assign values to numeric variables

iAge = 100;

iWeight = 350;

//Create the print string

sPrint = "<p>At age ";

sPrint += iAge;

sPrint += ", " + sFullName;

sPrint += " weighs ";

sPrint += iWeight;

sPrint += " pounds.</p>";

//Write the print string onscreen

document.write(sPrint);

</script>

3. Save the file and then open it with your browser. Figure 8-7 shows
the completed Notepad file, and Figure 8-8 shows how the browser
displays the age and weight onscreen. If you do not see these values,
compare your code to the listing in Figure 8-7, correct any
typographical errors, save the file, and click your browser’s
Refresh button to run the corrected code.

Numeric Variables Code Analysis

The age and weight are stored in variables named iAge and iWeight. You
put an i at the beginning of these variables as a reminder that you are using
them as integers. The letter i stands for integer.

Chapter 8: Creating Active Web Pages

" " is a string consisting
of a single space.

Internet Technologies at Work

The string variable sPrint holds the string that will be printed onscreen.
The print string gets created through a series of statements that keep add-
ing more onto it through the process of concatenation.

Notice the use of the += operator in the concatenation statements.
Typing sPrint += is equivalent to typing sPrint = sPrint +. Thus, +=
is a typing shortcut that can save you a lot of time.

Displaying Dynamic Messages Onscreen

Scripts can include tags that mark up the strings you display onscreen. For
example, suppose you wanted the person’s age and weight to appear bold.
The and tags accomplish these boldings:

L 8-4 sPrint = "At age " + iAge + ", " + sFullName

+ " weighs " + iWeight + " pounds.";

Sooner or later, everyone who works with strings gets confronted with
the challenge of including quotation marks inside a string. Suppose you
need to create a string called sQuotation, for example, that contains the
following characters:

L 8-5 Santa sang "Jingle Bells" as he drove the sleigh.

FIGURE 8-7 In the Notepad view of the
variables.html file, the script

assigns values to iAge and iWeight variables and
concatenates them into a string named sPrint, which the
document.write(sPrint) command prints onscreen. �

FIGURE 8-8 In the browser
view of the

variables.html file, the browser
executes the script in Figure 8-7,
which writes to the screen Santa’s
concatenated age and weight. �

Typing sPrint +=
is equivalent to typing
sPrint = sPrint +

document.write(sPrint) prints
the concatenated values residing in sPrint

Chapter 8: Creating Active Web Pages

The dilemma is: How do you create a string like this when the quote
sign delimits the string? To make it possible to do this, JavaScript uses the
special symbol \" to denote a quote sign inside a string. Thus, the way to
type this assignment statement is as follows:

L 8-6 sQuotation = "Santa sang \"Jingle Bells\" as he drove the sleigh.";

\" denotes an internal quote sign.

Objects, Methods, and Properties

Think about what you see onscreen when you visit a Web page. There are
menus, buttons, fields, paragraphs, tables, images, address fields, status
bars, and links. Imagine being able to grab hold of these elements and ma-
nipulate them dynamically when a user visits the page. Think of how inter-
active such a Web page would be. If a user mouses over a link, for example,
you could pop out a description of what will happen if the user clicks there.
On a form that prompts the users to type their e-mail address, you could
validate that address and make sure it has the proper format. In a product
catalog where users can choose different colors, you could display a color
palette and change the product’s color dynamically as the user mouses
over the color choices. On a Web page that contains a time-consuming
process, you could write a message into the status bar informing the user of
the progress of the operation.

Would you like to be able to do some of these things? Of course you
would. Is doing so difficult? Not if you understand the two underlying
principles that this tutorial is about to teach you. First, you need to know
where to go to find out what the objects are that you can manipulate dy-
namically. Second, you need to know when and how you can grab hold of
these objects and manipulate them dynamically.

What Is an Object?

In computing, an object is a self-contained entity consisting of properties
and methods enabling you to do something programmatically. You already
have experience using one of the objects that is built into the scripting lan-
guages. That is the document object you used to print to the screen in the
JavaScript examples you completed earlier in this chapter. You were probably
impressed by how easy it was to use the document object to write onscreen.
Imagine being able to grab hold of different parts of a Web page and manipu-
late them just as easily. Soon you will know how to do so. Read on.

What Is a Method?

A method is a little computer program built into an object to enable the
object to do something. In the Hello, World! script you wrote in the previ-
ous part of this chapter, for example, you learned how the write()

method enables the document object to print a message onscreen. In your
script, you called upon this method with a statement in the form of:

L 8-7 document.write("Hello, World!")

What Is a Property?

A property is an attribute of an object that has a value. You can find out
the value of the attribute by grabbing hold of the property and taking a
look at its contents. Suppose someone has clicked the Submit button on a
form that prompts users to type their e-mail address. Before submitting
that address to the server, you would like to grab hold of the e-mail field
and see what the user typed. You can easily do this by inspecting the text
property of the e-mail field. When the user clicks the Submit button, you
can run a script that inspects the text property of the e-mail field and
checks to see if it contains the required elements. If the e-mail address does
not include the @ sign, for example, you can pop out a box explaining the
problem and ask the user to fix the error and try again.

Some objects have properties that you can manipulate to change the ap-
pearance of things onscreen. Colors, sizes, bolding, underlining, and posi-
tioning are just a few of the properties you can manipulate this way.

What Is an Event?

In computer programming, an event is an action that provides an opportu-
nity to trigger a script that can use objects to inspect properties and execute
methods that make things happen onscreen or keep records behind the
scenes. The most commonly used events are (1) the mouseover, which fires
when the user mouses over an object onscreen; (2) the click, which fires
when the user clicks the mouse; (3) the double-click, which the user trig-
gers by clicking twice quickly; and (4) the page load, which fires when the
user visits a Web site and a page first comes onscreen. Whenever one of
these events happens, you have the opportunity to run a script and party
with the objects, methods, and properties in the DOM.

JavaScript Clock Project

The purpose of the JavaScript clock project is to give you some experience
using the methods and properties of one of the objects in the JavaScript
DOM. The clock project uses the JavaScript Date() object, which con-
tains methods and properties that enable you to find out the current date
and time in a wide range of formats. Combined with the numerical and
string processing techniques you learned earlier in this chapter, the
Date() object enables you to provide dynamic content onscreen in the
form of a clock that tells the user what time it is. To create the JavaScript
clock project, follow these steps:

Internet Technologies at Work

Object Method Parameter

Chapter 8: Creating Active Web Pages

1. Pull down the Notepad’s File menu and choose New to create a
new file. Into this new file, type the following code:

<html>

<head>

<title>Clock Project</title>

</head>

<body>

<h1>The Clock Strikes!</h1>

<script language=javascript>

//What is the date and time now?

dateNow = new Date();

sPrint = "The time is ";

sPrint += dateNow.toString();

//display the print string

document.write(sPrint);

</script>

</body>

</html>

2. Pull down the Notepad’s File menu and choose Save. When the
Save dialog appears, save this file under the filename clock.html.
Then open the file with your browser. Figure 8-9 shows the
completed Notepad file, and Figure 8-10 shows how the script
makes the browser display the current date and time onscreen. If
you do not see the current date and time, compare your code to the
listing in Figure 8-9, correct any typographical errors, save the file,
and click your browser’s Refresh button to view the corrected code.

FIGURE 8-9 In the Notepad view of
the clock.html file, the

script uses the toString() method of the Date()
object to get the current date and time into
the sPrint string, which the document.write()
command displays onscreen. �

FIGURE 8-10 In the browser view of
the clock.html file, the

browser executes the script in Figure 8-9,
which displays the current date and time in a
default format. In the next part of this tutorial,
you learn how to customize the formatting of
the date and time display. �

The variable dateNow is an
instantiation of the Date()
object that contains the
current date and time.

The toString() method
causes the dateNow object
to create a string containing
the current date and time in
the default format.

document.write(sPrint)
prints the result onscreen.

Internet Technologies at Work

Clock Code Analysis

The clock script obtains the current date and time by creating a new in-
stance of the Date() object. The keyword new creates this new instance,
which is assigned to the variable named dateNow:

L 8-8 dateNow = new Date();

Then the clock script uses the toString() method to create the print
string that displays the date and time onscreen. The method toString()
can be used with many objects in the JavaScript DOM. When applied to
the Date() object, the toString() method returns a string containing
the date and time, as displayed in Figure 8-10.

Customizing the Date and Time Display

The manner in which the date and time appear onscreen in the clock pro-
ject is just one of many ways you can format dates and times. Table 8-1
shows theDate() object methods and properties that let you grab hold of
the individual date and time components and use them to customize the
display of the current date and time. If you would like to try some of these
customizations, add the following code to the script in your clock.html
file. The place to put this code is right before the </script> end tag.

dateNow is a variable
name that you make up.

new is a keyword you use to
create a new instance of an object.

Date() is one of the objects
in the JavaScript DOM.

Method What It Does

toString() Returns the date and time in the default format

toUTCString() Returns the date and time with Universal Time
Code (UTC) formatting

toLocaleString() Returns the date and time in the locale formatting
defined on the user’s computer

toDateString() Returns the date only, in the default format

toTimeString() Returns the time only, in the default format

toLocaleDateString() Returns the date only, in the locale format

toLocaleTimeString() Returns the time only, in the locale format

TABLE 8-1 JavaScript Date() Methods for Customizing Date and Time Display
Strings �

Then save the file and open it with your browser to see the customized
print strings onscreen. Here is the code to type:

L 8-9 sPrint = "

The UTC time is ";

sPrint += dateNow.toUTCString();

document.write(sPrint);

sPrint = "

The locale time is ";

sPrint += dateNow.toLocaleString();

document.write(sPrint);

sPrint = "

The date is ";

sPrint += dateNow.toDateString();

document.write(sPrint);

sPrint = "

The time only is ";

sPrint += dateNow.toTimeString();

document.write(sPrint);

sPrint = "

The locale date is ";

sPrint += dateNow.toLocaleDateString();

document.write(sPrint);

sPrint = "

The locale time only is ";

sPrint += dateNow.toLocaleTimeString();

document.write(sPrint);

Document Object Model (DOM)

The document object model (DOM) is the official W3C structural defini-
tion of the objects, methods, and properties that comprise documents on
the World Wide Web. Like many of the W3C standards, the DOM is evolv-
ing and taking on more exciting features. You need to be aware that if you
use one of the newer features, it is possible that not all browsers support it.
Therefore, you should always test your pages with the targeted browsers
your users are likely to have. You can find the latest version of the DOM by
going to www.w3.org/DOM, where you’ll find a tremendous amount of
information. Before wading in too deeply, you should work through this
chapter’s tutorial, which introduces you to things you can do with the
DOM without getting overly technical.

Popular JavaScript DOM Objects

In JavaScript, the most commonly used DOM objects provide access to the
HTML elements that comprise the document displayed inside the browser
window. Of particular importance are the elements in the forms through
which the user interacts by selecting things, entering textual information,
and clicking to submit the form. Table 8-2 contains an outline of these
methods and properties. Remember that this is just a small sampling of the
vast array of objects defined in the DOM.

Chapter 8: Creating Active Web Pages

note The Date() object
contains many more methods for
working with dates and times. In the
next part of this chapter, you learn how
to list all the methods and properties of
the Date() object as well as all the
other objects that are available to you
when scripting.

Internet Technologies at Work

TABLE 8-2 Popular JavaScript DOM Objects �

Chapter 8: Creating Active Web Pages

TABLE 8-2 Popular JavaScript DOM Objects (continued) �

Intrinsic Events

In addition to defining the objects that enable a script to manipulate ele-
ments on a Web page, the W3C has defined the intrinsic events that can
trigger such a script. Table 8-3 lists and defines these intrinsic events. These
definitions are based on the W3C specification at http://www.w3.org/TR/
html401/interact/scripts.html#h-18.2.3. In the Dynamic HTML section
of this chapter, you learn how to use these events to trigger scripts that ac-
cess objects in the DOM to bring your Web pages to life and make the user
interface more intelligent.

Accessing DOM Objects via Dot Notation

To access DOM objects in a script, you use dot notation to refer to the ob-
jects you want to manipulate. Following the document’s hierarchical
structure, dot notation places to the left of a period elements that are struc-
turally higher than elements further down the tree. Let us work through a
very simple example. Suppose you want to write a script that can alter dy-
namically the title of a Web page. As you saw in the list of popular
JavaScript DOM objects presented in Table 8-2, the document object has a

Internet Technologies at Work

Event When It Occurs May Be Used With

onclick Occurs when the user clicks the pointing device button over an element Most elements

ondblclick Occurs when the user double-clicks the pointing device button over an element Most elements

onmousedown Occurs when the user presses the pointing device button over an element Most elements

onmouseup Occurs when the user releases the pointing device button over an element Most elements

onmouseover Occurs when the user moves the pointing device button onto an element Most elements

onmousemove Occurs when the user moves the pointing device button while it is over an element Most elements

onmouseout Occurs when the user moves the pointing device away from an element Most elements

onfocus Occurs when an element receives focus either via the pointing device or tabbing
navigation

A, AREA, LABEL, INPUT,
SELECT, TEXTAREA, and
BUTTON

onblur Occurs when an element loses focus either via the pointing device or tabbing
navigation

A, AREA, LABEL, INPUT,
SELECT, TEXTAREA, and
BUTTON

onkeypress Occurs when the user presses and releases a key over an element Most elements

onkeydown Occurs when the user presses down a key over an element Most elements

onkeyup Occurs when the user releases a key over an element Most elements

onsubmit Occurs upon the submission of a form The FORM element

onreset Occurs when a form is reset The FORM element

onselect Occurs when a user selects some text in a text field INPUT and TEXTAREA

onchange Occurs when a control loses the input focus and its value has been modified since
gaining focus

INPUT, SELECT, and
TEXTAREA

onload Occurs when the browser finishes loading the window or all frames in a frameset BODY and FRAMESET

onunload Occurs when the browser removes a document from a window or frame BODY and FRAMESET

TABLE 8-3 Intrinsic Events that Can Trigger a Script �

title property that can be used to retrieve or set the title of the page. A script
can grab hold of the title via the dot notation:

L 8-10 document.title

Chapter 8: Creating Active Web Pages

document goes on the left
because it is higher in the hierarchy

than the item on the right.

title goes on the right
because it is a property of

the object to its left.

The period is called a dot; hence
the term, dot notation.

Title Bar Clock Script
To experience how easy it is to manipulate an object defined by the DOM, you can write a little script that uses
the dot notation document.title to set the title of a Web page. In this example, you make the title display the
current time. Any time the user wants to know what time it is, the title bar will display it. Follow these steps:

1. Pull down the Notepad’s File menu and choose New to start a new page. Type the following code to
get the page started:

<html>

<head>

</head>

<body>

</body>

</html>

2. Pull down the Notepad’s File menu and choose Save As; use the Save controls to save this file in your
website folder under the filename TitlebarClock.html.

3. Click to position your cursor before the </head> tag that ends the head of the document. Type the
following script into the head of the document, or download it from the book’s Web site, where the
script is called titlebarclock.txt:

<script language="JavaScript">

function clock()

{

var dateNow = new Date();

var hour = dateNow.getHours();

var minute = dateNow.getMinutes();

var second = dateNow.getSeconds();

if (hour > 12)

hour -= 12;

if (minute < 10)

minute = "0" + minute;

if (second < 10)

second = "0" + second;

document.title = "The time is " + hour + ":" + minute + ":" + second;

setTimeout("clock()", 1000);

}

</script>

Try This!

Accessing DOM Objects by Arrays

An array is a named table of memory locations in which values can be
stored. Like variables, arrays have names. You can define an array to have
a fixed number of memory locations via the following JavaScript com-
mand, in which the number specifies the size of the array:

L 8-11 dayArray = new Array(6);

You use assignment statements to put values into the array, such as:

L 8-12 dayArray[0]="Sunday";

dayArray[1]="Monday";

dayArray[2]="Tuesday";

dayArray[3]="Wednesday";

dayArray[4]="Thursday";

dayArray[5]="Friday";

dayArray[6]="Saturday";

To access the value in one of the array’s slots, you use a subscript. Arrays
are zero-based, meaning that the numbering of the slots begins at zero.
Thus, to access the value of the first slot in an array called dayarray, for ex-
ample, you would refer to the value as dayArray[0]. To access the next slot,
you would refer to the value as dayArray[1].

Internet Technologies at Work

4. Scroll down to the <body> tag and modify the <body> tag to make it read as follows:

<body onLoad="clock()">

5. Save the page and open it with a browser. Notice that the browser’s title bar displays the current
time. See how the time updates every second. That update is triggered by the last command in the
script, which has the format:

setTimeout("clock()", 1000)

Try This!
continued

onLoad is an event that triggers
when the browser loads the page.

clock() is the name of the function
you typed in the previous step.

setTimeout is a JavaScript
command that sets a timer.

This is the name of the script that will
run when the timer triggers.

This is the number of milliseconds after which the
timer will trigger. (1000 milliseconds = 1 second)

When a Web page loads, the browser creates arrays for the images,
forms, links, anchors, and all the other elements onscreen. As the browser
encounters objects on the page, it places them into these arrays. The arrays
are indexed sequentially, beginning with zero. The first image on the page,
therefore, goes into slot 0 of the images array. You could refer to it in a
script as:

L 8-13 document.images[0]

In like manner, the fourth image on the page could be accessed as:

L 8-14 document.images[3]

The first form on the page goes into slot 0 of the forms array. You could
refer to it in a script as:

L 8-15 document.forms[0]

Each entry in the forms array has another array inside it called elements,
which contains the fields and buttons that comprise the form. If the first
form on the screen begins with three radio buttons, for example, the third
such button would be referred to as:

L 8-16 document.forms[0].elements[2]

Referring to the objects in this manner is not very intuitive, however.
After you write code like this, if you later insert another radio button
ahead of a button you already had onscreen, the insertion changes the in-
dexing. What was formerly document.forms[0].elements[2] is
now document.forms[0].elements[3], so all the code references
to document.forms[0].elements[2] would need to be changed.
Clearly, you would not want to code this way. You need to know about the
arrays to understand how the browser stores the elements on a Web page,
but you will not normally be referring to these elements via array indexes
in your code.

Accessing DOM Objects by Name

Happily, there is a more direct way for you to access elements on a Web
page: you simply name the elements when you put them on the page. At
runtime, your scripts can refer to the elements by name. To name a Web
page element, you use the name and id attributes to give the element a
unique identifier. The attributeid stands for identifier. The reason you use
both the name and id attributes is that older versions of HTML use the
name attribute, but the latest version uses the id attribute. By using both
name and id attributes, you can write code that is compatible with both
old and new versions of HTML. Suppose you want to refer to the image on
your Web page résumé by the name MyPhoto. To make such a name, you
would code the image tag as follows:

L 8-17

Chapter 8: Creating Active Web Pages

Internet Technologies at Work

So named, the image can appear in a script that modifies the image attrib-
utes by referring to the image by name. Following this paragraph is an ex-
ample that provides users with three buttons onscreen, followed by an
image named MyPhoto. The buttons give users the choice of making the im-
age larger or smaller or reloading the page. If the user clicks to make the im-
age larger, the script multiplies MyPhoto.width and MyPhoto.height by 2,
thereby doubling the size of the image. If the user clicks to make the image
smaller, the script divides these attributes by 2, thereby reducing the image
to half its former size. If the user clicks the Reset button, the script calls the
window.location.reload() function to reload the page, thereby re-
setting the image to its original size. Here is the code that accomplishes this:

L 8-18 <p>

Click the buttons to change the size of the picture.

<input type="submit" value="Bigger" onclick="MyPhoto.width *= 2; MyPhoto.height *= 2">

<input type="submit" value="Smaller" onclick="MyPhoto.width /= 2; MyPhoto.height /= 2">

<input type="reset" onclick="window.location.reload()">

</p>

MyPhoto.height *= 2 is a shorthand
way of writing MyPhoto.height =

MyPhoto.height * 2.

MyPhoto.height /= 2 is a shorthand
way of writing MyPhoto.height =

MyPhoto.height / 2.

Debugging JavaScript via the Alert Box

Writing scripts requires patience because you can run into some problems.
When a script is not working, you need to take it from the top and work
through it until you find what is causing the problem. Beginners can stum-
ble by forgetting to click the browser’s Reload button to refresh the page
after modifying the script. Remember that the browser caches the file
when the page loads. When you modify the script to fix a problem or add a
feature, you must either click the browser’s Reload button or pull down
the View menu and click Refresh. Otherwise, the browser displays the pre-
viously cached version of the file, and you can become frustrated because it
appears as though your fix is not working.

Sometimes the browser tells you the number of the offending line of
code that is causing the problem. When this happens, pull down the Note-
pad’s Edit menu and choose Go to. Programming glitches can happen in
the line or two above the one the browser reports, so look there as well as
in the line flagged by the browser.

The greatest aid to finding a problem in a script is to inspect the values
of your variables while the script executes. To take a sneak peek at a vari-
able, you can insert an alert box at the point in the script at which you want
to inspect the value of the variable. An alert box is a window that a script
creates by executing thealert()method of the JavaScript window object.

Inside the parentheses of the alert() method, you insert the string of
characters and variables you want displayed in the alert box. At runtime,
when the script encounters the alert, the script pauses while you study the
contents of the alert box onscreen. When you click to dismiss the alert box,
the script continues executing. By putting alert boxes in strategic places

Chapter 8: Creating Active Web Pages

Rollover Effects
A rollover is a special graphical effect you create by using the JavaScript onmouseover and onmouseout event
handlers. When the user mouses over something, the onmouseover event fires, causing your script to do some-
thing onscreen. Similarly, when the user mouses out of something, the onmouseout event fires, providing an-
other opportunity to run a script. In this exercise, you create the most common kind of rollover, in which a
script changes the source of the image when the user mouses over it. To create this rollover, follow these steps:

1. Pull down the Notepad’s File menu and choose New to create a new file. Into this new file, type the
following code. When you type this, replace photo.gif and photo2.gif by the actual names of the
images you want to see during the rollover:

<html>

<head>

<title>Rollover Effects</title>

</head>

<body>

<p>

Move your mouse on and off the picture.

</p>

<img src="photo.gif" name="MyPhoto" id="MyPhoto"

onmouseover="MyPhoto.src='photo2.gif'"

onmouseout="MyPhoto.src='photo.gif'">

</body>

</html>

2. Pull down the Notepad’s File menu and choose Save. When the Save dialog appears, save this file
under the filename rollover.html. Then open the file with your browser. Move your mouse on and
off the image. If the rollover works, congratulate yourself because you have just mastered one of the
most popular special effects on the Web. If there are problems, go back to the previous step and
troubleshoot the difficulties.

3. If you have the Internet Explorer Web browser, you can make a very nice rollover effect with a single
image. Click to position your cursor in the notepad prior to the </body> tag that ends the
document, and type the following code, replacing photo.gif by the name of your actual image:

<img src="photo.gif" name="PalePhoto" id="PalePhoto"

style="filter:progid:DXImageTransform.Microsoft.Alpha(opacity=30)"

onmouseover="PalePhoto.style.filter='progid:DXImageTransform.Microsoft.Alpha(opacity=FF)'"

onmouseout="PalePhoto.style.filter='progid:DXImageTransform.Microsoft.Alpha(opacity=30)'">

4. Save the file and view it with your browser. At first, the image appears pale onscreen. Mouse over
the pale image, and its full color appears. The image filter that creates this effect is a Dynamic
HTML technique described later in the Dynamic HTML part of this chapter.

Try This!

Replace photo.gif and photo2.gif
with the actual filenames of your images.

Internet Technologies at Work

down through the path of execution in your code, you can step through the
code and diagnose the point at which something is going wrong. To create
an alert box, follow these steps:

1. Use the Notepad to open the page you want to debug. In this
example, open the clock.html page you created earlier in this chapter.

2. Scroll to the point in the code at which you want to insert an alert
box for debugging. In this example, imagine that you want to find
out the value of the sPrint string. Position your cursor at the spot
where you want the alert box and type the following code:

sDebug = "The value of sPrint is " + sPrint;

alert(sDebug);

3. Save the page and open it with your browser. See that the alert
box comes onscreen. Reflect on what a simple yet powerful
method this is for finding out what is going on behind the scenes
when you are trying to solve a problem in your script.

4. After you finish debugging, you can either delete the debugging
code you added to display the alert box, or you can comment it
out without deleting it. Commenting out code that you think you
might want to reactivate will save you the time needed to re-create
the debugging code if you encounter another problem later on. To
comment out this code, you type the comment character // in front
of each line of debugging code, as follows:

//sDebug = "The value of sPrint is " + sPrint;

//alert(sDebug);

5. To inspect the value of a variable at different points in a script,
periodically insert into your code an alert box constructed in this
manner:

The symbol // creates a comment
that will not execute at runtime.

alert("The current value of the variable sVarName is: " + sVarName);

JavaScript Code Sources

Several Web sites provide free source code for creating a wide variety of
JavaScript special effects. When you visit these sites, you will find thou-
sands of scripts organized according to subject and topic. There is also a
search feature you can use to locate scripts via keyword. Table 8-4 lists the
JavaScript source code sites and tells what you will find there. Also remem-
ber to visit this book’s Web site for links to new resources and updates that
may have been made to the links in Table 8-4. Be sure to follow the link, for
example, to the JavaScript clock at Spondoro.com. It is an amazing 3-D
animated clock that will follow your mouse across the screen.

Type the name of the variable here.

Chapter 8: Creating Active Web Pages

Maintaining State in Cookies

Do you remember the PacMan game that was popular in video arcades in
the 1980s? The game contained magic cookies that, when devoured, made
you more powerful. On the Internet, cookies work a little differently but
are much more powerful.

What Is a Cookie?

A cookie is a place in the computer’s memory where browsers can store in-
formation about the user. If someone buys an audio CD by Britney Spears,
for example, the site might create a cookie indicating that the user likes
pop music. The next time the user visits the site, it might display ads for
similar pop music titles. Or the cookie might keep track of screens visited
and use that information to resume where the user left off.

There are two kinds of cookies, namely, persistent cookies that are
stored in small text files on the user’s hard disk, and per-session cookies
that are stored in RAM. Because persistent cookies are stored on disk, they
survive from session to session, even after the user closes the Web browser
and turns off the computer. Per-session cookies, on the other hand, evapo-
rate when the user closes the Web browser, which frees the RAM.

Why Does the Internet Need Cookies?

Without cookies, the Internet would be in deep trouble. Each time a user
interacts with a Web site, the Internet closes the socket through which that
interaction took place. In other words, the Internet hangs up on you after it
finishes serving you the page. While you read what is onscreen, the
Internet devotes its resources to serving other users. It does not pay you

Site Name and Web Address What You Will Find There

JavaScript Developer Central
http://developer.netscape.com/tech/javascript

Netscape’s JavaScript support site. Full of articles, documentation, and
sample code. Includes a brief history of the DOM.

The JavaScript Source
http://javascript.internet.com

Hundreds of cut-and-paste scripts to put on your Web page. See especially
the generators that can create scripts according to your specifications.

Simply the Best Scripts
http://www.simplythebest.net/info/dhtml_scripts.html

A collection of very good scripts. See especially the guitar chord machine
at http://www.simplythebest.net/info/javascript38.html#.

Dynamic Drive
http://www.dynamicdrive.com

Repository of DHTML scripts that use the latest JavaScript technology,
with emphasis on practicality and backward compatibility.

JavaScript Kit
http://www.javascriptkit.com

JavaScript tutorials, free JavaScripts, DHTML/CSS tutorials, Web building
tutorials.

Builder.Com
http://builder.com

To find the Builder.Com repository of JavaScripts, go to http://builder.com
and search for JavaScript.

WebReference
http://www.webreference.com/programming/javascript

JavaScript articles, tutorials, repositories, specifications, and documentation.

Webmonkey
http://hotwired.lycos.com/webmonkey/
reference/javascript_code_library/

The Webmonkey JavaScript code library, including free code samples and
language extensions.

TABLE 8-4 JavaScript Source Code Sites �

Internet Technologies at Work

any attention until you click or select something that requires interaction
with a server. Each time you interact, a socket opens and then closes again
as soon as the Internet finishes serving you the page. The Internet does not
keep track of which users get which sockets. For this reason, the Internet is
said to be stateless. The Internet needs cookies so it can maintain state
from screen to screen. When you interact with a secure Web site, it creates
one or more session cookies that the browser stores temporarily in your
computer’s RAM. The next time you interact with that site, it inspects the
cookies to find out who you are. Thus, the Internet uses cookies to main-
tain state from page to page.

The per-session cookies are very secure. Only the server that set the
cookies is able to read them, and the cookies evaporate at the end of the
session. Persistent cookies, on the other hand, reside on the user’s hard
disk drive. Knowledgeable users can find the cookie files and read their
contents with any text editor. If these contents are unencrypted, the cook-
ies can be read in plain text. It is appropriate to use persistent cookies to
store information that would not cause a security problem if sniffed. The
advantage of using persistent cookies is that a server can keep data on the
user’s PC, thereby avoiding the need to store that data in a server-side data-
base. Cookies thereby provide a mechanism you can use to store
nonsensitive data on every computer on the Internet from which someone
visits your site—unless the user turns off the browser’s cookie feature. The
vast majority of users have their cookies turned on because virtually all sites
that have you log on and off, including all of the Internet’s e-commerce
sites, use cookies to maintain state.

How to Read and Write the Value of a Cookie

Table 8-2 (earlier in this chapter) identifies the commonly used JavaScript
DOM objects. One of the DOM objects is the cookie collection, which you
access via the document.cookie property. As you might expect, setting the
value of a cookie requires a little scripting. The following example uses a
cookie to keep track of how many times the user clicks a button onscreen.
Although the task is very simple, the cookie functions can be used to read or
set the value of any cookie. To create the cookie cutter, follow these steps:

1. Pull down the Notepad’s File menu and choose New to start a
new file. Type the following code or download it from this book’s
Web site, where the filename is cookiecutter.txt:

<html>

<head>

<title>Cookie Cutting</title>

<script language="JavaScript">

function setCookie(sName,sValue,iMinutes)

{

if (iMinutes == 0)

document.cookie = sName + "=" + sValue;

else

{

dateExpires = new Date();

Chapter 8: Creating Active Web Pages

dateExpires.setMinutes(dateExpires.getMinutes()+iMinutes);

document.cookie = sName + "=" + sValue

+ ";expires="

+ dateExpires.toGMTString();

}

}

function readCookie(sName)

{

cookieChecker = document.cookie.split("; ");

for (i=0; i<cookieChecker.length; i++)

{

if (sName == cookieChecker[i].split("=")[0])

return cookieChecker[i].split("=")[1];

}

return ""; //returns nothing if cookie not found

}

</script>

</head>

<body>

<h1>Hit Counter</h1>

<script language="JavaScript">

iClickCounter = readCookie("ClickCounter");

</script>

<form method="get" action="cookies.html">

<input type="submit" value="Click Me!"

onClick="setCookie('ClickCounter',++iClickCounter,0);">

</form>

<p>Number of clicks:

<script language="JavaScript">

document.write(iClickCounter);

</script>

</p>

</body>

</html>

2. Save the file in your website folder under the filename cookies.html.
To see what it does, open the cookies.html file with your browser. If
you get any error messages, the browser tells you the number of the
line that is causing the problem. Troubleshoot the problem by
proofreading your code more carefully until you get the page to
open in the browser without reporting any errors.

3. Click the button and observe how the click counter increases.
Each time you click the button, the script is adding 1 to the value
of the click counter stored in the cookie named ClickCounter.

4. As printed in this exercise, the cookie is set to expire at the end of
the session. Close all of your browser windows; then use your
browser to reopen the cookies.html file. Notice that the click

counter starts over when you start clicking the button. That is
because the cookie expired when you closed the browser windows.

5. To make the cookie persist, increase the value of the following
variable, which tells the browser how many minutes to make the
cookie last. In this example, set the value to 1, to make the cookie
last one minute:

<form method="post" action="cookies.html">

<input type="submit" value="Click Me!"

onClick="setCookie('ClickCounter',++iClickCounter,0);">

</form>

6. Close all your browser windows. Then open the cookies.html page
with your browser. Click the button a few times. Make a note of
the value of the click counter. Then close all your browser windows.
Immediately use your browser to reopen the cookies.html page.
Notice that the value persists because you started the new session
before the cookie expired.

7. Close all your browser windows again. This time, wait for a
couple of minutes before you reopen the cookies.html file. This
causes the one-minute cookie to expire. Open the page and notice
that the click counter restarts because the cookie expired. In
practice, you normally set a persistent cookie to last for several
days or months, depending on the purpose. In this example, you
set it to last just a minute so you can observe what happens when
it expires, without having to wait so long.

Cookie Cutter Code Analysis

Figure 8-11 contains the completed code of the cookies.html page, and
Figure 8-12 shows it running onscreen. The script stores the click counter
in a cookie called ClickCounter. The page reads the value of this cookie
into a variable named iClickCounter via the following script:

L 8-19 <script language="JavaScript">

iClickCounter = readCookie("ClickCounter");

</script>

Each time the user clicks the “Click Me!” button, the onclick event fires.
The button’s <input> tag takes this opportunity to increase the value of
the variable iClickCounter and store the new value in the cookie called
ClickCounter. If this code seems a little complicated, worry not, because

Internet Technologies at Work

Replace this 0 with the number of minutes
you want the cookie to last.

iClickCounter is a variable that will
be used again later on this page.

readCookie() is one of the functions
defined in the <head> of the document.

ClickCounter is the name of the
cookie that keeps track of how many

times the user clicks the button.

Chapter 8: Creating Active Web Pages

you do not need to know this to pass the CIW exam. By studying the fol-
lowing callouts, however, you can get an idea of how this code works:

L 8-20 onClick="setCookie('ClickCounter',++iClickCounter,0);"

Many Web developers criticize JavaScript for not having the
readCookie() and setCookie() functions built in. Now that you
have these functions working, you can use them on other pages any time
you need to read or set the value of a cookie.

The onClick event fires when the
user clicks the button.

ClickCounter is the name of the
cookie you are setting.

setCookie() is a function defined
in the <head> of the document.

The ++ prefix causes the value of iClickCounter to increase by one each time it
is passed to the setCookie() function as the value of the cookie.

Setting the number of minutes to 0 makes this a per-session
cookie that will not persist on the user’s hard drive.

FIGURE 8-11 The head section of the cookies.html page contains JavaScript
functions that you can use whenever you need to set or read
the value of a cookie. �

FIGURE 8-12 Powered by the code
in Figure 8-11, the

browser uses a cookie to keep track of how
many times the user clicks the button. �

Cascading Style Sheets

A cascading style sheet (CSS) is a set of rules that define styles to be ap-
plied to entire Web pages or individual Web page elements. Each rule con-
sists of a selector followed by a set of curly braces containing the style
properties and their values. The selector can be an HTML element, a user-
defined style known as a class, or the ID of a specific element on a page.
Here are some examples of style definitions that you might find on a CSS:

L 8-21 a:link{color: rgb(255,204,0) }

a:visited{color: rgb(153,204,204) }

a:active {color: rgb(102,255,0) }

body

{

font-family: Garamond, Times New Roman, Times;

background-color: rgb(51,102,204);

color: rgb(255,255,153);

}

table

{

table-border-color-light: rgb(153,255,204);

table-border-color-dark: rgb(0,0,51);

}

Internet Technologies at Work

Inspecting Your Computer’s Cookies
If you have never looked around your computer to see what cookies are stored there, you will be amazed by
what this exercise will turn up. Remember that there are two kinds of cookies: (1) per-session cookies that are
stored in RAM and evaporate when the user closes the browser windows and (2) persistent cookies that sur-
vive from session to session. Persistent cookies endure even when the user reboots or powers off the computer.
The persistent cookies stick around because the browser stores them on the computer’s hard drive. To inspect
the cookies the browser is storing on your hard drive, follow these steps:

1. Click the Windows Start button and choose Search to make the Search window appear.

2. Click the option to search all files or folders. When the search criteria form appears, type the word
cookie into the field titled All or part of the file name. Leave the other fields blank.

3. Click to reveal the more advanced options and set the options to search for hidden files and system files.

4. Click the Search button and wait while your computer looks for filenames containing the word
cookie. One by one, your cookie files will begin to appear in the search window.

5. Look for a folder called cookies. Right-click it and choose the option to enter that folder. Here you
will probably find many more cookie files.

6. To inspect a cookie file, right-click its filename to bring up the quick menu, choose Open, and
choose the option to open the file with the Notepad. Many cookies are encrypted, so do not be
disappointed if you cannot decipher the contents of these files.

7. Reflect on how servers all over the Internet, including commercial Web sites, are using your computer’s
hard drive as a storage medium.

Try This!

Chapter 8: Creating Active Web Pages

h1, h2, h3, h4, h5, h6{font-family: Verdana, Arial, Helvetica}

h1 {color: rgb(255,204,0) }

h2 {color: rgb(153,255,51) }

h3 {color: rgb(0,255,204) }

h4 {color: rgb(255,204,0) }

h5 {color: rgb(153,255,51) }

h6 {color: rgb(0,255,204) }

.callout { font-size: small }

#trailer { font-family: serif }

Three Kinds of Cascading Style Sheets

There are three ways of applying cascading style sheets to a Web page: ex-
ternal, embedded, and inline. An external CSS keeps all the style defini-
tions in a separate CSS file that you include in a Web page at runtime by
using the <link> tag to apply the style sheet to the page. An embedded
CSS is a style sheet that gets copied physically into the head of the Web
page and applies to the Web page as a whole. An inline CSS is a style sheet
that applies to only one page element so it gets copied “inline” on the page
with that element. The following exercises help you understand these defi-
nitions by walking you through some examples of the three ways of apply-
ing styles to a Web page.

Creating an Inline CSS

Sometimes, no matter how hard you try, you just aren’t satisfied with the
look of something on your page. You want part of the text to stand out
more, for example, or you want to soften the appearance of something.
Enter the inline CSS, which was invented to provide you with a way to
change a single element on a page without affecting any others. Suppose
you want to make the name and e-mail fields stand out a little more on the
subscribe.html form you created in the previous chapter. You want to
modify those two fields only, without changing the appearance of any
other input controls onscreen. Follow these steps:

1. Use the Notepad to open the subscribe.html page you created in
the previous chapter. You will find this file in your website folder.

2. Click to position your cursor inside the tag you want to stylize. In
this example, click to position your cursor before the > that
concludes the input tag that creates the Name field. Modify this
tag to read as follows:

<input type="text" name="Name" size="50" maxlength="150"

style="border-style: inset; border-width: 4">

User-defined style classes
begin with a period.

ID selectors begin with
a pound sign.

When an inline CSS has more than one
style change, you separate the styles

with a semicolon.

Internet Technologies at Work

3. Save the file and open it with your browser to see how this inline
style changes the style and width of the Name field’s border.

4. Now that you have stylized the Name field, you should make a
similar change to the Email field. Try to do this on your own, but
if you need help, here is the modification to make to the Email
field’s input tag:

<input type="text" name="Email" size="50" maxlength="150"

style="border-style: inset; border-width: 4">

5. Save the file and click the browser’s Refresh button to view the
latest version of the page. Figure 8-13 shows that the text fields
appear inset into the screen.

Creating an Embedded CSS

The purpose of an embedded CSS is to enable you to make style changes that
apply to the Web page as a whole. The embedded CSS goes into the head sec-
tion of the page, and the style rules defined there apply to the whole page. If
any element on the page has a style whose attributes have been affected by
the style sheet, those rules will take effect in displaying the element onscreen.
The best way to understand this is to work through an example. Suppose
you like the color blue and you want to make certain Web page elements ap-
pear in blue. To do this with an embedded CSS, follow these steps:

1. Use the Notepad to open the subscribe.html page you created in the
previous chapter. You will find this file in your website folder.

2. Click to position your cursor in the head section of the document.
Immediately prior to the </head> stop tag, type the following
embedded style sheet. Notice that the <style> start and
</style> stop tags demarcate the embedded style:

<head>

<title>Newsletter Subscription Form</title>

<style>

h1 { font-family: Comic Sans MS; color: #0000DD }

</style>

</head>

3. Save the file and open it with your browser. The heading should
appear blue in the comic font. If you do not see this on your
screen, return to the previous step, proofread the code, and
troubleshoot any problems.

4. Suppose you also want to make the paragraph text appear
blue in the comic font. Use the Notepad to add the following
line to the embedded style sheet in the head section of the
subscribe.html page:

FIGURE 8-13 An embedded style sheet applies
to every instance of a Web page

element onscreen. In this example, the blue text and the
comic font come from the style settings embedded in the
<head> of the document. �

h1 {color: #0000DD; font-family:
Comic Sans MS} is the style rule
that creates this shade of blue in
the comic font.

Chapter 8: Creating Active Web Pages

<style>

h1 { color: #0000DD; font-family: Comic Sans MS }

p { font-family: Comic Sans MS; color: #0000DD }

</style>

5. Save the file, view it with your browser, and click the browser’s
Refresh button. Figure 8-14 illustrates that this embedded style
sheet makes the heading and paragraph text appear blue in the
comic font.

Creating an External CSS

When you want a style to apply to multiple Web pages, you should create
an external CSS and link the Web pages to it. This approach has two ad-
vantages. First, it saves you time when you create a new page. Instead of
typing the styles into the page, you link the page to the style sheet, thereby
saving the time you would otherwise spend keyboarding. Second, and
more important, using an external style sheet makes your Web easier to
maintain. If you want to make a style change that applies to the entire
Web, you simply make that change to the external style sheet, thus saving

FIGURE 8-14 An inline style applies only to the
particular element(s) in which

you put it. In this example, the inline style “border-style:
inset; border-width: 4” is in the Name and Email fields,
causing them to appear inset into the screen. �

The inline style “border-style: inset;
border-width: 4” causes the text input
fields to appear inset into the screen.

Internet Technologies at Work

the time you would otherwise need to spend changing the style on every page
in the Web. To create an external cascading style sheet, follow these steps:

1. Pull down the Notepad’s File menu and choose New to create a
new file. Into this new file, type the following code. This code
contains styling for some of the more popular font and color
choices you see out on the Web. After you create this style sheet
and gain experience using it, you can modify and add new settings
to create your own style:

BODY {background-color:"#FFFFFF"}

H1 {color:#003399; font-family:Arial}

A:link {text-decoration:underline; color:#003399}

A:visited {text-decoration:underline; color:#003399}

A:hover {text-decoration:underline; color:red}

2. Pull down the Notepad’s File menu and choose Save As. When the
Save dialog appears, pull down the Save as Type menu and set it
to All Files. Then use the controls to save this file in your website
folder under the filename MyStyles.css.

3. You use the <link> tag to link the style sheet to any page in the
Web. Suppose you want to link the style sheet, for example, to
your Web page résumé. Use the Notepad to open the resume.html
page and click to position your cursor in the <head> of the
document. Immediately prior to the </head> tag, type the
following <link> tag:

<link rel=stylesheet href="MyStyles.css" type="text/css">

4. Save the file and open it with your browser. Your resume.html
page now appears with the styling in the cascading style sheet.
The a:link styling makes the hyperlinks change color when the
user mouses over them. To see this happen onscreen, move your
cursor over one of the links in your bulleted table of contents, for
example, and observe that the text changes color.

5. If you experiment with changing the style settings in your cascading
style sheet, remember to save the file after you make the changes,
and then click the browser’s Refresh button. If the changes do not
appear onscreen, click Ctrl-Refresh, which makes the browser
reload everything associated with the page.

When to Use the and <div> Tags

Sometimes you may want to stylize part, instead of all, of a Web page ele-
ment. To provide a way for you to do that, the W3C invented the HTML
inline start and stop tags. Suppose you wanted to

The color #003399 creates a
dark shade of blue.

Type the filename of your style sheet here.

colorize a few words in a paragraph. Instead of applying the color style to
the <p> tag, which would colorize the entire paragraph, you can instead
create a around the words you want colorized, and apply the
color to the tag, as follows:

Chapter 8: Creating Active Web Pages

L 8-22 <p>Notice how yellow words appear onscreen.</p>

Other situations may arise in which you want to apply a style to larger
divisions of a document at the block level. You create block-level divisions
with the <div> start and </div> stop tags, where <div> stands for divi-
sion. The syntax for the <div> tag is exactly the same as for the
tag. Because<div> is a block-level tag, however, the browser begins a new
line at the beginning of the division. If you do not want a new line, use the
 tag, which enables you to stylize elements inline without starting
a new block onscreen.

When to Create Style Classes and IDs

In cascading style sheets, a class is a named definition of one or more styles.
You create the class by prefixing its name with a dot in the CSS file. Sup-
pose you want a class you can use whenever you are displaying warning
messages onscreen. In the style sheet, you could create such a class, as
follows:

L 8-23 <style>

.warning { color: red; font-family: arial; font-weight: bold}

</style>

Whenever you want an HTML element to have that style, you use the
class attribute, as in this example:

L 8-24 <p>Be careful when you try this, because

the burner is hot!</p>

Style sheets also enable you to stylize elements via unique identifiers
called IDs. In cascading style sheets, an ID is a unique style identifier in-
tended to apply to one, and only one, Web page element onscreen. In the
style sheet, you create an ID via the # character. Suppose there is a trailer
that appears once, and only once, onscreen. In the style sheet, you could
create a unique styling for the trailer, as follows:

L 8-25 <style>

#trailer { color: #808080; font-family: Century Schoolbook }

</style>

The “warning” class makes red and
bold the burner is hot!

Internet Technologies at Work

You can make the trailer have this style by referring to it in your HTML,
as follows:

L 8-26

<p>Everything inside this span is the trailer.</p>

<p>It appears onscreen in the style of the ID named "trailer".</p>

What Is Absolute Positioning?

On the cutting edge of cascading style sheets is a feature called absolute
positioning, which enables you to position page elements precisely on-
screen based on x,y coordinates. The upper-left corner of the browser win-
dow is position 0,0. To position a page element 40 pixels down and 30 pixels
across the screen, for example, the inline style would appear as follows:

L 8-27 style="position: absolute; top: 40; left: 30;"

Absolute positioning makes it possible to layer objects on top of each
other. To provide control over the order in which the objects appear
onscreen, you can use an attribute called the z-index. You can set the value
of z-index to tell the browser the order in which to display objects that
overlap. The lower the value, the sooner the layer displays onscreen. In
other words, an item with a lower z-index will appear underneath overlap-
ping items with higher z-index values.

warning You need to be aware
that some browsers do not support
absolute positioning. It is a hot feature
that all browsers should support, but
until they do, you may need to postpone
creating pages with absolute positioning
if any of your users have browsers that
do not support it yet.

Pile Rocks with Absolute Positioning and z-index
With absolute positioning, you can be creative in placing graphics onscreen. In this example, you download
the images of three rocks and view them individually onscreen. Then you use absolute positioning to create a
rock pile in which the images appear in overlapping layers onscreen. Thus, you experience firsthand the con-
cept of absolute positioning and layering. To create the rock pile, follow these steps:

1. The three rocks are located on the book’s Web site. Right-click each rock, and use the quick menu to save
the rocks in your website folder. Do not change the filenames, which are igneous.gif, metamorphic.gif,
and sedimentary.gif. If you have ever studied geology, you will recognize igneous, metamorphic, and
sedimentary as the three basic kinds of rocks.

2. Pull down the Notepad’s File menu and choose New to create a new file. Type the following code,
which displays the three rocks onscreen:

<html>

<head>

<title>Rocks</title>

</head>

<body>

</body>

</html>

Try This!

Chapter 8: Creating Active Web Pages

3. Pull down the Notepad’s File menu and choose Save As. When the Save dialog appears, pull down
the Save as Type menu and set it to All Files. Then use the controls to save this file in your website
folder under the filename rockpile.html and open it with your browser. The three rocks appear
onscreen, side by side, as illustrated in Figure 8-15.

4. Now comes the fun part. Use the Notepad to add the following tags to the images displayed
on the rockpile.html page. These tags use inline styles to layer the rocks on top of each other:

<body>

</body>

5. Save the file and view it with your browser. Click Refresh to make sure you are viewing the current
version of the file. Figure 8-16 shows how the rocks layer onscreen. You have made a rock pile!

6. Now reflect: Inside the tags can go other html elements, such as headings and paragraphs
and tables. In fact, any page element can be contained by the span and thereby positioned onscreen
via absolute positioning. In the next chapter, you study how you can use CSS to lay out Web pages
that may be more accessible than some kinds of table-driven layouts.

Try This!
continued

FIGURE 8-15 Without layering, images appear individually onscreen.
Compare this to Figure 8-16, which uses absolute positioning

to layer the same images on top of each other. �
FIGURE 8-16 A pile of three rocks

created via absolute
positioning. Compare this to Figure 8-15, in
which the same images appear without the
inline styles that layer the rocks into a pile. �

This is a dime. Geologists put coins
atop rock samples to enable you to
gauge the relative sizes of the rocks.

Internet Technologies at Work

Dynamic HTML

Dynamic HTML is a term invented by Microsoft to refer to the animated
Web pages you can create by using the DOM to combine HTML with style
sheets and scripts that bring Web pages to life. Some people get confused
by the term Dynamic HTML because they think it refers to some kind of a
product. Dynamic HTML is not a product; rather, it is a concept. When-
ever you create dynamic effects onscreen by manipulating objects in the
DOM, you are doing what Microsoft refers to as Dynamic HTML. You
will understand this more by working through the following examples.

Dynamic Animation Effects

In the style sheet section of this chapter, you learned how to use absolute
positioning to place an image at any x,y location onscreen. JavaScript has
a timer event you can use to manipulate the values of x and y dynamically,
thereby creating an animation onscreen. To create such an animation, fol-
low these steps:

1. Pull down the Notepad’s File menu and choose New to create a
new file. Into this new file, type the following code:

<html>

<head>

<title>Dynamic HTML Example</title>

<script language="JavaScript">

var id;

function BeginAnimation()

{

id = window.setInterval("ContinueAnimation()",50);

}

function ContinueAnimation()

{

MyPhoto.style.pixelLeft += 10;

MyPhoto.style.pixelTop += 4;

if (MyPhoto.style.pixelLeft>200)

{

window.clearInterval(id);

}

}

</script>

</head>

<body onload="BeginAnimation()" marginheight="0" topmargin="0" leftmargin="0">

</body>

</html>

Type the filename of the image you
want this code to animate.

2. Pull down the Notepad’s File menu and choose Save As. When the
Save dialog appears, save this file under the filename dynamic.html.
Then open the file with your browser. You should see the image
move around the screen as the script alters the x,y values that
position the image onscreen.

Dynamic HTML Code Analysis

To create an animation with Dynamic HTML, you need to latch onto an
event that can get the animation started. The dynamic.html script does this
in the <body> tag via the onload event, one of the intrinsic events identified
earlier in this chapter in Table 8-3. Notice that the <body> start tag is pro-
grammed to fire the BeginAnimation() function when the page loads:

L 8-28 <body onload="BeginAnimation()">

The BeginAnimation() function is very brief. It calls upon the
setInterval() method of the JavaScript window object to set a timer
that will go off after 50 milliseconds and fire the ContinueAnimation()
function:

L 8-29 function BeginAnimation()

{

id = window.setInterval("ContinueAnimation()",50);

}

After you get an animation started, you need to keep it going. The
ContinueAnimation() function does that by computing the image’s
next position and setting another timer. This process continues until the
image moves past the point at which the IF statement stops the animation
by calling upon the clearInterval() method to stop the timer from
going off any more:

L 8-30 function ContinueAnimation()

{

MyPhoto.style.pixelLeft += 10;

MyPhoto.style.pixelTop += 4;

if (MyPhoto.style.pixelLeft>200)

{

window.clearInterval(id);

}

}

There is no limit to the number of animation patterns you can create
onscreen. This example moved the image along a straight line to keep the
coding straightforward. If you know your math, however, there is no limit
to the patterns of movement you can create onscreen.

Chapter 8: Creating Active Web Pages

Type the number of milliseconds after
which you want the timer to fire.

This controls how far over
the picture will move.

This controls how far down
the picture will move.

This determines when the
animation will stop.

The variable named id contains
the identification number of the

timer to be stopped.The clearInterval() method
stops the timer from firing.

Dynamic Gradient Effects

One of my favorite background effects is the gradient, a graphical effect
created by colors fading gradually across or down the screen. Figure 8-17
shows examples of some of the gradients you can create with dynamic
HTML. The code needed to do this is very straightforward, thanks to the
built-in gradient method that creates these effects. To create a gradient
background on any Web page, follow these steps:

1. Use the Notepad to open the page on which you want to create
the gradient background. In this example, open the resume.html
file you created in the previous chapter.

2. Modify the <body> tag to read as follows:

Internet Technologies at Work

<body style="filter: progid:DXImageTransform.Microsoft.gradient

(startColorstr=#88BBF7F6, endColorstr=#FFFFFFC0)" >

3. Pull down the File menu and choose Save to save the page; then
open it with your browser. If you typed everything correctly, you
will see the gradient onscreen.

4. To experiment with different colors, you can alter the start and
stop color strings, which are named startColorstr and endColorstr,
respectively. Save the file and click the browser’s Refresh button to
view the revised gradient onscreen. The format of the color string is
#AARRGGBB, where AA is the alpha value, RR is red, GG is green,
and BB is blue. The alpha value controls opacity, with values ranging
from 00 (transparent) to FF (full color).

Dynamic Page Transitions

A page transition is the style or manner in which the screen changes when
the browser brings up a new document and displays it onscreen. You can
use a wide variety of page transition effects for pizzazz. As with all special
effects, you should not overuse page transitions or feel compelled to dis-
play a different effect each time you display a page. If there is an effect you
like, however, you certainly may use it in good taste. To create a Dynamic
HTML page transition, follow these steps:

1. Use the Notepad to open the page for which you want to create a
transition effect. Click to position your cursor in the head of the
document, prior to the </head> stop tag.

2. To set the transition effect that users will see when the page comes
onscreen, type the following code:

<META http-equiv="Page-Enter"

CONTENT="progid:DXImageTransform.Microsoft.Blinds(Duration=2)" />

Chapter 8: Creating Active Web Pages

FIGURE 8-17 These gradient backgrounds are some of the Dynamic HTML effects you can create via the gradient method of the
DXImageTransform object. You can make millions of different gradients by manipulating the start and stop color strings. �

startColorstr=#88BBF7F6, endColorstr=#FFFFFFC0 startColorstr=# F8D2EF, endColorstr=#C2C3FE

startColorstr=#88CCFBA3, endColorstr=#88EDFEDE startColorstr=#44F8E4ED, endColorstr=#88F4C2DA

3. To set the transition effect that users will see when the page leaves
the screen, type the following code:

Internet Technologies at Work

<META http-equiv="Page-Exit"

CONTENT="progid:DXImageTransform.Microsoft.Slide(Duration=2.500,slidestyle='HIDE')" />

4. Save the file and open it with your browser. Notice the effects you
specified when the page goes on or off screen. Remember not to
overuse these effects. They are cool, but users can grow tired of
them, especially if you make the transitions last more than a
second or two. Table 8-5 lists some of the other page transition
effects. To audition them, go back to steps 2 and 3 and modify the
settings according to the examples provided in Table 8-5.

Effect Style Setting

Blinds Horizontal DXImageTransform.Microsoft.Blinds(direction='down')

Blinds Vertical DXImageTransform.Microsoft.Blinds(direction='right')

Box In DXImageTransform.Microsoft.Iris(irisstyle='SQUARE', motion='in')

Box Out DXImageTransform.Microsoft.Iris(irisstyle='SQUARE', motion='out')

Checkerboard Across DXImageTransform.Microsoft.CheckerBoard(direction='right')

Checkerboard Down DXImageTransform.Microsoft.CheckerBoard(direction='down')

Circle In DXImageTransform.Microsoft.Iris(irisstyle='CIRCLE', motion='in')

Circle Out DXImageTransform.Microsoft.Iris(irisstyle='CIRCLE', motion='out')

Random Bars Horizontal DXImageTransform.Microsoft.RandomBars(orientation='horizontal')

Random Bars Vertical DXImageTransform.Microsoft.RandomBars(orientation='vertical')

Random Dissolve DXImageTransform.Microsoft.RandomDissolve

Split Horizontal In DXImageTransform.Microsoft.Barn(orientation='horizontal', motion='in')

Split Horizontal Out DXImageTransform.Microsoft.Barn(orientation='horizontal', motion='out')

Split Vertical In DXImageTransform.Microsoft.Barn(orientation='vertical', motion='in')

Split Vertical Out DXImageTransform.Microsoft.Barn(orientation='vertical', motion='out')

Strips Left Down DXImageTransform.Microsoft.Strips(motion='leftdown')

Strips Left Up DXImageTransform.Microsoft.Strips(motion='leftup')

Strips Right Down DXImageTransform.Microsoft.Strips(motion='rightdown')

Strips Right Up DXImageTransform.Microsoft.Strips(motion='rightup')

Wipe Up DXImageTransform.Microsoft.Blinds(direction='up', bands=1)

Wipe Down DXImageTransform.Microsoft.Blinds(direction='down', bands=1)

Wide Right DXImageTransform.Microsoft.Blinds(direction='right', bands=1)

Wipe Left DXImageTransform.Microsoft.Blinds(direction='left', bands=1)

TABLE 8-5 Page Transition Effects �

note There are many more
transition effects besides the
common examples listed in this table.
For more, go to the DHTML workshop
at msdn.microsoft.com/library/
default.asp?url=/workshop/author/
dhtml/dhtml.asp.

Chapter 8: Creating Active Web Pages

Dynamic HTML Code Generator
Microsoft’s Dynamic HTML site has an HTML code generator called the Master Sample that lets you try out
a wide range of special effects. For each kind of effect, there are controls that let you manipulate the values of
the parameters that affect what you see onscreen. Figure 8-18 shows that you can audition the effects and fine-
tune the settings until you get it just the way you want it. Then you can copy and paste the code to create the ef-
fect on pages of your own. To generate some Dynamic HTML code, follow these steps:

1. Go to msdn.microsoft.com/workshop/samples/author/dhtml/DXTidemo/DXTidemo.htm. If this does
not bring up the HTML code generator, its address may have changed—follow this book’s link to
the Dynamic HTML Code Generator.

2. Choose the type of Dynamic HTML effect you would like to explore. The choices are Filters or
Transitions. In this example, choose Transitions to bring up the Transition controls.

3. Pull down the menu to select the specific effect you want to explore. In this example, pull down the
Select a Transition menu, choose GradientWipe, and click the Play button to see what the effect
causes onscreen.

4. Use the controls beneath the Play button to explore the customization settings. Following your
instincts, set the controls however you want, and click the Play button to see what happens. In this
example, set the gradient size to 0.25, make the wipe style go from left to right, and set the motion
to reverse. Then click Play to audition this effect.

5. When you have the effect
ready to use on your page,
click the Copy Code to
Clipboard button. Then click
in the Notepad to position
your cursor at the spot in your
page where you want to insert
this effect. Press CTRL-V, or
pull down the Edit menu and
choose Paste, to insert the
effect into your page. Save the
page and open it with your
browser to see the effect
happen on your page.

Try This!

FIGURE 8-18 Microsoft’s Dynamic HTML online workshop includes this master
sample that lets you select a transition and modify its parameters

by manipulating the controls onscreen. To audition the effect, you click the Play button. When
you have it working the way you want, click the Copy Code to Clipboard button. This enables
you to paste the code onto your Web page. �

XML and XHTML

The hottest three letters in advanced Web design are XML, which stands
for eXtensible Markup Language. As the word extensible implies, XML
enables you to create special tags for encoding different kinds of data. Vir-
tually any kind of data can be represented in XML.

What Is XML?

XML is a simple, self-describing markup language that enables computers
to read and understand the structure of different kinds of documents and
to exchange data across different operating systems, software applica-
tions, and hardware configurations without requiring any human inter-
vention. Like HTML, XML has tags, but there is an important difference
in how the tags are used. In HTML, the tags mostly define the appearance
of the content. In XML, on the other hand, the tags define the structure of
the data.

Another important difference between HTML and XML is that in
HTML, the tags are specified by the World Wide Web Consortium (W3C).
If you want to create a new HTML tag, you cannot do so on your own;
rather, you propose the new tag to the W3C and work through a lengthy
standardization process. With XML, on the other hand, you can create
your own customized tags.

Many disciplines are working to create XML encodings to enable the
exchange of data and the creation of new document types beneficial to the
industry. To peruse dozens of discipline-based XML projects, go to
www.xml.org and follow the links to the various focus areas.

What Is an XML Schema?

An XML schema is the structural definition of the types of elements that
can appear in a document, the attributes each element may have, and the
relationships among the elements. The best way to understand this is to

compare the structure of a familiar
document to its schema. A document
with which everyone is familiar is
your checkbook. For each entry in a
checkbook, you record the check
number, the date, the payee, and the
amount of money you are paying.
Figure 8-19 shows the XML schema
that defines this data structure. The
name of the file that contains this
schema is checkbook.xsd. The file-
name extension XSD stands for
XML Schema Definition.

Internet Technologies at Work

FIGURE 8-19 This is the XML schema in the file checkbook.xsd, which defines the
elements and the structure of the checkbook document. I made up the

names of the elements in this file. When you create a schema, you get to name the elements
that are in it. �

Encoding Data in XML

For the sake of this example, imag-
ine that since opening your check-
ing account, you have written the
three checks illustrated in Table 8-6.
To encode this data in XML, you
must represent it inside the tags de-
fined by the checkbook schema. Figure 8-20 shows such an encoding. Take
special note of the second line of this file, which is a DOCTYPE declara-
tion. For an XML document to be well formed, it must have a DOCTYPE
declaration, which is a line of code that identifies the XML schema that
defines the tag structure. In this example, the DOCTYPE is defining check-
book.xsd as the XML schema for this document. When all the tags in a
document follow precisely the structural definitions in the
schema, the document is said to validate. Documents that vali-
date can be opened and processed with a variety of XML tools.
Documents that do not validate are said to be malformed and
will be rejected by XML tools that require strict adherence to
the rules of XML. The XML document in Figure 8-20 validates
against the checkbook.xsd schema and is well formed.

Editing the Data in an XML File

Because XML files are plain text, you can edit them with any
text editor, such as the Notepad. If you have a lot of data to edit,
or if the schema is complicated, however, you are better off us-
ing an XML editor to edit the data. When I edit an XML file, for
example, I use the XML editing tools in Visual Studio .NET,
Microsoft’s premier suite of tools for creating Web applications.
Figure 8-21 shows how Visual Studio reads the XML schema of
a file and presents you with a visual tool for editing the data in a
spreadsheet view. Any change or addition you make to this vi-
sual view of the data gets updated by Visual Studio in the XML
view of the file. One of the advantages of editing an XML file
with a tool such as Visual Studio is that you can be sure the XML
will validate and be well formed. When you edit your XML with
a text editor, on the other hand, you run the risk of making er-
rors that may cause problems down the road.

What Is the Extensible Stylesheet Language (XSL)?

Much XML data never appears onscreen. In business-to-busi-
ness applications, for example, there are many server-to-server
communications that users never see. Data that never appears
onscreen does not need stylistic layout. What do you do, how-
ever, when you need to display XML data onscreen? How do
you transform that data into a representation that the browser
can display with good style? That is where XSL comes in.

Chapter 8: Creating Active Web Pages

Number Date Payee Amount

1001 9/15/04 Columbia Gas $248.29

1002 9/18/04 Sears $327.99

1003 9/23/04 United Postal Service $15.45

TABLE 8-6 Three Hypothetical Checkbook Entries �

FIGURE 8-20 This is an XML file that encodes the
three checkbook entries in Table 8-6.

Notice that the DOCTYPE statement at the beginning of
this file defines checkbook.xsd as the schema containing
the structural rules to which this document must adhere. If
you compare the contents of this file to the schema shown
earlier in Figure 8-19, you will see that this file follows the
rules of the schema and is well formed. �

FIGURE 8-21 Visual Studio .NET contains this
visual tool for editing the contents

of an XML file. Any change or addition you make to this
visual view of the data gets updated by Visual Studio in the
XML view of the file. �

The extensible stylesheet language (XSL) is an XML dialect that Web
designers use to specify the styling, layout, and pagination of the struc-
tured content in an XML document for some targeted presentation me-
dium, such as a Web browser, a printer, an eBook, a screen reader, or a
hand-held device. The stylesheet language elements are defined by the XSL
Working Group of the W3C Style Activity. The official W3C documenta-
tion is at www.w3.org/TR/xsl.

What Is the XSL Transformation Language?

The XSL Transformation (XSLT) language is an XML dialect that Web
designers use to transform documents from one format into another. Al-
though it is beyond the scope of this book to teach XSLT, the concept of doc-
ument transformation is important for any IT professional to understand.

XSLT enables you to define a template into which you can flow part or
all of the content of an XML document. The template combines the data
from the XML file with device-specific formatting codes. If you want to
format the document for display on a printer, for example, you would em-
bed printer codes in the XSLT template. To display the document on a cell
phone, you would use an XSLT template that creates codes according to
the wireless application protocol (WAP). If a Web browser is the targeted
display medium, you would use an XSLT template that formats the XML
data in HTML for display onscreen. Figure 8-22 shows an XSLT template,
for example, which formats the checkbook.xml file for display in a
browser. Figure 8-23 shows how the browser displays the checkbook data
via the HTML generated by the template in Figure 8-22.

Internet Technologies at Work

FIGURE 8-22 This XSLT template reads the XML file checkbook.xml and formats
the data in HTML for display by a Web browser. Compare this code

to Figure 8-23, which shows how the browser displays the table. Just as this template formats
the data for display in HTML, so also can you create XSLT templates for transforming XML
files for different devices, including printers, PDAs, and cell phones. You can also use XSLT to
transform documents into different file formats, such as PDF, DOC, XLS, and RTF. �

For each check in the checkbook…

…these XSL commands select
the values of the check fields.

What Are the Flavors of XHTML?

Now that you have learned the basics of XML, it is time to revisit the
definition of XHTML. In Chapter 6, you learned that XHTML is a re-
formulation of HTML in XML. Now it is time to get more specific
about the schema that differentiate the structure of HTML and
XHTML files.

Most Web page editors begin a new page by declaring that the
structural rules will use a loose, as opposed to strict, definition of
HTML. This loose definition enables you to make use of presentation
elements that still are in use today but will fade in the future when
style sheets achieve widespread use. To declare that a Web page uses
the loose definition, you insert the following declaration prior to the
<html> tag at the top of the page:

Chapter 8: Creating Active Web Pages

FIGURE 8-23 This is how the browser
displays the XML file

checkbook.xml when it is transformed into HTML by
the XSLT template in Figure 8-22. If you compare
the XML data in Figure 8-20 to the template in
Figure 8-22, you can begin to grasp the significance
of being able to transform data in this manner. �

L 8-31 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

If your page avoids the deprecated presentation tags and instead uses
style sheets to define the presentation of HTML elements onscreen, you can
use the strict version of HTML by making your declaration read as follows:

L 8-32 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Strict//EN"

"http://www.w3.org/TR/html4/strict.dtd">

XHTML also has loose and strict versions. The loose version is the
same as HTML transitional except for changes due to the differences be-
tween XML and SGML. To use the loose version of XHTML, you make
the DOCTYPE read as follows:

L 8-33 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Similarly, the strict version of XHTML is the same as HTML strict ex-
cept for changes due to the differences between XML and SGML. The
DOCTYPE for strict XHTML is

L 8-34 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

For an excellent discussion of the differences between strict and transi-
tional XHTML, go to www.w3.org/TR/xhtml1.

What Is an XML Module?

An XML module is a collection of semantically related XML elements and
attributes oriented toward accomplishing a certain task or function. An
excellent example of modularization is the manner in which the W3C has
organized into modules the various parts of the Synchronized Multimedia
Implementation Language (SMIL). SMIL is an XML-based language that
was created by the W3C for the purpose of enabling developers to include
multimedia events in Web documents.

When this book went to press, the SMIL modules were organized into ten
functional areas: (1) timing, (2) time manipulations, (3) animation, (4) con-
tent control, (5) layout, (6) linking, (7) media objects, (8) metainformation,
(9) structure, and (10) transitions.

What Is XHTML+SMIL?

A language profile is the combination of modules to create an XML lan-
guage designed to meet certain objectives. The W3C has created a lan-
guage profile you can use to add multimedia functionality to XHTML.
The name of this profile is XHTML+SMIL. Its goal is to permit the Web de-
signer to use SMIL animations, timings, and transitions within a conven-
tional HTML or CSS page layout. Thus, XHTML+SMIL omits modules
related to layout. As a result, the Web designer can create a layout via style
sheets or HTML and include SMIL animations, timings, and transitions in
traditional Web page elements.

Microsoft has created an implementation of XHTML+SMIL called
HTML+TIME that works with Internet Explorer versions 5.5 and later.
True to its name, the most important part of HTML+TIME is the timing
module, because that is how you create synchronized multimedia events.
An excellent example of a multimedia event that requires timing is the cap-
tioning of a video, which requires you to display onscreen subtitles at pre-
cise times in sync with the video. This chapter concludes with a Try This!
exercise that lets you experience this for yourself onscreen.

Internet Technologies at Work

Chapter 8: Creating Active Web Pages

The Kennedy Moon Challenge Project
Because of its built-in support of HTML+TIME, the Internet Explorer Web browser gives you considerable
multimedia authoring capability without requiring you to own any other tools. This exercise provides an ex-
ample of how you can caption a video by displaying onscreen subtitles that appear at precise times in sync with
the video. All you need to accomplish this is the Notepad text editor and the IE browser, version 5.5 or later.
The video you will caption is a famous passage from President John F. Kennedy’s famous moon challenge
speech. To caption the video and play it onscreen, follow these steps:

1. Go to this chapter’s section of this book’s Web site. You will see a link to click to download a
famous 30-second video clip from JFK’s moon-challenge speech. Click the link and save the file in
your computer’s website folder. Do not change the file’s name, which is KennedyMoonChallenge.avi.
The file size is 3.6 megabytes.

2. Pull down the Notepad’s File menu and choose New to begin a new file. Type the following code to
get the page started. Notice that the HTML tag has an XML namespace (xmlns) attribute that
associates the prefix t with Microsoft’s HTML+TIME schema:

<html xmlns:t="urn:schemas-microsoft-com:time">

<head>

<title>JFK SMIL Example</title>

</head>

<body>

</body>

</html>

3. Pull down the Notepad’s File menu and choose Save As; use the Save controls to save this file in your
website folder under the filename Kennedy.html.

4. In the head section of the document, type the following <style> tag to make the page use HTML+
TIME version 2:

<head>

<title>JFK SMIL Example</title>

<style>

.time{ behavior: url(#default#time2);}

</style>

</head>

5. In the body of the document, position your cursor between the <body> start and </body> stop tag
and type the following code. This creates a table with two rows. The top row shows the video, and
the bottom row uses the sequence element seq to display the captions in time with the video. You can
also download this code from this book’s Web site, where the filename is KennedyTable.txt:

Try This!

Internet Technologies at Work

<body>

<table cellspacing="0" style="background-color:White;font:bold;font-size:11pt;">

<tr>

<td>

<t:video class="time" ID="movie" src="KennedyMoonChallenge.avi" />

</td>

</tr>

<tr>

<td id="caption" align="center">

<t:seq id="txSeq" class="time" begin="movie.begin+.5">

We choose to go to the moon in

this decade and do the other things,

not because they are easy,

but because they are hard.

Because that goal

will serve to organize

and measure the best

of our energies and skills.

Because that challenge is one

that we're willing to accept,

one we are unwilling to postpone,

and one we intend to win,

and the others too.

</t:seq>

</td>

</tr>

</table>

</body>

5. Save the Kennedy.html file and open it with your browser. Notice how the captions appear onscreen
in time with the video. You have successfully used XML to caption a video.

6. By modifying this file, you can make it display captions for any video. To change the video, replace
KennedyMoonChallenge.avi by the movie you want to play instead. To change the captions, edit the
 elements within which the caption attributes are set. The attribute dur creates the timing.
In SMIL, dur stands for duration and specifies how many seconds the element will last. In this
example, dur determines how many seconds the caption will remain onscreen.

7. This exercise demonstrates just one of the many multimedia capabilities of HTML+TIME. For more
on the built-in multimedia capabilities of the IE Web browser, follow this book’s Web site link to the
HTML+TIME language reference.

Try This!
continued

Chapter 8 Review

■ Chapter Summary
After reading this chapter and completing the step-
by-step tutorials and Try This! exercises, you should
understand the following facts about creating active
Web pages:

Introduction to Scripting

■ A static Web page is a document in which the
content is fixed in HTML codes that make the
document always read the same when viewed in a
browser. An active Web page uses the browser’s
window as a display surface through which the
user can interact with dynamic objects onscreen.

■ Scripting is the act of writing little computer
programs that can enhance the appearance and
functionality of a Web page. Browsers render
Web pages by placing objects onscreen. Scripts let
you grab hold of those objects to make them do
special things.

■ There are many brands of scripting languages.
Most well known is JavaScript, the language that
runs client-side in the browser without requiring
any server-side processing. On the server side,
VBScript and JScript are Microsoft’s Active Server
Page (ASP) languages. Other popular server-side
languages include C#, Java, and J#, Microsoft’s
version of Java.

■ You can put JavaScript in the head or in the body
section of a Web page. Scripts can also reside in a
separate file called an include file, which gets
included in the page at runtime.

■ If a script is brief and is not used a lot, you can
simply type it into the body of the page. If you find
yourself typing the same code often, however, it is
better to put it inside a reusable function that goes
into the head section of the Web page.

■ A function is a named procedure you can call
upon by name any time you need to execute the
code that function contains. When you call the
function, you can pass to it one or more parameters
that preset the values of variables that the
function manipulates. When the function finishes
executing, it can return values to the script that
called it.

■ A variable is a place in the computer’s RAM that
remembers, or stores, the value of something
changeable. It is called a variable because its value is
subject to change. A variable name is the identifier
used to refer to, or call upon, a place in computer
memory that stores the value of a variable.

■ A string is a sequence of one or more
alphanumeric characters. A string variable is a
place in computer memory that remembers, or
stores, the alphanumeric characters in a string.

■ A numeric variable is a place in computer memory
that remembers, or stores, a number. In a script,
the numbers can be integers or floating point. An
integer is a whole number with no decimal point.
A floating point number has a decimal point with
one or more numbers after the decimal point.

■ An operator is a symbol that causes a script to
perform some kind of action on a variable or a
value. The most fundamental operator is the
assignment operator, which assigns values to
variables. The assignment operator uses the =
symbol.

■ To concatenate means to join strings together via
the concatenation operator. In JavaScript, the
concatenation operator is the + sign.

■ In computing, an object is a self-contained entity
consisting of properties and methods enabling you
to do something programmatically. A method is a
little computer program that has been built into an
object to enable the object to do something. A
property is an attribute of an object that has a value.

■ In computer programming, an event is an action
that provides an opportunity to trigger a script,
which can use objects to inspect properties and
execute methods that make things happen onscreen
or keep records behind the scenes. The most
commonly used events are (1) the mouseover,
which fires when the user mouses over an object
onscreen; (2) the click, which fires when the user
clicks the mouse; (3) the double-click, which the
user triggers by clicking twice quickly; and (4) the
page load, which fires when the user visits a Web
site and a page first comes onscreen.

Chapter 8: Creating Active Web Pages

Document Object Model (DOM)

■ The document object model (DOM) is the official
W3C structural definition of the objects, methods,
and properties that comprise documents on the
World Wide Web. The latest version is at
www.w3.org/DOM.

■ In JavaScript, the most commonly used DOM
objects are the ones that provide access to the
HTML elements that comprise the document
displayed inside the browser window. Of
particular importance are the elements in the
forms through which the user interacts by
selecting things, entering textual information,
and clicking to submit the form.

■ In addition to defining the objects that enable a
script to manipulate elements on a Web page,
the W3C has defined the intrinsic events that
can trigger such a script. Two popular events
are onmouseover and onmouseout, which you
use to create rollover effects onscreen. When the
user mouses over something, the onmouseover
event fires, causing your script to do something
onscreen. Similarly, when the user mouses out of
something, the onmouseout event fires, providing
another opportunity to run a script.

■ To access DOM objects in a script, you use
dot notation to refer to the objects you want
to manipulate. Following the document’s
hierarchical structure, dot notation places to the
left elements that are structurally higher than
elements further down the tree. An example is
document.title, which you use to retrieve or set
the title of the page.

■ An array is a named table of memory locations in
which values can be stored. When a Web page
loads, the browser creates arrays for the images,
forms, links, anchors, and all the other elements
onscreen. As the browser encounters these objects
on the page, it places them into these arrays. The
arrays are indexed sequentially, beginning with
zero. The first image on the page, therefore, goes
into slot 0 of the images array. You could refer to
it in a script as document.images[0].

■ An easier way to access elements on a Web page
is to name the elements and then refer to them by
name. An image named MyPhoto is easier to refer
to, for example, as MyPhoto.width instead of
document.images[0].width.

■ An alert box is a window that a script creates
by executing the alert() method of the
JavaScript window object. Inside the parentheses
of the alert() method, you insert the string
of characters and variables you want displayed
in the alert box. At runtime, when the script
encounters the alert, the script pauses while
you study the contents of the alert box onscreen.
When you click to dismiss the alert box, the
script continues executing. By putting alert boxes
in strategic places down through the path of
execution in your code, you can step through the
code and diagnose the point at which something
is going wrong.

■ A rollover is a special graphical effect you
create by using the JavaScript onmouseover
and onmouseout event handlers. When the
user mouses over something, the onmouseover
event fires, causing your script to do something
onscreen. Similarly, when the user mouses out of
something, the onmouseout event fires, providing
another opportunity to run a script. In the most
common kind of rollover, a script changes the
source of the image when the user mouses over it
and reverts to the original image when the user
mouses out of it.

Maintaining State in Cookies

■ A cookie is a place in the computer’s memory
where browsers can store information about the
user. If someone buys an audio CD by Britney
Spears, for example, the site might create a cookie
indicating that the user likes pop music. The next
time the user visits the site, it might display ads
for similar pop music titles.

■ There are two kinds of cookies, namely, persistent
cookies that are stored on the user’s hard disk
and per-session cookies that are stored in RAM.
Because persistent cookies are stored on disk, they
survive from session to session, even after the user
closes the Web browser and turns off the computer.
Per-session cookies, on the other hand, evaporate
when the user closes the Web browser, which
frees the RAM.

■ The Internet needs cookies to maintain state
from screen to screen. Virtually all sites that
have you log on and off, including all of the
Internet’s e-commerce sites, use per-session
cookies to maintain state.

Internet Technologies at Work

■ Knowledgeable users can find the persistent
cookie files and read their contents with any text
editor. If these contents are unencrypted, the
cookies can be read in plain text. It is appropriate
to use persistent cookies to store information that
would not cause a security problem if sniffed. The
advantage of using persistent cookies is that a
server can keep data on the user’s PC, thereby
avoiding the need to store that data in a server-
side database.

Cascading Style Sheets

■ A Cascading Style Sheet (CSS) is a set of rules that
define styles to be applied to entire Web pages or
individual Web page elements. Each rule consists
of a selector followed by a set of curly braces
containing the style properties and their values.
The selector can be an HTML element, a user-
defined style known as a class, or the ID of a
specific element on a page. There are three ways
of applying cascading style sheets to a Web page:
external, embedded, and inline.

■ An external CSS keeps all the style definitions in a
separate CSS file that you include in a Web page
at runtime by using the <link> tag to apply the
style sheet to the page.

■ An embedded CSS is a style sheet that gets copied
physically into the head of the Web page and
applies to the Web page as a whole.

■ An inline CSS is a style sheet that applies to only
one page element, so it gets copied “inline” on the
page with that element.

■ The W3C invented the HTML inline
start and stop tags to provide you with
a way to stylize part, instead of all, of a Web page
element. An example is

Notice how

yellow words appear onscreen.

■ Other situations may arise in which you want to
apply a style to larger divisions of a document at
the block level. You create block-level divisions
with the <div> start and </div> stop tags,
where <div> stands for division. The syntax for
the <div> tag is exactly the same as for the
 tag. Because <div> is a block-level tag,
however, the browser begins a new line at the
beginning of the division.

■ In cascading style sheets, a class is a named
definition of one or more styles. You create
the class by prefixing its name with a dot in the
CSS file.

■ On the cutting edge of cascading style sheets is a
feature called absolute positioning, which enables
you to position page elements onscreen based on
x,y coordinates. The upper-left corner of the
browser window is position 0,0.

■ To provide control over the order in which the
objects appear onscreen, absolute positioning has
an attribute called the z-index, which tells the
browser the order in which to display objects that
overlap. The lower the z-index value, the sooner
the layer displays onscreen. In other words, an
item with a lower z-index will appear underneath
overlapping items with higher z-index values.

Dynamic HTML

■ Dynamic HTML is a term invented by Microsoft
to refer to the animated Web pages you can create
by using the DOM to combine HTML with style
sheets and scripts that bring Web pages to life.

■ JavaScript has a method called setInterval()
that you can use to set a timer that fires periodic
timer events. By manipulating the absolute
positioning values of x and y dynamically during
these timer events, you can create an animation
onscreen. If you know your math, there is no
limit to the patterns of movement you can create
onscreen.

■ A gradient is a graphical effect created by colors
fading gradually across or down the screen.
You can make millions of different gradients by
manipulating the start and stop color strings in the
gradient() method of the DXImageTransform
object.

■ A page transition is the style or manner in which
the screen changes when the browser brings up a
new document and displays it onscreen. You can
create a wide range of page transitions via the
Barn(), Blinds(), Checkboard(), Iris(),
RandomDissolve(), Slide(), and Strips()
methods of the DXImageTransform object.

■ Microsoft’s Dynamic HTML site has an HTML
code generator called the Master Sample that lets
you try out a wide range of special effects. For
each kind of effect, there are controls that let you

Chapter 8: Creating Active Web Pages

Internet Technologies at Work

manipulate the values of the parameters that
affect what you see onscreen. You can audition
the effects and fine-tune the settings until you get
it just the way you want it. Then you can copy
and paste the code to create the effect on pages of
your own.

XML and XHTML

■ XML is a simple, self-describing markup language
that enables computers to read and understand
the structure of different kinds of documents
and to exchange data across different operating
systems, software applications, and hardware
configurations without requiring any human
intervention. Like HTML, XML has tags, but
there is an important difference in how the tags
are used. In HTML, the tags mostly define the
appearance of the content. In XML, on the other
hand, the tags define the structure of the data.

■ Another important difference between HTML
and XML is that in HTML, the tags are specified
by the World Wide Web Consortium (W3C). If
you want to create a new HTML tag, you cannot
do so on your own; rather, you propose the new
tag to the W3C and work through a lengthy
standardization process. With XML, on the other
hand, you can create your own customized tags.
At www.xml.org, there are many focus areas in
which various disciplines are creating XML tags
for use within their industries.

■ An XML schema is the structural definition of the
types of elements that can appear in a document,
the attributes each element may have, and the
relationships among the elements.

■ For an XML document to be well formed, it must
have a DOCTYPE declaration, a line of code at the
top of the file that identifies the XML schema that
defines the tag structure. When all the tags in a
document follow precisely the structural definitions
in the schema, the document is said to validate.
Documents that do not validate are said to be
malformed and will be rejected by XML tools that
require strict adherence to the rules of XML.

■ The extensible stylesheet language (XSL) is an XML
dialect that Web designers use to specify the styling,
layout, and pagination of the structured content in
an XML document for some targeted presentation
medium, such as a Web browser, a printer, an
eBook, a screen reader, or a hand-held device.

■ The XSL Transformation (XSLT) language is an
XML dialect that Web designers use to transform
documents from one format into another, such as
HTML, PDF, DOC, XLS, and RTF.

■ XHTML is a reformulation of HTML in XML.
The Web is a work in progress and is
transitioning to rely more on XML than HTML.
You use the DOCTYPE declaration to specify
how strictly to adhere to the new rules.

■ A so-called HTML Transitional document type
definition (DTD) enables you to make use of
presentation elements that are still in use today
but will fade in the future when style sheets
achieve widespread use. If your page avoids the
deprecated presentation tags and instead uses
style sheets to define the presentation of HTML
elements onscreen, you can use the DTD called
HTML Strict.

■ XHTML also has loose and strict versions. The
loose version is the same as HTML Transitional
except for changes due to the differences between
XML and SGML. Similarly, the strict version of
XHTML is the same as HTML Strict except for
the differences between XML and SGML. These
differences are explained at www.w3.org/TR/
xhtml1.

■ An XML module is a collection of semantically
related XML elements and attributes oriented
toward accomplishing a certain task or function.
An excellent example of modularization is the
manner in which the W3C has organized into
modules the various parts of the Synchronized
Multimedia Implementation Language (SMIL),
an XML-based language that enables you to
include multimedia events in Web documents.

■ The W3C has created a language profile called
XHTML+SMIL that enables you to create a
layout via style sheets or HTML and include
SMIL animations, timings, and transitions in
traditional Web page elements. Microsoft has
created an implementation of XHTML+SMIL
called HTML+TIME that works with Internet
Explorer versions 5.5 and later. Due to its built-in
support of HTML+TIME, the Internet Explorer
Web browser gives you considerable multimedia
authoring capability without requiring you to
own any other tools.

Chapter 8: Creating Active Web Pages

■ Key Terms
absolute positioning (38)
active Web page (2)
alert box (24)
assignment operator (7)
cascading style sheet (CSS) (32)
class (37)
concatenate (9)
concatenation operator (9)
cookie (27)
DOCTYPE declaration (47)
document object model (DOM) (17)
dynamic HTML (40)
embedded CSS (33)
event (14)
extensible stylesheet language (XSL) (48)
external CSS (33)

floating point (7)
function (3)
gradient (42)
HTML+TIME (50)
include file (3)
inline CSS (33)
integer (7)
JavaScript (3)
method (13)
numeric variable (7)
object (13)
operator (7)
page transition (42)
property (14)
rollover (25)
scripting (2)

static Web page (2)
string (7)
string variable (7)
Synchronized Multimedia

Implementation Language
(SMIL) (50)

variable (6)
variable name (7)
XHTML (49)
XHTML+SMIL (50)
XML (46)
XML module (50)
XML schema (46)
XSL Transformation

(XSLT) (48)
z-index (38)

■ Key Terms Quiz
1. A(n) ____________________ uses the browser’s

window as a display surface through which
users can interact with dynamic objects
onscreen.

2. ____________________ is the act of writing
little computer programs that can enhance the
appearance and functionality of a Web page.

3. The most well-known scripting language is
____________________, which runs client-side
in the browser without requiring any server-side
processing.

4. A(n) ____________________ is a place in the
computer’s RAM that remembers, or stores, the
value of something changeable.

5. A(n) ____________________ is a sequence of
one or more alphanumeric characters.

6. The ____________________ is the official W3C
structural definition of the objects, methods,
and properties that comprise documents on the
World Wide Web.

7. A(n) ____________________ is a set of rules
that define styles to be applied to entire Web
pages or individual Web page elements.

8. ____________________ enables you to position
page elements onscreen based on x,y coordinates.
The upper-left corner of the browser window is
position 0,0.

9. ____________________ is a term invented by
Microsoft to refer to the animated Web pages
you can create by using the DOM to combine
HTML with style sheets and scripts that bring
Web pages to life.

10. ____________________ is a simple, self-
describing markup language that enables
computers to read and understand the structure
of different kinds of documents and to exchange
data across different operating systems, software
applications, and hardware configurations
without requiring any human intervention.

■ Multiple-Choice Quiz
1. If a script is brief and is not used a lot, you

can simply type it into the body of the page.
If you find yourself typing the same code often,
however, it is better to put it inside a reusable:
a. cookie
b. function
c. method
d. property

2. In JavaScript, the concatenation operator uses
the symbol:
a. =
b. *
c. \
d. +

3. Which event fires when the user visits a Web
site and a page first comes onscreen?
a. onclick
b. ondblclick
c. onmouseover
d. onload

4. You can step through your script and diagnose
the point at which something is going wrong by
putting what diagnostic aid in strategic places
down through the path of execution in your code?
a. Alert box
b. Documentation
c. Help index
d. Rollover

5. Which kind of cookie resides on the user’s
hard disk and survives even if the computer is
rebooted?
a. Incessant
b. Insistent
c. Persistent
d. Per-session

6. The Internet needs per-session cookies to provide
a way to:
a. count hits on a Web page
b. keep the socket open
c. maintain state from screen to screen
d. cut down on the amount of spam

7. Which kind of cascading style sheet keeps the
style definitions in a separate CSS file?
a. Embedded CSS
b. External CSS
c. Inline CSS
d. Internal CSS

8. Which pair of tags would you use to stylize one
small part of a Web page element without causing
the browser to begin a new line onscreen?
a. <body> </body>
b. <div> </div>
c.
d. <table> </table>

9. In absolute positioning, what is the name of the
attribute that enables you to control the order in
which the Web page elements appear onscreen?
a. x
b. y
c. z
d. z-index

10. Which DTD enforces the structural rules of XML
and demands that the Web page use style sheets in
lieu of deprecated HTML positioning elements?
a. HTML Transitional
b. HTML Strict
c. XHTML Transitional
d. XHTML Strict

Internet Technologies at Work

■ Essay Quiz
1. The hello.html script you created in this chapter wrote “Hello, world!” onscreen. Modify the script to

say a little more. For example, edit the string “Hello, world!” to make it say something longer, such as,
“Hello, world, from JavaScript!” Experiment with putting the break tag
 somewhere in the midst
of the string. What does the
 cause onscreen when you view the page with a Web browser?

2. The variables.html example in this chapter used information for a person with the first name of Santa
and the last name of Claus. Modify the variables script to make the names be your own first name and
last name. Then run the script by opening the variables file with your Web browser. Does the script
operate correctly when it computes your full name by concatenating your first and last names?

Chapter 8: Creating Active Web Pages

3. Between the first and last names of the variables.html example, add a variable to hold the person’s
middle initial, and modify the example to include this initial when the script concatenates the full name.
When you make up a name for the variable that is going to hold the middle initial, make the variable
name be something that indicates it is meant to hold a middle initial. Remember to prefix the name of
the middle initial variable with an s to indicate its value will be a string. What name did you create for
the variable that holds the value of the person’s middle initial?

4. Suppose you want to change the look of an individual page element that appears many times on a Web
page. You want to change just one occurrence of the element, without altering other renderings of this
element onscreen. What kind of cascading style sheet would you use to accomplish this?

5. In the rockpile.html page, the rock pile you created with absolute positioning contained only three
images. Increase the size of the rock pile by creating more instances of the three rocks. Vary the size and
position of the rocks. Use the z-index to layer the rocks. See how creative you can be in creating a multi-
layered rock pile. Make the rock pile contain at least a dozen rocks.

Lab Projects

• Lab Project 8-1: Dynamic Content
A static page that never changes does not project a very dynamic image out on the Web. Imagine that your school
or workplace has hired you to transform its home page from static to dynamic. Your task is to create active Web
page elements into which the site will flow dynamic content instead of displaying the same information every time
someone visits the site. Before bringing these active elements online, your superior has asked you to submit a plan
in which you (1) propose which parts of the page should become dynamic, (2) describe the manner in which they
will become active, and (3) define the source of the content that will feed into the page. Use your word processor
to create this plan. In developing your proposal, consider the following issues:

■ DOM Elements The DOM defines the page elements you can manipulate dynamically. List the DOM
elements you feel should be manipulated dynamically at your site. For each element you list, describe
what the dynamism will be. The page title, for example, is a DOM element. Consider whether there is
any active content you would want to put into the title of the page.

■ Rotating Banners Many Web sites have banners that change depending on factors such as the season,
the time of day, or user history stored in cookies that keep track of what the user has been doing at the
site. Consider whether the banner on your page should be static or dynamic. If dynamic, describe how
and when the banner will change.

■ RSS Feeds In Chapter 2, you learned about RSS. Because the content of an RSS feed changes, it can be
considered a dynamic element onscreen. Can you think of any ways in which an RSS feed, perhaps from
other parts of your site or from related sites, would provide relevant dynamic content for your school or
company home page?

■ Time and Date Consider whether your site should display the current date or time. If so, recommend the
strategy you will use to make sure your page displays the date or time in a format that is meaningful and
unambiguous to the end-user.

If your instructor has asked you to hand in this assignment, make sure you put your name at the top of
your recommendation; then copy it onto a disk or follow the other instructions you may have been given for
submitting this assignment.

Internet Technologies at Work

• Lab Project 8-2: Using Cookies
Imagine that your superior has heard about cookies enabling certain Web sites to keep user information on
the client side without requiring a server-side database. You have been asked to recommend whether your
workplace could use this capability to reduce the load on your server. Use your word processor to write an
essay in which you take a position on cookies and recommend how your site should use them. In developing
your position, consider the following issues:

■ Data What kinds of data will you store in the cookies, and how will that data be used by your site?

■ Expiration How long should the cookies persist on the user’s hard drive, if at all? In answering this
question, consider the nature of the data, how it affects your site, and the amount of time after which the
data would become irrelevant, if any.

■ Security Knowledgeable users can inspect the contents of persistent cookies that are stored on their hard
drives. Consider whether the persistent cookies your site creates will need to be encrypted to prevent their
being read in clear text.

If your instructor has asked you to hand in this recommendation, make sure you put your name at the top
of your essay; then copy it onto a disk or follow the other instructions you may have been given for submit-
ting this assignment.

• Lab Project 8-3: Style Sheet Strategy
Style sheets provide a way to maintain a consistent look and feel for Web page elements across all the pages
at your site, without requiring you to edit each page every time your school or company decides to change the
style of an element onscreen. Imagine that your superior has put you in charge of creating a style-sheet
strategy for your school or company Web site. Your task is to develop a set of guidelines defining which
elements of your site’s Web pages will be controlled by style sheets and specifying the techniques your team’s
Web authors should use in applying the styles to your site’s content. Use your word processor to write an
essay in which you present these guidelines, taking into account the following issues:

■ Cascading It is possible to link more than one style sheet to a document. Styles defined by the first style
sheet cascade onto the second style sheet, which can either redefine them or leave them alone. If there is a
third style sheet, the cascade continues. There is no limit to the number of style sheets that can be on the
cascade. If you have a large organization, consider whether there should be an institutional style sheet that
defines elements that will be stylized site-wide, followed by departmental style sheets that define certain
other styles for use within a department.

■ Classes Style sheets enable you to create a named class of style rules that apply only to elements that
have the class attribute set to that name. Consider whether your site should use style classes, and if so,
define the class names and describe what each class will do.

■ Conventions List the coding conventions you want your Web authors to follow in regard to style sheets.
Specify the Web page elements that should never be modified so they will always inherit their styles from
the cascade. Conversely, list the elements that should use the class attribute to identify the name of the
style class to which they belong.

If your instructor has asked you to hand in these guidelines, make sure you put your name at the top of
your essay; then copy it onto a disk or follow the other instructions you may have been given for submitting
this assignment.

