Is SES a Surrogate for IQ in Predicting Health?

Linda S. Gottfredson
University of Delaware
Rosalind Arden
Kings College, London
Geoffrey Miller
University of New Mexico

International Congress of Psychology
Berlin, Germany
July 24, 2008
Social Cause Theory of Health Disparities

• Striking fact
 – All indicators of social class privilege predict disparities in health—in virtually all places, times, etc.

• Striking problem with “wealth ➔ health” theory
 – Social class indicators too uniformly predictive to represent material resources

• So, new “social-psychological” theory
 – Inequality itself creates unhealthy psychological hazards.
 – Search now underway for a highly generalizable, transportable resource or “fundamental cause”—stress of relative deprivation??
One Alternative—“g is useful tool for prospering in everyday life”

Much is known about g:

• Highly general, highly transportable resource
• Good construct validity
 – A general proficiency to learn and reason well
 – Many correlates in brain and behavior
• Measured reliably
• Good predictive validity:
 – E.g., Predicts trainability and performance in all jobs
 – Predicts better when jobs more complex
• Highly stable, highly heritable by adolescence
But relevant to health?

A mechanism:

• Health self-care matters
• Health self-care is like any other job
 – Good performance depends on learning and reasoning (g)
 – Demands are greatest when tasks most complex (constantly changing, ambiguous, multi-faceted, abstract, unclear means-ends...)
 – Examples: accident prevention, chronic diseases such as diabetes
• \(g \) level more critical (predictive) when tasks are more complex
• Advances in health care increase both complexity and opportunity to choose

Those stubborn disparities:

• Greater choice and complexity increases variation (disparities) in performance (“second law of individual differences”)
A Prediction:

“SES indicators predict health disparities to the extent they act as surrogates for g”
Opportunity to Test Prediction: Vietnam-Era Veterans Data

- Study mandated by US Congress: Did defoliants affect health of Vietnam veterans?
- Inducted 1965-1971 (N = 18,313)
 - Average age at induction = 20
 - Half served in Vietnam war theatre
 - 4 cognitive tests, used to extract g factor
- Telephone interview ~1985 (N = 15,288)
 - Average age at interview = 37
- Physical/mental exam ~1985 (N = 4,462)
- Mortality follow-up 2000
 - Average age ~ 52
Correlations of g and 3 SES Indicators With 4 Health Outcomes and 2 Predictors
(age partialled out)

<table>
<thead>
<tr>
<th></th>
<th>g</th>
<th>PTSD symptoms (15)</th>
<th>Anxiety/depression (7)</th>
<th>Somatic (19)</th>
<th>Self-rated health</th>
<th>Married</th>
<th>Served in Vietnam</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years Educ</td>
<td>.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occu Pres</td>
<td>.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Income</td>
<td>.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Correlations of g and 3 SES Indicators With 4 Health Outcomes and 2 Predictors (age partialled out)

<table>
<thead>
<tr>
<th></th>
<th>g</th>
<th>PTSD symptoms (15)</th>
<th>Anxiety/depression (7)</th>
<th>Somatic (19)</th>
<th>Self-rated health</th>
<th>Married</th>
<th>Served in Vietnam</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>1.00</td>
<td>-.20</td>
<td>-.21</td>
<td>-.04</td>
<td>.27</td>
<td>.02</td>
<td>-.06</td>
</tr>
<tr>
<td>Years Educ</td>
<td>.56</td>
<td>-.15</td>
<td>-.16</td>
<td>-.00</td>
<td>.25</td>
<td>-.00</td>
<td>-.06</td>
</tr>
<tr>
<td>Occu Pres</td>
<td>.37</td>
<td>-.13</td>
<td>-.12</td>
<td>-.01</td>
<td>.18</td>
<td>.07</td>
<td>-.04</td>
</tr>
<tr>
<td>Family Income</td>
<td>.36</td>
<td>-.22</td>
<td>-.19</td>
<td>-.05</td>
<td>.26</td>
<td>.30</td>
<td>-.02</td>
</tr>
</tbody>
</table>

Family income violates prediction—or does it? What does it stand for?

What do ANY of the SES indicators stand for??
Correlations of g and 3 SES Indicators With 4 Health Outcomes and 2 Predictors
(age partialled out)

<table>
<thead>
<tr>
<th></th>
<th>g</th>
<th>PTSD symptoms (15)</th>
<th>Anxiety/ depression (7)</th>
<th>Somatic (19)</th>
<th>Self-rated health</th>
<th>Married</th>
<th>Served in Vietnam</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>1.00</td>
<td>-0.20</td>
<td>-0.21</td>
<td>-0.04</td>
<td>0.27</td>
<td>0.02</td>
<td>-0.06</td>
</tr>
<tr>
<td>Years Educ</td>
<td>0.56</td>
<td>-0.15</td>
<td>-0.16</td>
<td>-0.00</td>
<td>0.25</td>
<td>-0.00</td>
<td>-0.06</td>
</tr>
<tr>
<td>Occu Pres</td>
<td>0.37</td>
<td>-0.13</td>
<td>-0.12</td>
<td>-0.01</td>
<td>0.18</td>
<td>0.07</td>
<td>-0.04</td>
</tr>
<tr>
<td>Family Income</td>
<td>0.36</td>
<td>-0.22</td>
<td>-0.19</td>
<td>-0.05</td>
<td>0.26</td>
<td>0.30</td>
<td>-0.02</td>
</tr>
<tr>
<td>Income per capita</td>
<td>0.22</td>
<td>-0.10</td>
<td>-0.11</td>
<td>-0.01</td>
<td>0.13</td>
<td>-0.44</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

What resource(s) does marriage stand for?
- Social support?
- Financial buffer (2nd income)?
- Own desirability as a mate?
Cox Regressions of Mortality on g, SES, and Covariates (Hazards Ratios)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.99</td>
<td>0.99</td>
<td>0.10</td>
<td>1.02</td>
<td>1.01</td>
<td>1.01</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
</tr>
<tr>
<td>Vietnam</td>
<td>1.02</td>
<td>0.10</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.91</td>
<td>0.90</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
<td>0.76</td>
<td>0.86</td>
<td>0.84</td>
<td>0.85</td>
<td>0.88</td>
<td>0.87</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td>0.79</td>
<td>0.85</td>
<td>0.85</td>
<td>0.88</td>
<td>0.87</td>
<td>0.87</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td></td>
<td></td>
<td>0.55</td>
<td>0.55</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educ</td>
<td></td>
<td></td>
<td></td>
<td>1.01</td>
<td>1.01</td>
<td>1.00</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occ prest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>PTSD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.01</td>
<td>1.01</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anx/depr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.06</td>
<td>1.04</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.11</td>
<td>1.08</td>
</tr>
<tr>
<td>Worse health, self-rated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.39</td>
</tr>
</tbody>
</table>

If income omitted, both g and marriage appear stronger.

If g omitted, PTSD, anxiety/depression, and self-rated health appear stronger.

So, inherently ambiguous analytic method.

Also, at wrong level of analysis!
The Problems.
Some ways forward.

Level of analysis must match question

1. Explaining disparities = between-group differences (means, rates)
2. Explaining health = within-group differences (SDs, variance, beta weights)

Why? Groups may not differ (#1) on some causes of ill health (#2); or they may differ a lot on only one (#2) that contributes to within-group variation (#1)

A proposal and modest attempt....
“Environmental scans”

• For recurring consilience across studies, variables, fields, levels of analysis (networks of convergence)
 – E.g., why do some sorts of group mean differences coincide but others less so?

• For anomalies and constraints—replicated violations of expectation (persistent divergence)
 – E.g., why do some risk gradients disfavor the higher classes? Why do some gradients reverse over time?

• For cascading, relentlessly compounding small effects
 – E.g., can we develop a calculus for measuring converging rivers of minuscule, inconspicuous risks?
Gradients of “Effect Sizes” for 3 SES Measures—Along the g Continuum

![Graph showing the gradients of effect sizes for 3 SES measures along the g continuum. The x-axis represents 6 ranges of g (in IQ metric) from <70 to >130, and the y-axis represents standardized mean differences.]
Gradients of “Effect Sizes” for 3 SES Measures—Along the g Continuum
Gradients of “Effect Sizes” for g and Other SES Measures—Along the Family-Income Continuum
Gradients of Psychological and Somatic Problems Along the \(g \) Continuum

The graph illustrates the standardized mean differences across different ranges of \(g \) values (in IQ metric), with the following categories:

- **Self-rated health**
- **15 PTSD symptoms**
- **7 Anx/depr**
- **19 Somatic**

The x-axis represents the 6 ranges of \(g \) values, and the y-axis represents the standardized mean differences.
Gradients of Avoiding Smoking and Drinking—Or Quitting—Along the g Continuum
(Odds Ratios)
And No Cirrhosis!
Same Good Behaviors, Along the Family-Income Continuum

![Graph showing standardized mean differences across different income ranges for various behaviors.](image-url)
And No Cirrhosis!
Odds Ratios for Other Chronic Diseases—Along the g Continuum

The graph shows standardized mean differences for various outcomes across different ranges of g (in IQ metric). The ranges are labeled as follows:

- <70
- 70-85
- 85-100
- 100-115
- 115-130
- >130

The outcomes include:

- OR survival
- OR no diabetes
- OR no hypertension
- OR no cancer

The graph illustrates how odds ratios change across these ranges, with different markers and line styles for each outcome.
PTSD Symptoms
(Count of 15 items)
Anxiety-Depression

(Count of 7 items)
Somatic Problems
(Count of 19 items)
% Married Within Each $g \times$ Income Category

![Bar Chart]

- Blue: <10k
- Red: 10-20k
- Green: 20-30k
- Purple: #REF!
- Cyan: >50k
- Orange: 40-50k
- Light Blue: 30-40k

Categories:
- <70
- 70-85
- 85-100
- 100-115
- 115-130
- >130

Income Ranges:
- <10k
- 10-20k
- 20-30k
- >50k
- 40-50k
- 30-40k
N of Men in Each $g \times$ Income Category

![Bar chart showing the number of men in each $g \times$ income category. The x-axis represents different income categories (<70, 70-85, 85-100, 100-115, 115-130, >130), and the y-axis represents the number of men. The chart uses different colors to represent different income levels (<10k, <10-20k, 10-20k, <30k, 30-40k, >50k).]
The Prediction?

1. Years of education and occupational prestige are mostly surrogates for g.
2. “Household income” captured something important and independent of g—but unclear what it represents (reverse causation possible, too).
3. g better than “household income” at predicting psychological problems (no reverse causation).
Thank you.