Everyday Life and Health as an Intelligence Test—Throughout Evolution

Linda S. Gottfredson, PhD School of Education University of Delaware Newark, DE 19716

Vanderbilt Kennedy Center Special Lecture, November 15, 2007

How can that be?

- Isn't IQ just a narrow academic ability?
 - □ No: IQ captures a very general, very practical ability
- Aren't there multiple intelligences?

□ No: many abilities but only one broad intelligence

Don't other things matter in life motivation, social advantages?

□ Yes, of course: but higher IQ boosts odds throughout

Tiny odds yield huge effects over time—in tests, life, & evolution

Life's Long Test Battery

Many "subtests"

Varied, evolving, inescapable

Surprising similarity to IQ tests

Wellspring of "cognitive barriers"

Crucial difference

Options for lowering "cognitive barriers"

For example:

- Patient-provider communication
- Complexity of treatment regimens

Most Crucial Ability in 4 Life Realms

1. Judgment and reasoning	1st factor in job analyses (major distinction in what		
	jobs require) Jobs		
2. Problem solving and	Functional literacy		
complex information processing	Daily self-maintenance		
3. Problem-solving abilities;	Health literacy		
ability to acquire new			
complex cognitive tasks	Health self-care		
 Problem solving capacity; 	Experts rate these 3 as most		
abstract thinking or	important elements of		
reasoning; capacity to acquire knowledge	intelligence Intelligence test		

A superficial similarity, but...

- How can such different "tests" measure the same ability?
 - 1. What is intelligence (g)?
 - 2. What makes a task/test "g loaded"?

"Intelligence" General mental ability factor (g) (century of research)

Many abilities, but only one general intelligence

- All mental tests measure mostly the same ability: *g*
- g is ~content independent
- *g* carries the freight of prediction

Sample IQ Items

(individually administered)

	Easy	Moderate	Hard
Fill in the next two numbers	3, 5, 7, 9,,	3, 5, 6, 8, 9,, Infer the I	10, 9, 8, 9, 8, 7, <u>,</u>
Name one	orange—banana	table-chair	Praise-punishment
similarity	(93%)	(55%)	(25%)
Def	Complexity is	the active ingreases	dient:
wol	More complex ta		v loaded"

% = % of 16-65 year-olds getting at least partial credit for answer, WAIS, 1955

Psychometric Secret (Spearman-Brown Reliability Formula)

_		Ma	ny weak	items			
.2	.2	.2	.3	.1	.1	.2	
.2	.1	.2	.1	.3	.2	.1	
.1	.2	.1	.2	.1	.1	.3	
.2	.1	.3	.3	.1	.2	.1	
.2	.2	.2	.3	.1	.1	.2	Strong test
.2	.1	.2	.1	.3	.2	.1	
.1	.2	.1	.2	.1	.1	.3	
.2	.1	.3	.3	.1	.2	.1	

Life's subtests differ in g loading

"Jobs"

Status level & on-the-job performance (century of research)

Higher-status jobs → higher-IQ workers

IQs of <u>applicants</u> for:	80	100	120	IQS: Middle 50%
Attorney, Engineer				108-128
Teacher, Programmer				100-120
Secretary, Lab tech				96-116
Meter reader, Teller				91-110
Welder, Security guard				85-105
Packer, Custodian				80-100

Typical IQs in Occupations

Typical IQ range of workers

IQ predicts performance in all jobs—but especially higher up

Judgment & Reasoning Factor

Job analysis 1 (Arvey, 1986)

Job requirements:	Correlation with factor
 Learn and recall relevant information 	.75
 Reason and make judgments 	.71
 Deal with unexpected situations 	.69
 Identify problem situations quickly 	.69
 React swiftly when unexpected 	
problems occur	.67
 Apply common sense to solve problems 	.66
 Learn new procedures quickly 	.66
 Be alert & <u>quick to understand things</u> 	.55

Typical Learning Needs by IQ Level

Overall Complexity Factor

Job analysis 2(Gottfredson, 1997)

Cor	nplex	<u>r</u>			
	Atto	88	Self-direction		Combine information
		.86	Reason		Advise
		.85	Update knowledge		Write
		.83	Analyze		Plan
		.79	Lack of struc	cture	Negotiate, Persuade
		.71	Criticality of	position	Coordinate
				Patient?	Instruct
	Telle	r .51	Transcribe		
		.36	Recognize		
		49	Repetitive		
	Cus	toðfar	Physical exe	ertion	
Sim	ple	73	Supervision		

Common Building Blocks of Job Complexity

Individual tasks

- □ Abstract, unseen processes; cause-effect relations
- Incomplete or conflicting information; much information to integrate; relevance unclear
- Inferences required; operations not specified
- Ambiguous, uncertain, unpredictable conditions
- Distracting information or events
- Problem not obvious, feedback ambiguous, standards change
- Task constellation (Often neglected, even in job analyses)
 - Multi-tasking, prioritizing
 - Sequencing, timing, coordinating
 - Evolving mix of tasks
 - □ Little supervision; need for independent judgment

Like life itself!

"Functional literacy" Daily self-maintenance in modern life (2 decades of research)

Functional Literacy (NALS)

(nationally representative sample, ages 16-65)

Items in life's "test"?

NALS Level	% pop. (white)	Simulated Everyday Tasks
5	4%	 Use calculator to determine cost of carpet for a room Use table of information to compare 2 credit cards
4	21%	 Use eligibility pamphlet to calculate SSI benefits Explain difference between 2 types of employee benefits
3	36%	 Calculate miles per gallon from mileage record chart Write brief letter explaining error on credit card bill
2	25%	 Determine difference in price between 2 show tickets Locate intersection on street map
1	14%	 Total bank deposit entry Locate expiration date on driver's license

Functional Literacy (NALS)

(nationally representative sample, ages 16-65)

NALS	% pop.	Simulatio				
Level	(white)		Difficulty bacod on			
5	4%	 Use calculator to 	"process complexity"			
		Use table of infor	" "process complexity"			
4	25%	Use eligibility pan	Ioval of information			
		Explain difference				
3	36%	Calculate miles p	- abstractnoss of info			
		 Write brief letter 				
2	25%	 Determine differe 	distracting information			
		 Locate intersectio 	distructing information			
1	14%	 Total bank deposit 	Not reading per se, but			
		 Locate expiration 	"problem solving"			

"Health literacy" Adherence to treatment (decade of research)

Example (TOFHLA)

(Controlling for personal resources, access, insurance, education, etc.)

Better health Less hospitalization Lower health costs/year

Sample TOHFLA Items & Error Rates

Patients examine the actual vials or documents

% of urban hospital outpatients		Health literacy level			
	OT KNOWING Many professionals have no idea how difficult these "simple" things are for others		Low	OK	
How to take meds 4 times per day		24	9	5	
When next appointment is scheduled		40	13	5	
How many pills of a prescription to take		70	34	13	
What an inform saying	ned consent form is	95	72	22	

Sample TOHFLA Items & Error Rates

Patients examine the actual vials or documents

% of urban hospital outpatients <u>not</u> knowing:		Health	Health literacy level		
	But how representative?	V-low	Low	OK	
How to take me	eds 4 times per day	24	9	5	
When next appointment is scheduled		40	13	5	
How many pills of a prescription to take		70	34	13	
What an inform saying	ed consent form is	95	72	22	

Health Adult Literacy Survey (HALS)

(nationally representative sample)

- Items simulate everyday health tasks
- Analyzed what increases item difficulty (error rates)
- 3 increasingly difficult questions for this item

Pediatric Dosage Chart Drops, Syrup, & Chewables

Sample item

		Dosage					
Age	Approximate Weight Range*	Drops	Syrup	Chewables 80 mg	Chewables 160 mg		
† Under 3 mo	Under 13 lb	½ dropper	¼ tsp	-	-		
† 3 to 9 mo	13-20 lb	1 dropper	⅓ tsp	-	-		
† 10 to 24 mo	21-26 lb	1½ droppers	¾ tsp	_	-		
2 to 3 yr	27-35 lb	2 droppers	1 tsp	2 tablets	-		
4 to 5 yr	36-43 lb	3 droppers	1½ tsp	3 tablets	1 ^½ tablets		
6 to 8 yr	44-62 lb	-	2 tsp	4 tablets	2 tablets		
9 to 10 yr	63-79 lb	-	2½tsp	5 tablets	2 ¹ / ₂ tablets		
11 yr	80-89 lb	_	3 tsp	6 tablets	3 tablets		
12 yr and older	90 lb & over	<u></u>	3-4 tsp	6-8 tablets	3-4 tablets		

† Consult with physician before administering to children under the age of 2 years. Dosage may be given every 4 hours as needed but not more than 5 times daily. How Supplied:

Drops: Each 0.8 ml dropper contains 80 mg (1.23 grains) acetaminophen.

Syrup: Each 5 ml teaspoon contains 160 mg (2.46 grains) acetaminophen.

Chewables: Regular tablets contain 80 mg (1.23 grains) acetaminophen each. Double strength tablets contain 160 mg (2.46 grains) acetaminophen each.

* If child is significantly under or overweight, deage may need to be adjusted accordingly. The weight categories in this chart are designed to approximate effective does ranges of 10.15 milligrams per kilogram. (Current Pediatric Diagnosis and Treatment. 8th ed. CH Kempe and HK Silver, ed. Lange Medical Publications: 1984, p. 1079) LA:1451-248 © 1988, BritiohMyers U.S. Pharmaceutical and Nutritional Group - Exansilie, Indiana 47721 U.S.A. © 1988, BristohMyers Pharmaceutical and Nutritional Group.

Reprinted with permission.

#1—Underline sentence saying how often to administer medication

Recommend

Pediatric Dosage Chart Drops, Syrup, & Chewables

One piece of info
Simple match
But lots of irrelevant info

				Dosage		
Age	Approximate Weight Range*	Drops	Syrup	Chewables 80 mg	Chewables 160 mg	
† Under 3 mo	Under 13 lb	½ dropper	¼ tsp	-	-	
† 3 to 9 mo	13-20 lb	1 dropper	½ tsp	-	-	
† 10 to 24 mo	21-26 lb	1½ droppers	³ ⁄ ₄ tsp	8 <u>—</u> 2	-	
2 to 3 yr	27-35 lb	2 droppers	1 tsp	2 tablets	_	
4 to 5 yr	36-43 lb	3 droppers	1½ tsp	3 tablets	1 ^½ tablets	
6 to 8 yr	44-62 lb	_	2 tsp	4 tablets	2 tablets	
9 to 10 yr	63-79 lb		2½tsp	5 tablets	2 ¹ / ₂ tablets	
11 yr	80-89 lb	-	3 tsp	6 tablets	3 tablets	
12 yr and older	90 lb & over	_	3-4 tsp	6-8 tablets	3-4 tablets	

Dosage may be given every 4 hours as needed but not more than 5 tim

% US adults routinely functioning <u>below</u> this level? **20%**

Could train them do this item, but not all like it

239											
HALS LEVELS:	Below Level 1		Level 1	L	evel 2	Level	3	Level 4		Level 5	
HALS SCORES:		175	2	25	2	275	325	37	75		500

#2—How much syrup for 10-year-old who weighs 50 pounds?

Recommend

Pediatric Dosage Chart

Drops, Syrup, & Chewables

 Spot & reconcile conflicting info Inference from ambiguous info Multiple features

to match

??

Dosage Approximate Drops Chewables Chewables Syrup Age Weight Range* 160 mg 80 mg Under 13 lb ½ dropper † Under 3 mo tsp _ _ 13-20 lb † 3 to 9 mo 1 dropper tsp _ † 10 to 24 mo 21-26 lb 1½ droppers tsp _ 27-35 lb 2 to 3 yr 2 droppers 2 tablets tsp 26 42 Ih 4 to 5 yr 3 droppers 3 tablets 1^½ tablets 1 tsp 6 to 8 vr 44-62 lb 2 tsp 4 tablets 2 tablets 9 to 10 yr 63-79 lb 2½tsp 5 tablets 2¹/₂ tablets _ 80-89 lb 6 tablets тт Аг _ 3 tsp 3 tablets 12 yr and 90 lb & over older 3-4 tsp 6-8 tablets 3-4 tablets

% US adults routinely functioning below this level? 54%

??

† Consult with physician before administering to children under the age of 2 years.

Dosage may be given every 4 hours as needed but not more than 5 times daily.

#3—Your child is 11 years old and weighs 85 pounds. How many 80 mg tablets can you give in 24-hr period?

•Multiple features to match

•Two-step task

- Infer proper math operation
- •Select proper numbers to use
- Ignore the most obvious but incorrect number
- •Calculate the result

Recommend

Pediatric Dosage Chart Drop

Chart Drops, Syrup, & Chewables

		Dosage						
Age	Approximate Weight Range*	Drops	Syrup	Chewables 80 mg	Chewables 160 mg			
† Under 3 mo	Under 13 lb	½ dropper	¼ tsp		-			
† 3 to 9 mo	13-20 lb	1 dropper	½ tsp	-	-			
† 10 to 24 mo	21-26 lb	1½ droppers	³ ⁄ ₄ tsp	-	—			
2 to 3 yr	27-35 lb	2 droppers	1 tsp	2 tablets	_			
4 to 5 yr	36-43 lb	3 droppers	1½ tsp	3 tablets	1 ¹ / ₂ tablets			
6 to 8 yr	44-62 lb	_	2 tsp	4 tablets	2 tablets			
9 to 10 yr	63-79 lb		2½tsp	5 toplets	2 ¹ / ₂ tablets			
11 yr	80-89 lb	-	3 tsp	6 tablets	3 tablets			
12 yr and older	90 lb & over	-	3-4 tsp	6-8 tablets	3-4 tablets			

% US adults routinely functioning <u>below</u> this level? **95%**

Literacy Researchers' Conclusion

Non-compliance with treatment

- Often due to a failure to "learn, reason, & problem-solve"
- Leads to higher morbidity
- Leads to higher mortality
- Can create <u>new</u> health problems (e.g., by taking medication incorrectly)

Childhood IQ Predicts Adult Mortality

8 large studies

(Batty, Deary, & Gottfredson, 2007)

1 more IQ point = 1% lower death rate

Material resources not enough

- Equalizing resources <u>increases</u> health disparities
 - When Britain introduced national health care
 - When media made health information <u>more</u> widely available (signs and symptoms of cancer, diabetes, etc.)
- Old story—average rises, but variance too
 - Like in schools—some students more effectively exploit the same instruction

Mental resources matter too—insufficiency means:
 Inefficient use of available care
 Inappropriate criticism of care

"Health" Health self-care (new research)

Health Self-Care Is a Lifelong Job: Yours!

- Constellation of tasks to perform, actions to avoid
- Training required
- Coordinate & communicate with others
- Exercise independent judgment
- Only occasional supervision or consultation
- Job changes as technology & conditions evolve
- Sometimes tiring, frustrating, affects family life
- Central to personal well-being
- But no vacations, no retirement

Major Causes of Premature Death

- Chronic illnesses (heart disease, cancer, etc.)
 Middle-age & older
- Unintentional ("accidental") injury
 Childhood & early adulthood

All are "preventable."

Avoiding Chronic Illness Requires Foresight & Prevention

- Keep informed
- Live healthy lifestyle
- Get preventive checkups
- Detect signs and symptoms
- Seek timely, appropriate medical attention

Chronic Illnesses Require Self-Regulation

Follow treatment regimen

- □ Use medications as prescribed
- Diet, exercise, no smoking, etc.
- Including for diseases without outward signs (e.g., hypertension)
- Monitor daily signs and symptoms
- Adjust medication and behavior in response to signs
- Have regular check-ups

Accidents: Prevention Is Key

- Recognize hazards
- Prevent incidents starting
- Halt progress of incidents
- Limit damage during incidents
- Recover and redesign

- Same process as with chronic illnesses
- Myriad low-probability, often-hidden hazards

Motor Vehicle Fatalities. Are They Just "Accidental"?

 IQ is best predictor
 Predicts net of 56 other
 variables

Australian veterans followed to age 40	Death rate per 10,000
IQ: above 115	51.3
100-115	51.5
85-100	92.2
80- 85	146.7

2x 3x

Life requires "defensive driving"

Dealing with the unexpected

"Say ... what's a mountain goat doing way up here in a cloud bank?"

Recall: All this is complex

Complex jobs require workers to:	Correlation with
(Arvey, 1986)	overall job
(Applied to health)	complexity
 Learn and recall relevant information (symptoms) 	.75
 Reason and make judgments (timely preventive car 	re) .71
 Deal with unexpected situations (meal delayed) 	.69
 Identify problem situations quickly (hazards) 	.69
React swiftly when unexpected	
problems occur (injuries, asthma attack)	.67
 Apply common sense to solve problems 	.66
 Learn new procedures <u>quickly</u> (treatment regimens) 	.66
 Be alert & <u>quick</u> to understand things (feverish chi 	ld) .55

Chronic Illnesses as Demanding "Careers"

Example: Diabetic's Job

Learn about diabetes in general (At "entry")

- Physiological process
- □ Interdependence of diet, exercise, meds
- □ Symptoms & corrective action
- Consequences of poor control

Apply knowledge to own case (Daily, Hourly)

- □ Implement appropriate regimen
- □ Continuously monitor physical signs
- Diagnose problems in timely manner
- □ Adjust food, exercise, meds in timely and appropriate manner

Coordinate with relevant parties (Frequently)

- □ Negotiate changes in activities with family, friends, job
- □ Enlist/capitalize on social support
- Communicate status and needs to HCPs

Update knowledge & adjust regimen (Occasionally)

- When other chronic conditions or disabilities develop
- When new treatments available
- When life circumstances change

Good Performance

- **IT IS NOT** mechanically following a recipe
- IT IS keeping a complex system under control in often unpredictable circumstances
 - □ Coordinate a regimen having multiple interacting elements
 - Adjust parts as needed to maintain good control of system buffeted by many other factors
 - □ Anticipate lag time between (in)action and system response
 - Monitor advance "hidden" indicators (blood glucose) to prevent system veering badly out of control
 - Decide appropriate type and timing of corrective action if system veering off-track
 - □ Monitor/control other shocks to system (infection, emotional stress)
 - □ Coordinate regimen with other daily activities
 - □ Plan ahead (meals, meds, etc.)
 - For the expected
 - For the unexpected and unpredictable
 - Prioritize conflicting demands on time and behavior

Extremely Complex

Error Rates Among Diabetics

(insulin dependent)

Urban hospital outpatients:	Health literacy level					
% diabetics <u>not</u> knowing that:	V-low	Low	OK			
Signal: Thirsty/tired/weak usually means blood sugar too high	• 40	31	25			
Action: Exercise lowers blood sugar	60	54	35			
Signal: Suddenly sweaty/shaky/hungry usually means blood sugar too low	50	15	6			
Action: Eat some form of sugar	62	46	27			

Treatment regimens becoming more complex

Heart attacks

- □ 1960's—just "good luck"
- □ Now often includes:
 - regimen of aspirin, β-blocker, angiotensin-converting enzyme inhibitor
 - Iow-salt and low-cholesterol diet
 - Medicine to control hypertension, diabetes, & hypercholesterolemia

Brighter individuals can better capitalize on medical advances

Increasing Complexity Favors the Young

Raw mental horsepower (ability to learn and reason) rises into early adulthood, then falls²

Average profile only

Score *relative to age mates* ("IQ") is stable from adolescence on

Complexity & Aging

"Okay your father managed to get a mouse. Now how do we use it?"

"Ultimate Intelligence Test" Evolution of human intelligence (.1 to 1 MYA)

But wasn't life simpler in the early human EEA? No technology

- Yes, but it was never g-proof
- Opportunity to learn & reason + withingroup variation in g = opportunity for selection
- Tiny effect size + many generations = big shift in distribution

Plan, Anticipate Problems

"Shhhh, Zog! ... Here come one now!"

What Unique to Human EEA?

Human Innovation

- Changed physical environment or how humans interacted with it (e.g., fire, weapons)
- Improved average well-being but created novel risks (e.g., burns/scalds, inattention to snakes)
- Put a premium on independent learning and foresight,

especially for recognizing hazards and preventing "accidental" injury and death during core activities

Innovation & hazards require a mind's eye—imagination, foresight

Cause of Ache Deaths (N, <1971)

Age:	C)-3	4-14		15-59		60)+
Sex:	F	М	F	М	F	М	F	М
Illness			8	7	9 🤇	26	2	3
Congenital/degenerative					1	T	2	4
Childbirth					3			
Accident	<i>c</i> •		, 1	10	6	23	4	3
jaguar/snake Most are	mis	takes		3	4	19	1	3
lightning (faulty m	ind's	s eye)	3		2		
lost during pr	ovis	ionin	g	3		1	3	
drowned/falls/other			1	1	1	1		
Homicide			14	3	4	7	1	4
sacrificed with adult	stak	es	10	1				
homicide/neglect reve	erbe	rate	3					
buried alive/left behind			1	2	2		1	2
ritual club fights						6		2
non-sanctioned murder					2	1		

Cause of Ache Deaths (N, <1971)

Age:	0-3		4-14		15-59		60+		
Sex:	F	М	F	М	F	М	F	М	
Illness	19	17	8	7	9 🤇	26	2	3	
Congenital/degenerative	8	11			1	\mathbf{T}	2	4	
Childbirth					3				
Accident	1	2	1	10	6	23	4	3	
jaguar/snake				3	4	19	1	3	
lightning		1		3	1	2			
lost				3		1	3		
drowned/falls/other	1	1	1	1	1	1			
Homicide	26	26	14	3	4	7	1	4	
sacrificed with adult		"Accidents" are major opportunity for selection							
homicide/neglect		Tiny correlation g sufficient over generations							
buried alive/left behind	2	4	1	2	2		1	2	
ritual club fights		But why not monkeys too? 6 2							
non-sanctioned murder					<u> </u>	1			

Human innovation itself

Smart people make life more complex for the rest of us (Scott Adam's "Evolution of Idiots")

Innovation creates evolutionarily novel hazards

• Cooking/heating with fire, weapons, enclosures, dogs, ladders

One selection mechanism: Migration ratchet

What Killed Differentially by g Level?

Not the obvious

- Not high-interest, high-probability threats to band's survival (e.g., starvation, harsh climate)
- Because the fruits of competence are shared (e.g., meat from hunting)

But the "minor" side-effects of core tasks

- Myriad low-probability, chance-laden, oft-ignored risks in daily chores (e.g., "accidental" injury)
- Costs of injury not shared widely

A lesson for today—what are we failing to notice?

Opportunities for Intervention

True, we cannot change intelligence (g)

BUT

Lots of opportunities to help patients and providers

Can Reduce Risk of Error

- 1. Mind the gap
- 2. Provide cognitive assistance
- 3. Reduce task complexity

Reject Passive-Patient Model

False

Non-adherence = lack of motivation

Reality: Faulty Receipt & Application

Conscientiousness is not enough Errors rise with lower IQ/g

Need Epidemiology of Patient Error

Matrix of Cognitive Risk (error rates)

Audit cognitive resources Patients' own & supplementary

- Patient differences in g
 - Train providers
 - Size, nature, distribution, practical meaning of differences
 - Recognize/communicate across large IQ gaps
 - Create short unobtrusive measure of "literacy"
 - Target pockets of high error
 - Identify options for cognitive scaffolding
 - Tailored instruction, comprehension checks
 - Feedback, monitoring, retraining, reminders, hotlines
 - Auxiliary staff, family

Schools do it, military and employers do it

Audit complexity of patients' "jobs"

Task differences in complexity

- Audit complexity in:
 - Information & instructions
 - Individual treatments, diseases
 - Clinic layout, patient interface
 - Target tasks with:
 - High expected error rates
 - Needless complexity
- Write job descriptions for chronic diseases
 - Biggest cognitive barriers to adherence
 - Touch-points for intervention to surmount barriers
 - Set priorities for triage

Badly neglected, everywhere

Thank you.

