Everyday Life and Health as an Intelligence Test—Throughout Evolution

Linda S. Gottfredson, PhD
School of Education
University of Delaware
Newark, DE 19716

Vanderbilt Kennedy Center Special Lecture, November 15, 2007
How can that be?

- Isn’t IQ just a narrow academic ability?
 - No: IQ captures a very general, very practical ability

- Aren’t there multiple intelligences?
 - No: many abilities but only one broad intelligence

- Don’t other things matter in life—motivation, social advantages?
 - Yes, of course: but higher IQ boosts odds throughout

Tiny odds yield huge effects over time—in tests, life, & evolution
Life’s Long Test Battery

- Many “subtests”
 - Varied, evolving, inescapable
- Surprising similarity to IQ tests
 - Wellspring of “cognitive barriers”
- Crucial difference
 - Options for lowering “cognitive barriers”

For example:
- Patient-provider communication
- Complexity of treatment regimens
Most Crucial Ability in 4 Life Realms

<table>
<thead>
<tr>
<th>1. Judgment and reasoning</th>
<th>1st factor in job analyses (major distinction in what jobs require)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Problem solving and complex information processing</td>
<td>Functional literacy</td>
</tr>
<tr>
<td>3. Problem-solving abilities; ability to acquire new information and complete complex cognitive tasks</td>
<td>Health literacy</td>
</tr>
<tr>
<td>4. Problem solving capacity; abstract thinking or reasoning; capacity to acquire knowledge</td>
<td>Experts rate these 3 as most important elements of intelligence</td>
</tr>
</tbody>
</table>

- **Jobs**: Daily self-maintenance, Health self-care

- **Health literacy**: Daily self-maintenance, Health self-care

- **Intelligence test**: Daily self-maintenance, Health self-care
A superficial similarity, but…

- How can such different “tests” measure the same ability?
 1. What is intelligence (g)?
 2. What makes a task/test “g loaded”?
“Intelligence”
General mental ability factor \((g)\)
(century of research)
Many abilities, but only one general intelligence

- All mental tests measure mostly the same ability: g
- g is approximately content independent
- g carries the freight of prediction
Sample IQ Items
(individually administered)

<table>
<thead>
<tr>
<th>Easy</th>
<th>Moderate</th>
<th>Hard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fill in the next two numbers</td>
<td>3, 5, 6, 8, 9, __, __</td>
<td>10, 9, 8, 9, 8, 7, __, __</td>
</tr>
<tr>
<td>Orange—banana (93%)</td>
<td>Table-chair (55%)</td>
<td>Praise-punishment (25%)</td>
</tr>
<tr>
<td>Reluctant</td>
<td>Ominous</td>
<td></td>
</tr>
</tbody>
</table>

Complexity is the active ingredient: More complex tasks are more “g loaded”

% = % of 16-65 year-olds getting at least partial credit for answer, WAIS, 1955
Psychometric Secret
(Spearman-Brown Reliability Formula)

Many weak items

<table>
<thead>
<tr>
<th></th>
<th>.2</th>
<th>.2</th>
<th>.2</th>
<th>.3</th>
<th>.1</th>
<th>.1</th>
<th>.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>.1</td>
<td>.2</td>
<td>.1</td>
<td>.3</td>
<td>.2</td>
<td>.1</td>
<td>.2</td>
</tr>
<tr>
<td>.1</td>
<td>.2</td>
<td>.1</td>
<td>.2</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>.2</td>
<td>.1</td>
<td>.3</td>
<td>.3</td>
<td>.1</td>
<td>.2</td>
<td>.1</td>
<td>.1</td>
</tr>
<tr>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.3</td>
<td>.1</td>
<td>.1</td>
<td>.2</td>
<td>.2</td>
</tr>
<tr>
<td>.2</td>
<td>.1</td>
<td>.2</td>
<td>.1</td>
<td>.3</td>
<td>.2</td>
<td>.1</td>
<td>.1</td>
</tr>
<tr>
<td>.1</td>
<td>.2</td>
<td>.1</td>
<td>.2</td>
<td>.1</td>
<td>.1</td>
<td>.3</td>
<td>.3</td>
</tr>
<tr>
<td>.2</td>
<td>.1</td>
<td>.3</td>
<td>.3</td>
<td>.1</td>
<td>.2</td>
<td>.1</td>
<td>.1</td>
</tr>
</tbody>
</table>

Strong test
Life’s subtests differ in g loading

- Standardized academic achievement: $r = 0.8$
- Job performance—complex jobs
- Years of education: $r = 0.6$
- Occupational level
- Job performance—middle-level jobs: $r = 0.4-0.5$
- Income: $r = 0.3-0.4$
- Delinquency: $r = -0.25$
- Job performance—simple jobs: $r = 0.2$
“Jobs”
Status level & on-the-job performance
(century of research)
Higher-status jobs \rightarrow higher-IQ workers

<table>
<thead>
<tr>
<th>IQs of applicants for:</th>
<th>80</th>
<th>100</th>
<th>120</th>
<th>IQs: Middle 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attorney, Engineer</td>
<td></td>
<td></td>
<td></td>
<td>108-128</td>
</tr>
<tr>
<td>Teacher, Programmer</td>
<td></td>
<td></td>
<td></td>
<td>100-120</td>
</tr>
<tr>
<td>Secretary, Lab tech</td>
<td></td>
<td></td>
<td></td>
<td>96-116</td>
</tr>
<tr>
<td>Meter reader, Teller</td>
<td></td>
<td></td>
<td></td>
<td>91-110</td>
</tr>
<tr>
<td>Welder, Security guard</td>
<td></td>
<td></td>
<td></td>
<td>85-105</td>
</tr>
<tr>
<td>Packer, Custodian</td>
<td></td>
<td></td>
<td></td>
<td>80-100</td>
</tr>
</tbody>
</table>
Typical IQs in Occupations

Typical IQ range of workers

Assembler
Food service
Nurse’s aide

Clerk, teller
Police officer
Machinist, sales

No jobs centered here

Manager
Teacher
Accountant

Why?

Attorney
Chemist
Executive

Why?
IQ predicts performance in all jobs—but especially higher up

<table>
<thead>
<tr>
<th>IQs of applicants for:</th>
<th>80</th>
<th>100</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attorney, Engineer</td>
<td></td>
<td></td>
<td>.80</td>
</tr>
<tr>
<td>Teacher, Programmer</td>
<td></td>
<td></td>
<td>.80</td>
</tr>
<tr>
<td>Secretary, Lab tech</td>
<td></td>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>Meter reader, Teller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welder, Security guard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packer, Custodian</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Criterion validity (corrected)

Why?
Judgment & Reasoning Factor

Job analysis 1 (Arvey, 1986)

<table>
<thead>
<tr>
<th>Job requirements:</th>
<th>Correlation with factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Learn and recall relevant information</td>
<td>.75</td>
</tr>
<tr>
<td>- Reason and make judgments</td>
<td>.71</td>
</tr>
<tr>
<td>- Deal with unexpected situations</td>
<td>.69</td>
</tr>
<tr>
<td>- Identify problem situations quickly</td>
<td>.69</td>
</tr>
<tr>
<td>- React swiftly when unexpected problems occur</td>
<td>.67</td>
</tr>
<tr>
<td>- Apply common sense to solve problems</td>
<td>.66</td>
</tr>
<tr>
<td>- Learn new procedures quickly</td>
<td>.66</td>
</tr>
<tr>
<td>- Be alert & quick to understand things</td>
<td>.55</td>
</tr>
</tbody>
</table>
Typical Learning Needs by IQ Level

- **70** - Slow, simple, concrete, one-on-one instruction
- **80** - Very explicit, structured, hands-on
- **90** - Mastery learning, hands-on
- **100** - Written materials & experience
- **110** - Learns well in college format
- **120** - Can gather, infer information on own
- **130** - White

Military trainability thresholds:
- 10th
- 15th
- 30th
Overall Complexity Factor

Job analysis 2 (Gottfredson, 1997)

<table>
<thead>
<tr>
<th>Complex</th>
<th>r</th>
<th>Description</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>-.73</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Teller</td>
<td>-.56</td>
<td>- Repetitive, Physical exertion</td>
<td>-</td>
</tr>
<tr>
<td>Attorney</td>
<td>-.49</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Complex</td>
<td>.71</td>
<td>- Criticality of position</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>.79</td>
<td>- Lack of structure</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>.83</td>
<td>- Analyze</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>.85</td>
<td>- Update knowledge</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>.86</td>
<td>- Reason</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>.88</td>
<td>- Self-direction</td>
<td>-</td>
</tr>
</tbody>
</table>

Key Roles:
- Attorney: Advise, Write, Plan, Negotiate, Persuade, Coordinate, Instruct
- Teller: Transcribe, Recognize
- Custodian: Patient?

- Overall Complexity Factor
 - Complex: .88, .86, .85, .83, .79, .71
 - Simple: -.73

- Roles:
 - Attorney, Teller, Custodian
 - Specific Roles: Advice, Writing, Planning, Negotiation, Persuasion, Coordinating, Instructing
 - Specific Tasks: Transcribing, Recognizing
 - Patient?
Common Building Blocks of Job Complexity

- Individual tasks
 - Abstract, unseen processes; cause-effect relations
 - Incomplete or conflicting information; much information to integrate; relevance unclear
 - Inferences required; operations not specified
 - Ambiguous, uncertain, unpredictable conditions
 - Distracting information or events
 - Problem not obvious, feedback ambiguous, standards change

- Task constellation *(Often neglected, even in job analyses)*
 - Multi-tasking, prioritizing
 - Sequencing, timing, coordinating
 - Evolving mix of tasks
 - Little supervision; need for independent judgment

Like life itself!
“Functional literacy”
Daily self-maintenance in modern life
(2 decades of research)
Functional Literacy (NALS)
(nationally representative sample, ages 16-65)

Items in life’s “test”?

<table>
<thead>
<tr>
<th>NALS Level</th>
<th>% pop. (white)</th>
<th>Simulated Everyday Tasks</th>
</tr>
</thead>
</table>
| 5 | 4% | - Use calculator to determine cost of carpet for a room
- Use table of information to compare 2 credit cards |
| 4 | 21% | - Use eligibility pamphlet to calculate SSI benefits
- Explain difference between 2 types of employee benefits |
| 3 | 36% | - Calculate miles per gallon from mileage record chart
- Write brief letter explaining error on credit card bill |
| 2 | 25% | - Determine difference in price between 2 show tickets
- Locate intersection on street map |
| 1 | 14% | - Total bank deposit entry
- Locate expiration date on driver’s license |
Functional Literacy (NALS)
(nationally representative sample, ages 16-65)

<table>
<thead>
<tr>
<th>NALS Level</th>
<th>% pop. (white)</th>
<th>Simulation</th>
</tr>
</thead>
</table>
| 5 | 4% | - Use calculator to total bank deposit
- Use table of information
- Explain difference of eligibility panels |
| 4 | 25% | - Use eligibility panels to calculate miles per gallon
- Explain difference of eligibility panels
- Write brief letter |
| 3 | 36% | - Calculate miles per gallon
- Write brief letter |
| 2 | 25% | - Determine difference of eligibility panels
- Locate intersection |
| 1 | 14% | - Total bank deposit
- Locate expiration |

Difficulty based on “process complexity”

- level of inference
- abstractness of info
- distracting information

Not reading per se, but “problem solving”
“Health literacy”
Adherence to treatment
(decade of research)
Example (TOFHLA)
(Controlling for personal resources, access, insurance, education, etc.)

- Health literacy
 - More health knowledge
 - Better adherence
 - Better health
 - Less hospitalization
 - Lower health costs/year
Sample TOHFLA Items & Error Rates

Patients examine the actual vials or documents. Many professionals have no idea how difficult these “simple” things are for others.

<table>
<thead>
<tr>
<th>% of urban hospital outpatients not knowing:</th>
<th>Health literacy level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V-low</td>
</tr>
<tr>
<td>How to take meds 4 times per day</td>
<td>24</td>
</tr>
<tr>
<td>When next appointment is scheduled</td>
<td>40</td>
</tr>
<tr>
<td>How many pills of a prescription to take</td>
<td>70</td>
</tr>
<tr>
<td>What an informed consent form is saying</td>
<td>95</td>
</tr>
</tbody>
</table>
Sample TOHFLA Items & Error Rates

Patients examine the actual vials or documents

<table>
<thead>
<tr>
<th>% of urban hospital outpatients not knowing:</th>
<th>Health literacy level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V-low</td>
</tr>
<tr>
<td>How to take meds 4 times per day</td>
<td>24</td>
</tr>
<tr>
<td>When next appointment is scheduled</td>
<td>40</td>
</tr>
<tr>
<td>How many pills of a prescription to take</td>
<td>70</td>
</tr>
<tr>
<td>What an informed consent form is saying</td>
<td>95</td>
</tr>
</tbody>
</table>

But how representative?
Health Adult Literacy Survey (HALS)

(nationally representative sample)

- Items simulate everyday health tasks
- Analyzed what increases item difficulty (error rates)
- 3 increasingly difficult questions for this item

Sample item
#1—Underline sentence saying how often to administer medication

% US adults routinely functioning below this level? 20%

Caution! Could train them do this item, but not all like it

One piece of info
Simple match
But lots of irrelevant info
#2—How much syrup for 10-year-old who weighs 50 pounds?

Pediatric Dosage Chart

<table>
<thead>
<tr>
<th>Age</th>
<th>Approximate Weight Range*</th>
<th>Drops</th>
<th>Syrup</th>
<th>Dosage</th>
<th>Chewables 80 mg</th>
<th>Chewables 160 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>† Under 3 mo</td>
<td>Under 13 lb</td>
<td>½ dropper</td>
<td>¼ tsp</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>† 3 to 9 mo</td>
<td>13-20 lb</td>
<td>1 dropper</td>
<td>½ tsp</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>† 10 to 24 mo</td>
<td>21-26 lb</td>
<td>1 ½ droppers</td>
<td>³/₄ tsp</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2 to 3 yr</td>
<td>27-35 lb</td>
<td>2 droppers</td>
<td>1 tsp</td>
<td>2 tablets</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4 to 5 yr</td>
<td>26-42 lb</td>
<td>3 droppers</td>
<td>1 ½ tsp</td>
<td>3 tablets</td>
<td>1 ½ tablets</td>
<td>—</td>
</tr>
<tr>
<td>6 to 8 yr</td>
<td>44-62 lb</td>
<td>—</td>
<td>2 tsp</td>
<td>4 tablets</td>
<td>2 tablets</td>
<td>—</td>
</tr>
<tr>
<td>9 to 10 yr</td>
<td>63-79 lb</td>
<td>—</td>
<td>2 ½ tsp</td>
<td>5 tablets</td>
<td>2 ½ tablets</td>
<td>—</td>
</tr>
<tr>
<td>11 yr</td>
<td>80-89 lb</td>
<td>—</td>
<td>3 tsp</td>
<td>6 tablets</td>
<td>3 tablets</td>
<td>—</td>
</tr>
<tr>
<td>12 yr and older</td>
<td>90 lb & over</td>
<td>—</td>
<td>3-4 tsp</td>
<td>6-8 tablets</td>
<td>3-4 tablets</td>
<td>—</td>
</tr>
</tbody>
</table>

† Consult with physician before administering to children under the age of 2 years.
Dosage may be given every 4 hours as needed but not more than 5 times daily.

% US adults routinely functioning below this level? **54%**

HALS LEVELS

<table>
<thead>
<tr>
<th>HALS LEVELS:</th>
<th>Below Level 1</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>HALS SCORES:</td>
<td>175</td>
<td>225</td>
<td>275</td>
<td>325</td>
<td>375</td>
<td>500</td>
</tr>
</tbody>
</table>
#3—Your child is 11 years old and weighs 85 pounds. How many 80 mg tablets can you give in 24-hr period?

- Multiple features to match
- Two-step task
- Infer proper math operation
- Select proper numbers to use
- Ignore the most obvious but incorrect number
- Calculate the result

Pediatric Dosage Chart

<table>
<thead>
<tr>
<th>Age</th>
<th>Approximate Weight Range*</th>
<th>Drops</th>
<th>Syrup</th>
<th>Chewables 80 mg</th>
<th>Chewables 160 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>† Under 3 mo</td>
<td>Under 13 lb</td>
<td>½ dropper</td>
<td>½ tsp</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>† 3 to 9 mo</td>
<td>13-20 lb</td>
<td>1 dropper</td>
<td>½ tsp</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>† 10 to 24 mo</td>
<td>21-26 lb</td>
<td>1½ droppers</td>
<td>½ tsp</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2 to 3 yr</td>
<td>27-35 lb</td>
<td>2 droppers</td>
<td>1 tsp</td>
<td>2 tablets</td>
<td>—</td>
</tr>
<tr>
<td>4 to 5 yr</td>
<td>36-43 lb</td>
<td>3 droppers</td>
<td>1½ tsp</td>
<td>3 tablets</td>
<td>1½ tablets</td>
</tr>
<tr>
<td>6 to 8 yr</td>
<td>44-62 lb</td>
<td>—</td>
<td>2 tsp</td>
<td>4 tablets</td>
<td>2 tablets</td>
</tr>
<tr>
<td>9 to 10 yr</td>
<td>63-79 lb</td>
<td>—</td>
<td>2½ tsp</td>
<td>5 tablets</td>
<td>2½ tablets</td>
</tr>
<tr>
<td>11 yr</td>
<td>80-89 lb</td>
<td>—</td>
<td>3 tsp</td>
<td>6 tablets</td>
<td>3 tablets</td>
</tr>
<tr>
<td>12 yr and older</td>
<td>90 lb & over</td>
<td>—</td>
<td>3-4 tsp</td>
<td>6-8 tablets</td>
<td>3-4 tablets</td>
</tr>
</tbody>
</table>

Contact with physician before administering to children under the age of 2 years. Dosage may be given every 4 hours as needed but not more than 5 times daily.

HALS LEVELS:

- Below Level 1
- Level 1
- Level 2
- Level 3
- Level 4
- Level 5

HALS SCORES:

- 175
- 225
- 275
- 325
- 375
- 500

% US adults routinely functioning below this level? **95%**

“Below minimum standard for today’s labor market”
Literacy Researchers’ Conclusion

Non-compliance with treatment

- Often due to a failure to “learn, reason, & problem-solve”
- Leads to higher morbidity
- Leads to higher mortality
- Can create new health problems (e.g., by taking medication incorrectly)
Childhood IQ Predicts Adult Mortality

8 large studies
(Batty, Deary, & Gottfredson, 2007)

1 more IQ point = 1% lower death rate

SES confound? Material resources?
Material resources not enough

- Equalizing resources *increases* health disparities
 - When Britain introduced **national health care**
 - When media made **health information** *more* widely available (signs and symptoms of cancer, diabetes, etc.)

- Old story—average rises, but variance too
 - Like in schools—some students more effectively exploit the same instruction

- Mental resources matter too—insufficiency means:
 - Inefficient use of available care
 - Inappropriate criticism of care
“Health”
Health self-care
(new research)
Health Self-Care Is a Lifelong Job: Yours!

- Constellation of tasks to perform, actions to avoid
- Training required
- Coordinate & communicate with others
- Exercise independent judgment
- Only occasional supervision or consultation
- Job changes as technology & conditions evolve
- Sometimes tiring, frustrating, affects family life
- Central to personal well-being
- But no vacations, no retirement
Major Causes of Premature Death

- Chronic illnesses (heart disease, cancer, etc.)
 - Middle-age & older

- Unintentional (“accidental”) injury
 - Childhood & early adulthood

All are “preventable.”
Avoiding Chronic Illness Requires Foresight & Prevention

- Keep informed
- Live healthy lifestyle
- Get preventive checkups
- Detect signs and symptoms
- Seek timely, appropriate medical attention
Chronic Illnesses Require Self-Regulation

- Follow treatment regimen
 - Use medications as prescribed
 - Diet, exercise, no smoking, etc.
 - Including for diseases without outward signs (e.g., hypertension)
- Monitor daily signs and symptoms
- Adjust medication and behavior in response to signs
- Have regular check-ups
Accidents: Prevention Is Key

- Recognize hazards
- Prevent incidents starting
- Halt progress of incidents
- Limit damage during incidents
- Recover and redesign

- Same process as with chronic illnesses
- Myriad low-probability, often-hidden hazards
Motor Vehicle Fatalities. Are They Just “Accidental”?

- IQ is best predictor
- Predicts net of 56 other variables

<table>
<thead>
<tr>
<th>Australian veterans followed to age 40</th>
<th>Death rate per 10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQ: above 115</td>
<td>51.3</td>
</tr>
<tr>
<td>100-115</td>
<td>51.5</td>
</tr>
<tr>
<td>85-100</td>
<td>92.2</td>
</tr>
<tr>
<td>80-85</td>
<td>146.7</td>
</tr>
</tbody>
</table>

Life requires “defensive driving”
Dealing with the unexpected

“Say ... what's a mountain goat doing way up here in a cloud bank?”
Recall: All this is complex

Complex jobs require workers to:

Arvey, 1986
(Applied to health)

<table>
<thead>
<tr>
<th>Action</th>
<th>Correlation with overall job complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learn and recall relevant information (symptoms)</td>
<td>.75</td>
</tr>
<tr>
<td>Reason and make judgments (timely preventive care)</td>
<td>.71</td>
</tr>
<tr>
<td>Deal with unexpected situations (meal delayed)</td>
<td>.69</td>
</tr>
<tr>
<td>Identify problem situations quickly (hazards)</td>
<td>.69</td>
</tr>
<tr>
<td>React swiftly when unexpected problems occur (injuries, asthma attack)</td>
<td>.67</td>
</tr>
<tr>
<td>Apply common sense to solve problems</td>
<td>.66</td>
</tr>
<tr>
<td>Learn new procedures quickly (treatment regimens)</td>
<td>.66</td>
</tr>
<tr>
<td>Be alert & quick to understand things (feverish child)</td>
<td>.55</td>
</tr>
</tbody>
</table>
Chronic Illnesses as Demanding “Careers”
Example: Diabetic’s Job

- **Learn about diabetes in general** *(At “entry”)*
 - Physiological process
 - Interdependence of diet, exercise, meds
 - Symptoms & corrective action
 - Consequences of poor control

- **Apply knowledge to own case** *(Daily, Hourly)*
 - Implement appropriate regimen
 - Continuously monitor physical signs
 - Diagnose problems in timely manner
 - Adjust food, exercise, meds in timely and appropriate manner

- **Coordinate with relevant parties** *(Frequently)*
 - Negotiate changes in activities with family, friends, job
 - Enlist/capitalize on social support
 - Communicate status and needs to HCPs

- **Update knowledge & adjust regimen** *(Occasionally)*
 - When other chronic conditions or disabilities develop
 - When new treatments available
 - When life circumstances change
Good Performance

- **IT IS NOT** mechanically following a recipe
- **IT IS** keeping a complex system under control in often unpredictable circumstances
 - Coordinate a regimen having multiple interacting elements
 - Adjust parts as needed to maintain good control of system buffeted by many other factors
 - Anticipate lag time between (in)action and system response
 - Monitor advance “hidden” indicators (blood glucose) to prevent system veering badly out of control
 - Decide appropriate type and timing of corrective action if system veering off-track
 - Monitor/control other shocks to system (infection, emotional stress)
 - Coordinate regimen with other daily activities
 - Plan ahead (meals, meds, etc.)
 - For the expected
 - For the unexpected and unpredictable
 - Prioritize conflicting demands on time and behavior

Extremely Complex
Error Rates Among Diabetics (insulin dependent)

<table>
<thead>
<tr>
<th>Urban hospital outpatients: % diabetics not knowing that:</th>
<th>Health literacy level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal: Thirsty/tired/weak usually means blood sugar too high</td>
<td>V-low</td>
</tr>
<tr>
<td>Action: Exercise lowers blood sugar</td>
<td>40</td>
</tr>
<tr>
<td>Signal: Suddenly sweaty/shaky/hungry usually means blood sugar too low</td>
<td>50</td>
</tr>
<tr>
<td>Action: Eat some form of sugar</td>
<td>62</td>
</tr>
</tbody>
</table>
Treatment regimens becoming more complex

- Heart attacks
 - 1960’s—just “good luck”
 - Now often includes:
 - regimen of aspirin, β-blocker, angiotensin-converting enzyme inhibitor
 - low-salt and low-cholesterol diet
 - Medicine to control hypertension, diabetes, & hypercholesterolemia

Brighter individuals can better capitalize on medical advances
Increasing Complexity Favors the Young

Raw mental horsepower (ability to learn and reason) rises into early adulthood, then falls.

Average profile only

Score relative to age mates ("IQ") is stable from adolescence on.
"Okay your father managed to get a mouse. Now how do we use it?"
“Ultimate Intelligence Test”
Evolution of human intelligence
(.1 to 1 MYA)
But wasn’t life simpler in the early human EEA? No technology

- Yes, but it was never \(g \)-proof
- Opportunity to learn & reason + within-group variation in \(g \) = opportunity for selection
- Tiny effect size + many generations = big shift in distribution
Plan, Anticipate Problems

“Shhhh. Zog! ... Here come one now!”
What Unique to Human EEA?

Human Innovation

- Changed physical environment or how humans interacted with it (e.g., fire, weapons)
- Improved average well-being but created novel risks (e.g., burns/scalds, inattention to snakes)
- Put a premium on independent learning and foresight,
 - especially for recognizing hazards and preventing “accidental” injury and death during core activities

Innovation & hazards require a mind’s eye—imagination, foresight
Cause of Ache Deaths (N, <1971)

<table>
<thead>
<tr>
<th>Age:</th>
<th>0-3</th>
<th>4-14</th>
<th>15-59</th>
<th>60+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>M</td>
</tr>
<tr>
<td>Sex:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congenital/degenerative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Childbirth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accident</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jaguar/snake</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lightning</td>
<td>3</td>
<td>4</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>lost</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>drowned/falls/other</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Homicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sacrificed with adult</td>
<td>14</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>homicide/neglect</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>buried alive/left behind</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>ritual club fights</td>
<td></td>
<td></td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>non-sanctioned murder</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Most are “mistakes” (faulty mind’s eye) during provisioning. Mistakes reverberate.
Cause of Ache Deaths (N, <1971)

<table>
<thead>
<tr>
<th>Age:</th>
<th>0-3</th>
<th>4-14</th>
<th>15-59</th>
<th>60+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex:</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>M</td>
</tr>
<tr>
<td>Illness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congenital/degenerative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Childbirth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accident</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jaguar/snake</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>lightning</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>lost</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>drowned/falls/other</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Homicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sacrificed with adult</td>
<td>26</td>
<td>26</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>homicide/neglect</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>buried alive/left behind</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>ritual club fights</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>non-sanctioned murder</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

- “Accidents” are major opportunity for selection
- Tiny correlation gives sufficient over generations

But why not monkeys too?
Human innovation itself

Smart people make life more complex for the rest of us
(Scott Adam’s “Evolution of Idiots”)

Innovation creates evolutionarily novel hazards
- Cooking/heating with fire, weapons, enclosures, dogs, ladders
One selection mechanism: Migration ratchet

- Imaginators

Innovate to adapt to harsher climates:
- clothing, shelter
- storage, preservation

Relative risk steepens

Mean IQ rises

Bigger consequences

More hazards

More complexity

More innovations
What Killed Differentially by g Level?

- **Not the obvious**
 - Not high-interest, high-probability threats to band’s survival (e.g., starvation, harsh climate)
 - Because the fruits of competence are shared (e.g., meat from hunting)

- **But the “minor” side-effects of core tasks**
 - Myriad low-probability, chance-laden, oft-ignored risks in daily chores (e.g., “accidental” injury)
 - Costs of injury not shared widely

A lesson for today—what are we failing to notice?
Opportunities for Intervention

True, we cannot change intelligence (g)

BUT

Lots of opportunities to help patients and providers
Can Reduce Risk of Error

1. Mind the gap
2. Provide cognitive assistance
3. Reduce task complexity
Reject Passive-Patient Model

Non-adherence = lack of motivation
Reality: Faulty Receipt & Application

Conscientiousness is not enough
Errors rise with lower IQ/g

Not blank slate (misinfo)

Information ➔ Understand ➔ Apply

interface
Need Epidemiology of Patient Error

1. Patients differ in cognitive ability (IQ/g)

2. Health tasks differ in complexity (g loading)

3. Error rates (non-adherence)
 - rise at lower IQ
 - rise with complexity
Matrix of Cognitive Risk
(error rates)

Can predict error if we know:

Distribution of g in groups of patients:
- race
- age
- locale

Distribution of g loadings in sets of tasks:
- preventive care
- chronic disease

- Some errors more dangerous
- But all cumulate

Assess
Audit
Audit cognitive resources
Patients’ own & supplementary

- Patient differences in g
 - Train providers
 - Size, nature, distribution, practical meaning of differences
 - Recognize/communicate across large IQ gaps
 - Create short unobtrusive measure of “literacy”
 - Target pockets of high error
 - Identify options for cognitive scaffolding
 - Tailored instruction, comprehension checks
 - Feedback, monitoring, retraining, reminders, hotlines
 - Auxiliary staff, family

Schools do it, military and employers do it
Audit complexity of patients’ “jobs”

- Task differences in complexity
 - Audit complexity in:
 - Information & instructions
 - Individual treatments, diseases
 - Clinic layout, patient interface
 - Target tasks with:
 - High expected error rates
 - Needless complexity
 - Write job descriptions for chronic diseases
 - Biggest cognitive barriers to adherence
 - Touch-points for intervention to surmount barriers
 - Set priorities for triage

Badly neglected, everywhere
Thank you.