“Environments” Are Genetic, Too

Environmental Effects on Cognitive Abilities by Robert J. Sternberg and Elena L. Grigorenko

Review by Linda S. Gottfredson

Sternberg and Grigorenko offer Environmental Effects on Cognitive Abilities as “a handbook for those interested in the entire range of environmental effects” (p. viii) on cognitive development, because it aims to “integrate what formerly have been very diverse literatures” (p. viii). This edited volume does, in fact, take psychologists a step forward in understanding non-genetic influences when five of its 14 chapters review evidence on various biological insults that depress cognitive development in childhood: malnutrition, environmental pollutants, prenatal exposure to drugs and alcohol, infectious diseases, and radiation.

But the book simultaneously encourages a step backward when it seems to repudiate an essential requirement for inferring environmental effects: research on environments must control for genetic influences. The editors first do not include behavior genetic evidence in the book and then disparage that field’s methods. The book therefore leaves to readers the unspoken job of culling the book’s good evidence from its genetically confounded results. There is enough of the former, however, to reward the effort.

The Step Backward

Environmental Effects on Cognitive Abilities never hints that behavior genetic techniques are among the most powerful for isolating and quantifying environmental influences. Ironically, the editors never alert readers to the behavior genetic evidence on environments that they had showcased in their own 1997 edited volume, Intelligence, Heredity, and Environment, despite describing their new book as “supplement[ing] the chapters in that [earlier edited] book with respect to the specific nature and range of environmental effects” (p. vii). Chapters in the 1997 book had been valuable for illustrating how behavior genetic methods can be used to decipher the partnership between nature and nurture, for example, in the development of language (Pipp-Siegel, Robinson, Bridges, and Bartholomew), of infant social cognition (Reznick), and in creating both stability and change in cognitive development during childhood (Cherny, Fulker, and Hewitt). Another chapter (Jensen) had made progress in parsing behavior geneticists’ startling discovery that environments operate mostly to make family members less alike (so-called non-shared effects) rather than more alike (shared effects).

In contrast, the chapters in Environmental Effects on Cognitive Abilities tend to mention genetic influences only in passing (e.g., Fiese, p. 39), as nonexistent (Ogbu and Stern, p. 6), or as “clearly” irrelevant to the issue at hand (secular rise in IQ; Fernandez-Ballesteros, Juan-Espinosa, and Abad, p. 388). Or they dismiss the nurture-nurture debate as an “entertaining distraction” (Seifer, p. 78) and “psychology’s bad penny” with regard to race (Ramey, Ramey, and Lanzi, p. 85). (The Schale and Zuo chapter may be an exception in attending to genetic confounding, but it is too sketchy to follow.)

Next, Sternberg’s Epilogue implicitly justifies the book’s exclusion of behavior genetic research by explicitly disparaging it. His criticisms apply, however, to all methods of ferreting out environmental effects on cognitive abilities and, I suspect, to virtually all psychological research. For example, its techniques for estimating effects (i.e., heritability) have limits, and IQ measures have no zero point. Sternberg belittles a focus on individual differences themselves (the raw material for behavior genetic analyses) as a “preoccupation” that may be due in large part to “an historical accident” (p. 427), even though many authors in Environmental Effects on Cognitive Abilities share this analytic focus. Ignoring genetic confounds in environmental research is self-defeating, however, because, as the lead chapter (Scarr) in the predecessor book had argued so forcefully, the results of such studies are causally uninterpretable.

Experiences Are Genetic, Too

Why uninterpretable? Partly because both environments and genes affect cognitive development, as Sternberg and Grigorenko’s Preface points out, but also because “environments” themselves tend to be moderately heritable. People’s genetic proclivities often affect their exposure to different physical and social environments, in particular, the experiences they seek out and construct (Scarr, 1996). Summarizing research on the heritability of environments, one textbook (Plomin, DeFries, McClearn, & Rutter, 1997, pp. 203-204) reports that “genetic research consistently shows that family environment, peer groups, social support, and life events often show as much genetic influence as do measures of personality,” which is about 50 percent, on the average.

The environmental factors that the chapters in Environmental Effects on Cognitive Abilities invoke most fre-

Editor’s Note: Jefferson A. Singer served as the action editor for this review.—RJS

ROBERT J. STERNBERG and ELENA L. GRIGOR-ENKO, Department of Psychology, Yale University.

LINDA S. GOTTFREDSON, School of Education, University of Delaware, Newark, Delaware 19716. E-mail: gottfred@email.udel.edu
quently are parental rearing practices because, as several note, large differences in mental ability appear by age two and stabilize soon thereafter. Differences in parenting behavior, however, are partly a response to genetic differences among the children being reared (temperament, interests, abilities, etc.). Analyses of standard measures of early family environments, such as the Family Environment Scale and Home Observation for the Measurement of Environment (HOME), show that differences in children’s rearing conditions (parental warmth, toys provided, etc.) are about 40 percent heritable. Consider, for example, that identical twins reared apart rate their childhood environments as more similar than do fraternal twins reared together, and research that actually observes parent–child interactions provides similar evidence of genetic effects on family environment (Scarr, 1996, p. 219). Moreover, about half the phenotypic correlation between the HOME and children’s IQ is genetic; that is, substantial variation in both HOME environments and IQ can be traced to the same genes (Plomin et al., 1997, p. 261). Only genetically sensitive analyses of family data can isolate the nongenetic environmental effects in this tangled skein.

Behavior genetic research also reveals that social scientists have been looking mostly in the wrong places for enduring nongenetic effects. “Socialization theories” like those on display in the psychosocial-cultural chapters of the book have wrongly presumed that environmental effects make family members more alike and thus magnify differences between families. The truth is actually quite the opposite. Behavior geneticists have now concluded, to their own surprise, that environmental effects “are relatively specific to each child rather than general for all children in a family” (Plomin, DeFries, McClearn, & McGuffin, 2001, p. 305). Moreover, the impact on intelligence of shared factors such as parents’ education and income virtually disappears by adolescence, whereas the heritability of intelligence rises to 60 percent by adolescence and 80 percent by late adulthood in typical Western populations. The story is similar for more specific cognitive skills and achievements (Plomin et al., 2001, pp. 190, 199–201, 298).

The biological insults discussed in Environmental Effects on Cognitive Abilities would seem to have primarily nonshared effects, judging from their specificity of effect depending on the affected individual’s developmental age, current health, intensity of exposure, and perhaps genetic susceptibility. In fact, three of the chapters report studies using siblings as the control group. Jensen and Scarr had speculated in the editors’ 1997 book that most environmental effects on intelligence are, in fact, nonshared biological factors.

Biological Tortoises Versus Sociocultural Hares

The most informative chapters are therefore the five that review evidence on five classes of biological insults (Grantham-McGregor, Ani, and Femald; Bellinger and Adams; Mayes and Fahy; Alcock and Bundy; Grigorenko). Although their authors do not discuss genetics as such, they are careful to consider confounding factors and to stress the importance of experimental or quasi-experimental data and the risks of inferring causal effects from nonexperimental data. They also help provide an interpretive context for the environmental effects by giving prevalence or incidence rates for the various insults, distinguishing the relative magnitude of their effects, and considering the specific physiological and social mechanisms by which the insults probably cause their damage.

Compared with the biological chapters, the seven chapters on family, school, and social class or caste environments less often use experimental data, pay attention to potential confounds, note the often large differences in IQ and outcomes among siblings in the same family (e.g., Murray, 1997), or say anything about how common or how powerful the various putative social ailments and advantages are relative to each other or genetic effects. The psychosocial-cultural chapters nonetheless tend to draw strong conclusions about environmental effects, even when they report far more speculation than empirical data (e.g., Ogbug and Stern), or their data are completely confounded with genetic influences (e.g., Fiese; Seifer). The book’s firmest evidence on psychosocial influences comes from experimental studies on preschool interventions (Ramey et al.) and quasi-experimental studies that compare the cognitive skills of kindergartners and first graders who just met or missed the age thresholds for entering those grades (Christian, Bachman, and Morrison).

The Epilogue (p. 425) opens with Sternberg’s conclusion that “Large numbers of variables have been shown to make a difference. The list seems almost endless and the case for their power irrefutable.” The list is the unintegrated succession of results in the first 12 chapters, because the book lacks the incisive overview (Hunt) and “next steps” chapters (Waldman) that the 1997 volume had. The impression of irrefutable power is created mostly by the catastrophic effects (e.g., profound retardation and limb deformity) of some toxins and by the book’s 13th chapter, which details the large secular increases in IQ scores (Fernandez-Ballesteros et al.). The placement of this otherwise informative chapter in the book’s Conclusion section (Sternberg’s Epilogue being the other entry), together with its authors’ presumption that the secular increases must necessarily be entirely nongenetic, entices readers to leap to the false conclusion that these trends constitute self-evident proof that environmental effects are huge and genetic differences therefore pose few constraints on social engineers. In truth, the yet-unexplained secular increases pose as much of a challenge for nurture enthusiasts as they do for nature enthusiasts (Dickens & Flynn, 2001).
Moving Forward

Although the Epilogue's answer to such seeming paradoxes is to raise doubts about the merits of behavior genetic research, scrutiny of the book's good evidence—which concerns children only—reveals how the different bodies of data actually form a consistent pattern.

The biological insults seem to fall into seven categories in terms of magnitude and permanence of their effects: (a) sometimes catastrophic (e.g., cretinism, microcephaly, death) and not reversible—iodine deficiency, lead poisoning, AIDS, and prenatal exposure to high levels of nuclear radiation, alcohol, and methyl mercury; (b) small to moderate irreversible effects—high levels of postnatal exposure to radiation (nuclear accidents, radiation therapy for leukemia) and infections of the central nervous system (encephalitis), although sometimes only or mostly when accompanied by complications such as seizures (respectively, bacterial meningitis, cerebral malaria); (c) small to moderate effects that are mostly reversible—parasitic infections (e.g., hookworm), short- or long-term severe protein-energy malnutrition, persistent ear infections, low-level prenatal exposure to polychlorinated biphenyls (PCBs), high postnatal exposure to methyl mercury, and iron deficiency; (d) mild and transient effects—colds, flu, short-term hunger; (e) no discernible effects—asymptomatic HIV, viral meningitis, febrile convulsions, and low levels of exposure to radiation or postnatally to PCBs; (f) unclear because effects are confounded with either genetic risk or exposure to other environmental toxins—prenatal exposure to opiates, cocaine, and high levels of PCBs; and (g) insufficient data—low levels of methyl mercury, zinc deficiency, pesticides, and prenatal exposure to marijuana.

All factors in the first set appear to act directly on the central nervous system (CNS) and to alter the architecture of the brain, in most cases during sensitive prenatal stages of brain development. In some cases (e.g., lead), the severity of effects is known to be dose related. The second set of usually milder but still irreversible effects also represent direct assaults to the CNS, but postnatally. Their major effects are often on attention and arousal or working memory.

Whereas the mostly man-made insults in the first two sets are probably more common in industrialized countries, the third set consists mostly of infections and forms of malnutrition that have long bedeviled humankind and which remain prevalent in poor countries. Their mode of action is less clear, but often involves a general stunting of physical growth. They also often have the effect of depressing energy and activity, leading affected children to be nonresponsive and to "functionally isolate" themselves from social stimulation and assistance. When the infections are treated and good nutrition is provided, considerable catch-up growth occurs and normal behavior resumes. We might presume that humans have evolved physiological adaptations to these common biological assaults but not to the more man-made ones.

The particular cognitive processes affected and the degree to which they are affected often vary widely within each of the foregoing three sets of biological insults, depending on the specific biological factor involved (species of pathogen) and the state of the affected individual (e.g., developmental age, nutrition, other infections and exposures), medical complications (convulsions), and sequelae that might affect caregiving (lassitude, irritability). As for the mild, transient, and ubiquitous maladies, they seem more often to afflict and more strongly to affect individuals who are already malnourished or otherwise vulnerable. Their chief effect is apparently to impair attention or motor competence.

The book's discussions of biological insults say almost nothing about academic performance, but we might presume that they affect school performance indirectly by depressing cognitive abilities, reducing attention and arousal, or producing hyperactivity and conduct problems. In fact, the latter two effects—inducing too little or too much activity—appear to be the more commonly demonstrated ones.

Turning to the psychosocial chapters, they reveal nothing about parental effects, because all their data are confounded with genetic influences. The experimental and quasi-experimental data in two chapters (Christian et al.; Ramey et al.) do suggest, however, that amount of instruction raises mean levels of performance on a variety of ability and achievement tests. Effects are largest among children with the lowest average mental ages (lower IQ, lower social class, chronologically younger), but none may be permanent. Longitudinal data for genetically and socially at-risk children show that the IQ gains relative to peers tend to disappear with advancing age and grade level. In this respect, they are probably most similar to the third set of biological effects, which are small to moderate and mostly reversible.

The schooling chapter reports no follow-up data for the increases in narrower skills and abilities from additional schooling it documented, but we might suspect that these increases are more sustainable. The reason is that other research shows them to be somewhat less hentable, more trainable, and more subject to shared effects. Narrower, more trainable skills tend to be less generalizable, however, and lack of generalizable effects is just what Christian et al. found: "The nature, timing, and magnitude of schooling effects are surprisingly domain specific and appear to depend, in part, on instructional emphases operating in the classroom" (p. 326). (Some of the specificity may be artifactual, owing to probable differences in tests' g loading as well as sampling and measurement error.)

The environmental effects reported in Environmental Effects on Cognitive Abilities do not conflict with the behavior genetic evidence, even if we assume that they are substantially shared family effects, because genetic
research shows sizeable shared as well as nonshared environmental effects on childhood IQ. The real puzzle is why, in longitudinal studies thus far, shared effects disappear with age, completely for IQ and mostly for specific abilities and academic achievement. Are large, enduring effects on cognitive performance rare and the smaller and more common ones usually reversed? Might recovery—or enhancement of abilities—be correlated with genotype, and hence differ among family members?

References

How Sturdy Is the Empirical Groundwork of Clinical Relaxation?

Advances in ABC Relaxation: Applications and Inventories
by Jonathan C. Smith

Review by Frederick J. Heide

Two decades ago while coleading a stress-reduction group in graduate school, something happened that launched a revolution in my thinking about both relaxation and therapy in general. On the first day of the group we had guided participants through a simple progressive muscle relaxation exercise. All praised it passionately. Delighted with our success, we sent them home with the standard instructions to practice twice daily. The shocker came at the start of the second session. In a whole week, not a single participant had devoted so much as a minute to practicing relaxation of any sort.

This result may not have surprised a psychoanalyst, but our cognitive-behavioral training at Pennsylvania State University had not prepared us for it. After all, we had studied the technique in depth with my thesis advisor Tom Borkovec, coauthor of a seminal book on the subject (Bernstein & Borkovec, 1973). What had gone wrong? In good cognitive-behavior therapy fashion we upped the ante, handing out schedules on which our clients were supposed to indicate when they practiced. It was only when this too failed that we began to grasp a fundamental truth. People could desire desperately to relax and even relish the experience, yet still avoid it because of how they believed it would disrupt their lives. Until these concerns were honored, clients would shun even the most thoroughly validated techniques.

This same insight forms a major branch of Jonathan Smith's extensive work on relaxation at Roosevelt University, where he and his students have now gathered data on over 9,000 participants. De-emphasizing the comparative studies of technique that dominated relaxation research in earlier decades, these investigators have instead focused recently on identifying specific conscious experiences (which they term R-States) hypothesized to underlie the effects of a wide variety of relaxation methods. Through factor-analytic studies, they have boiled down the hundreds of experiences people report during relaxation into 15 major R-States. The researchers have then sought to order these states into a coherent framework and trace their connections with a host of dispositions, motivations, beliefs, and concerns people may have about relaxation, including concerns that our clients in that stress group two decades ago had raised to explain their refusal to practice the techniques we were so generously supplying. By figuring out how all these variables tie together, Smith and his collaborators hope both to characterize the universal processes behind all relaxation methods and to better tailor methods to specific individuals.

The latest results of this project are detailed in Advances in ABC Relaxation: Applications and Inventories, edited by Smith. The volume is designed to aid both clinicians and researchers. Practical suggestions to therapists based on the relaxation studies at Roosevelt University are.

Jonathan C. Smith, Stress Institute, School of Psychology, Roosevelt University.

Frederick J. Heide, Alliant International University, 1005 Atlantic Avenue, Alameda, California 94501. E-mail: fheide@alliant.edu