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1 Introduction

In this discusison, we explore aspects of describing how systems change in
time from an initial state to a final state. Effectively, we are interested in
that non-equilibrium regime during which system properties change.

System properties change in response to perturbations from equilibrium
(external forces)

System properties that can change include: 1). matter(diffusion), 2).
energy (temperature), 3). momentum (viscosity)

2 Fluxes

Quantity transferred through a given area per unit time
Flux occurs because of a spatial and time-varying gradient of an associated
system property.
Flux occurs in opposition to spatial gradient
Flux continues until the gradient is nullified and equilibrium is reached.
Flux continues until external force stop

The most general relation for a flux in the x-direction is:

Jx = −α
d(property)

dx

Jx =
(

1
Surface Area

)(
d(property)

dt

)
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This relates a flux to a gradient of a property (not specifically defined
to be anyting at this point)

Flux is a linear response; this treatment assumes a perturbative dis-
placement from equilibrium.

It can be shown (Engel and Reid, Section 34.2) that the total flux in the
x-direction (considering one-dimensional diffusion) across a surface is:

J = − D

(
d Ñ

d x

)
Fick′s F irst ”Law”

where the diffusion constant, D, is the proportionality constant (or con-
ductance of mass) given in the earlier general expression. The diffusion
constant is related to microsopic properties of matter, namely the particles
comprising the fluid, through the relation:

D =
1
3
〈ν〉 λ

where λ is the mean free path of the particle. The average speed, 〈ν〉, is
determined from our previous kinetic theory analysis.

Having determined the flux across a plane arising from a gradient of matter
(i.e., concentration gradient), we now address the evolution of the con-
centration as a function of time and space (location). It is not difficult to
accept that the flux generated by the initial concentration gradient will give
rise to a varying concentration gradient. Thus, not only will concentration
vary with location, but it will vary also with time. Thus, Ñ = Ñ(x, t) in
one dimension. The partial differential equation that governs this process is
given by the diffusion equation, also known as Fick’s Second ”Law”:

∂ Ñ(x, t)
∂ t

= D
∂2Ñ(x, t)

∂ x2

The diffusion equation can be solved using standard techniques of partial
differential equations coupled with initial conditions, boundary condi-
tions to yield a solution for the particle number density as a function of
time and location (along the x-direction for the one-dimensional case). For
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this solution, the initial condition is that No particles are positioned in a
plane at x = 0:

Ñ(x, t) =
No

A

1√
4π D t

e
−x2

4Dt

Ñ(x, t)
(No / A)

=
1√

4π D t
e
−x2

4Dt

If we consider the ratio on the left-hand side of the last equation to be
a probability of observing a particle within a small one-dimensional ”vol-
ume” element, dx centered at x, we can write the continuous probability
distribution for one-dimensional diffusion as:

P (x, t) dx =
1√

4π D t
e
−x2

4Dt dx

The root-mean-square displacement, xrms =
√
〈x2〉, is determined as:

√
〈x2〉 =

√
2 D t

2.1 Isotropic Diffusion in Two- and Three-Dimensions

The continuous probability distribution for two-dimensional, isotropic
diffusion (motion in the two dimensions is uncorrelated) is:

P (r, t) dr =
1

2 D t
e
−r2

4Dt r dr

The continuous probability distribution for three-dimensional,
isotropic diffusion (motion in the three dimensions is uncorrelated) is:

P (r, t) dr =
4 π

(4 π D t)3/2
e
−r2

4Dt r2 dr
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3 Diffusion as a Random Walk

We end by a discussion of the diffusion as a random process, or random
walk. This suggests one can approach the problem from a statistical per-
spective, invoking the formalism of probability distributions, large num-
bers, and statistical averages. (Aside: the process we’ll consider is actually
stochastic and such processes are of immense importance in the workings
and understanding of the securities markets that are so important to our
daily lives).

A random walk process is generally defined as one for which there is no cor-
relation between sequential steps; i.e., there is no memeory. Based on the
discussion of diffusion, and the motion of a particle in between collisions,
after which there is no memory of the collision, fits this random walk process.

Let’s consider a one-dimensional random walk along the x-dimension. Here
are the rules:
1. take one step in either positive or negative x-direction 2. there is no bias
to which direction one goes from the current position
The question we pose:

What is the probability of reaching position X (equivalently
having travelled a distance X) from the origin after having taken
∆ total steps?

Some definitions: ∆ is the total number of steps
∆− is the number of steps in the negative x direction
∆+ is the number of steps in the positive x direction
X = ∆+ −∆−
∆ = ∆+ + ∆−

The weight of position X is essentially the number of ways of reaching
X given ∆ total steps with ∆ equal to the sum of the positive and
negative steps, and X being the difference.

Without the constraint of having to arrive at X given the total number of
steps, the total number of ways of executing ∆ steps, each with only 2 pos-
sibilities, is 2∆.
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The probability of reaching position X then, is simply the ratio:

P (X) =
WX

Wtotal
(1)

P (X) =
WX

2∆
(2)

What is WX? (Recall: The number of ways of arriving at X given a total of
∆ steps)

WX =
∆!(

∆+X
2

)
!
(

∆−X
2

)
!

(3)

The probabiilty is then:

P (X) ∝ e
−X2

2∆ (4)

Looking back to the diffusion equation solution, we see similarities; the par-
ticle density, Ñ is also proportional to a Gaussian distribution function.
Equating the two results, we can draw some analogies.

x2

4Dt
=

X2

2∆
(5)

Note how the question for the random walk example was posed;
what is the probability of arriving at X after a total number of
steps. The total number of steps can be plausibly reasoned to be
some total time, based upon some characteristic time per step!

Ascribe realistic interpretation for ∆ and X:
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∆ =
t

τ
(6)

x = (X)(xo) (7)

These definitions give for the diffusion constant:

D =
x2

o

2τ
Einstein− Smoluchowski Equation (8)

What is the difference between the random walk timestep, τ for benzene
and argon?
What is obtained for the diffusion constant if the mean free path and aver-
age time between collisions (derive from kinetic theory) are applied in the
Einstein-Smoluchoswki expression for the diffusion constant?
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