
Diatomic Molecules

12th May 2009

1 Hydrogen Molecule: Born-Oppenheimer Approx-

imation

In this discussion, we consider the formulation of the Schrodinger equation
for diatomic molecules; this can be extended to larger molecules. First we
will consider the separation of the total Hamiltonian for a 4-body prob-
lem into a more tractable form. We will afterward discuss the molecular
wavefunctions.

For the hydrogen molecule, we are concerned with 2 nuclei and 2 elec-
trons. The total Hamiltonian, representing the total energy operator, is:
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Let’s define:
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• NOTE: For the present purposes, ĤN is only a function of ~R and
only depends on the coordinates of the nuclei. It is the bf kinetic
energy operator of the nuclei.

• Ĥelectronic(~r, ~R) is the electronic Hamiltonian.

Thus,

Ĥ(~r, ~R) = ĤN (~R) + Ĥelectronic(~r, ~R)

To solve the full Schrodinger equation for electrons and nuclei, one has
to make approximations. This is because, as in the hydrogen atom case,
there are non-radially symmetric interactions between electrons, nuclei, and
electrons-nuclei. The first approximation we make is the Born-Oppenheimer

• Due to the large relative difference in electronic and nuclear masses,
a first approximation is to assume that the time scales of motion of
electrons and nuclei are separable. Effectively, the nuclei are at rest
relative to the electrons; as the nuclear configuration changes, the
electronic degrees of freedom “relax instantaneously”. This is also
referred to the adiabatic approximation. This is a good assumption
for most cases.

• Because we consider the separation in time scales of nuclear and elec-
tronic degrees of freedom, we assume a separable ansatz of the form:

Ψ(~r, ~R) = ψel(~r, ~R) ψN (~R)

Thus, if we consider the usual approach to setting up the Schrodinger equa-
tion:

[

ĤN (~R) + Ĥelectronic(~r, ~R)
]

ψel(~r, ~R) ψN (~R) = Eψel(~r, ~R) ψN (~R)

ĤN (~R)ψel(~r, ~R) ψN (~R) + Ĥelectronic(~r, ~R)ψel(~r, ~R) ψN (~R) = Eψel(~r, ~R) ψN (~R)

ψel(~r, ~R)ĤN (~R)ψN (~R) + ψN (~R)Ĥelectronic(~r, ~R)ψel(~r, ~R) = Eψel(~r, ~R) ψN (~R)

ψel(~r, ~R)ĤN (~R)ψN (~R) + ψN (~R)Eel(~R)ψel(~r, ~R) = Eψel(~r, ~R) ψN (~R)
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[ĤN (~R) +Eel(~R)]ψN (~R) = EψN (~R)

Thus, we have arrived at a Schrodinger eqution for just the nuclear coor-
dinates (degrees of freedom). What we see is that apart from the kinetic
energy operator, there is an energy depending on only the nuclear coordi-
nates, Eel(~R). We see that this is related to the energy (for fixed nuclear
coordiantes) of the electronic Schrodinger equation:

Ĥel(~r, ~R)ψel(~r, ~R) = Eelψel(~r, ~R)

If one repeats the calculation of the electronic wavefunctions and energies
for many separations of the nuclear coordinates, one obtains a parametric
dependence of the electronic energy on the nuclear positions. This looks
like:
Solution of Schrodinger equation for each value of R leads to a set of eigen-
values Eel,n(~R) and eigenfunctions ψel,n(~r, ~R) The minimum energy corre-
sponds to the most stable nuclear geometry.

The recipe is thus:

• fix nuclear coordinates.

• solve Schrodinger equation for fixed coordinate geometry

• obtain eigenfunctions and eigenvalues; the eigenvalues and eigenfunc-
tions have parametric dependence on nuclear coordinates

• solve for nuclear part of ansatz using Eel(~R)

2 Solving the nuclear Schrodinger Equation

From the last section, we saw that the nuclear Schrodinger equation is simply

[ĤN (~R) +Eel(~R)]ψN (~R) = EψN (~R)

The kinetic energy operator for the nuclear problem can be separated into
a center of mass coordinate and an internal coordinate (the reduced mass
for instance). Thus, we still have 2 coordinate, but they are just taken to
be another set with the same information. Thus, the kinetic part can be
written as:
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Thus, the nuclear Schrodinger equation becomes
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Now, since the total Hamiltonian is separable int center of mass and inter-
nal coordinates, we again pose the separable ansatz as:

ψN (~R) = ψtranslational (~RCOM )ψint(R, θ, φ)

E = Etranslational +Eint

This allows us to obtain (show yourself) two separate Schrodinger equations
for center of mass and internal coordinates as:
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ψint(R, θ, φ) = Eintψint(R, θ, φ)

The first equation, for the center of mass, gives solutions of the form of a
free particle or PIB; doesn’t give much information on molecular nature of
molecule. The second equation is the one we are concerned with now.
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ψint(R, θ, φ) = Eintψint(R, θ, φ)

We can now separate the intramolecular wavefunction simply as :
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ψint(R, θ, φ) = χ(R)ψrotational(θ, φ) = χ(R)Y m
l (θ, φ)

Eint = Eelec +Evib +Erot

Consider the angular momentum part of the intramolecular Hamiltonian:

h̄2

2µ

L̂2(θ, φ)

R2
ψint(R, θ, φ) = χ(R)

h̄2

2µ

L̂2(θ, φ)

R2
Y m

l (θ, φ) = χ(R)
L(L+ 1)

2µR2
Y m

l (θ, φ)

This gives for the “R” dependent Schrodinger equation for the nuclear in-
tramolecular motion:
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Now we are left with an equation in R. We can solve this numerically by
computing E(R) for various R values. This is cumbersome (though valid).
We can also take another approach. First, let’s consider expanding E(R) in
a Taylor expansion about some equilibrium separation Re as:

E(R) = E(Re) + (R−Re)
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where x = R − Re. Substituting the expressin for E(R) and making the
transformation to a new function:

ψvib = χ(R) R

we obtain the following Schrodinger equation:

−
h̄2

2µR2
R
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∂R2
+
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Since x = R−Re and the derivatives with respect to R and x are equivalent
under this transformation, we can take the derivatives with respect to R as
with resepct to x. Also, multiplying through by “R”, we obtain:
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−
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This is exactly the Schrodinger equation for the 1-D quantum harmonic
oscillator. We have seen solutions of this type of equation in the form of
Hermite Polynomials. The vibrational energy is simply:

Evib =

(

n+
1

2

)

h̄

√

k

µ

Some further comments:

E(Re) = Eelec(Re)

J(J + 1)

2µR2
e

= Erot

Eint = Eelec +Evib +Erot

The total energy is thus a sum of electronic, vibrational, and rotational
energies. Under the harmonic oscillator approximation for a diatomic
molecule, the energy for vibrational levels resemble the harmonic oscillator
energy levels.

The wavefunction is a product of electronic and nuclear wavefunctions,
with the nuclear function itself a product of translational, vibrational, and
rotational wavefunctions:

ψ = ψel(r,R)ψvib(R)ψrot(θ, φ)ψtrans(RCOM )

Thus, we have considered first-order model of a diatomic and seen the en-
ergies and wavefunctions.
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3 Anharmonic Effects of molecular vibrations

Real molecules are not always well-approximated as harmonic oscillators
(particularly at larger separations, near the bond-breaking limits). Thus, the
harmonic potential description of a diatomic does not take into consideration
states close to dissociation.
The Morse potential (Figure 19.6 , Engel and Reid) shows a description of a
potential that is anharmonic about the equilibrium nuclear separation, Re.
This is formally defined as:

V (x) = De

[

1 − e−α(x−x0)
]2

• De is the dissociation energy referenced to the zero of the potential

• α =
√

k
2De

• The force constant, k, for this potential is determined by the general

prescription for a force constant, namely k = d2V (x)
dx2 |x=xe

• The bond energy is referenced to the quantum mechanical ground
state of the oscillating pair

The energy levels for the Morse potential are:

En = h̄ω0
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NOTE: in the handbook by Teplyakov and Dybowski, the anal-

ogous equation is taken to higher order terms; it is given by:
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(
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Higher order perturbative terms can be included in the approximation of
the vibration to yield higher-order dependence of the energy on the quantum
number “n” as seen in the previous equation.
The parameters for ωe, xe are given in Table 12.1 in Teplyakov and Dy-
bowski.

Selection Rule for molecular vibration in absence of rotational

coupling : ∆n = ±1
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4 Rigid Rotor Approximation with Vibrational Dis-

tortion

4.1 Simple Case: no vibrational distortion

From the above discussion on the nuclear Schrodinger equation, we observe
that in the absence of coupling of vibrational and rotational motions, the
rotational energy of the diatomic is simply:

Erot =
h̄2

2µR2
e

J(J + 1) =
h2

8π2µR2
e

J(J + 1) = h Be J(J + 1)

Selection for Rigid Rotor Approximation, no coupling to vibra-

tions: ∆J = ±1.

• For absorption: ∆J = +1:

∆E+ =
h̄2

2µR2
e

[(J + 1)(J + 2) − J(J + 1)] = 2hB(J + 1)

• For emission: ∆J = −1:

∆E
−

=
h̄2

2µR2
e

[(J − 1)(J) − J(J + 1)] = −2hBJ

• the energy differences are not the same because the energy

levels are not equally spaced.

4.2 More complex case: vibrational distortion

For the case of vibrational effects on the rotational dynamics, the energies
for a given vibrational-rotational state are given as:

EJ,mJ
= h Bn J(J + 1) J = 0, 1, 2, 3, 4 mj = 0,±1,±2, ...,±J gJ = 2J + 1

With the last expression are associated some constants that are defined as :

Bn = Be −

(

n+
1

2

)

αe Be =
h

8π2 Ie
Ie = µR2

e

The parameter αe is given in Table 12.1 of Teyplyakov and Dybowski.
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4.3 Vibration-Rotation Coupling, Centrifugal Distortion, and

Electronic Energy

The energy for a diatomic including the various contributions arising from
the effects just discussed is:

En,l = Eelectronic +Evibrational +Erotational

= −De +
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)
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)2
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e

ω2
e
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