
Mathematics of Linear Algebra

28th January 2010

Elements of linear algebra play a dominant role in chemical applications.
For the purposes of undergraduate physical chemistry courses, quantum me-
chanics and select areas of thermodynamics can be formulated in terms of
the elements of linear algebra. Thus, we present here a brief review of
concepts of linear algebra. we first begin with vectors in Cartesian space
(which everyone can conceptualize easily), and then we will generalize to
generic vector spaces in anticipation of the use of linear algebra in quan-
tum mechanics (think about how we would consider a function in quantum
mechanics in terms of vectors?).

1 Linear Algebra in Cartesian Space

1.1 Vectors and Operations

Vectors in Cartesian space are treated as:

~a = ~e1a1 + ~e2a2 + ~e3a3

=
∑

i ~eiai

The vectors ~ei are termed a basis, and they represent a complete set of
elements that can be used to describe all vectors. We are normally used to
seeing them as the coordinate -x, -y, -z axes, but they can be any general
mutually perpendicular unit vectors. Then, any vector in Cartesian
space (3-space) can be written as a linear combination of the general basis
vectors, εi, i = 1, 2, 3.

~a = ~ε1a
′

1
+ ~ε2a

′

2
+ ~ε3a

′

3

=
∑

i~εia
′

i

Note that the coefficients have special meaning, and this will be reserved for
later discussion.
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A vector is thus represented by the three components with respect
to a basis. Using the 2 general basis presented above, we can write a vector
~a as a column matrix as:

~a = a =





a1

a2

a3





~a
′

= a
′

=





a
′

1

a
′

2

a
′

3





• The scalar or dot product of two vectors ~a and ~b is defined as

~a ·~b = a1b1 + a2b2 + a3b3 =
∑

i

aibi

• Note that

~a · ~a = a2

1
+ a2

2
+ a2

3
= |~a|2

Now let’s use our general definition of vectors to define the scalar prod-
uct.

~a ·~b =
∑

i

∑

j

~ei · ~ejaibj

Let’s expand this out. What do we obtain?
In order for the full sum to equate to the operational definition of the dot
product, we arrive at a condition we have to require of the basis vectors.
This is namely:

~ei~ej = δij = δji

=
1 if i = j

0 otherwise

This is one way to state that the basis vectors are mutually perpen-
dicular (orthogonal) and have unit length (normal). They are or-
thonormal.

What is the projection of a vector ~a along one of the basis vectors ~ej ?
The scalar product (dot product) is the operational equivalent of projecting
a vector onto another vector (in this case projecting ~a onto ~ej ) as:
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~ej · ~a =
∑

i

~ejai =
∑

i

δijai = aj

We have used the orthonormality condition in the last step.
Employing the concept of the scalar product as a projection of a vector

onto a vector, we can write the general form of a vector as:

~a =
∑

i ~ei~ei · ~a

= 1 · ~a

The notation,

1 =
∑

i ~ei~ei

is the unit dyadic. A dyadic is an entity that when dotted into a vector,
leads to another vector. Ordinarily, a dot product of two vectors leads to a
scalar. This is the distinction, and an important one.

1.2 Matrices, Operators, Operations

In the last section (Section 1), we defined vectors and relations between
them. Keep in mind that each vector is defined in terms of more fundamental
units of the relevant space. In Cartesian space, these are the 3 orthonormal
coordinate axes. Let’s consider an abstraction called an operator which
acts, or operates, on a vector, and results in another vector.

Let’s define an operator Ô as an entity which when acting on a vector ~a
converts it into a vector ~b,

Ô~a = ~b

The operator is said to be linear if for any numbers x and y,

Ô(x~a+ y~b) = xÔ~a+ yÔ~b

A linear operator is completely determined if its effect on every possible
vector is known. Since any vector can be represented as a linear combination
of basis vectors, the operator is nicely determined by its affect on the basis.
Since the operator acting on a basis vector is another vector that can be
represented as a linear combination of the basis vectors, we can write:
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Ô~ei =

3
∑

j=1

~ejOji (1)

(2)

i = 1, 2, 3

The numberOji is the component of the vector Ô~ei along the basis vector
~ej . The operator can thus be represented as a matrix:

Ô =





O11 O12 O13

O21 O22 O23

O31 O32 O33





The nomenclature one needs to be aware of is that the matrix repre-
sentation of the operator Ô in the basis ~ei is given by the matrix just
defined immediately above. This is an important connection. The matrix
representation completely specifies how the operator acts on any arbitrary
vector since this vector can be expressed as a linear combination of the basis
vectors.
If we have the matrix representions of two operators, we can determine the
matrix representation of an operator that is the product of the two known
operators as:

Ĉ~ej =
∑

i ~eiCij

= ÂB̂~ej

= Â
∑

k ~ekBkj

=
∑

ik ~eiAikBkj

Thus,

Cij =
∑

kAikBkj

This last expression is the definition of matrix multiplication, so we see that
the matrix representation of Ĉ is the product of the matrix representation
of the two operators Â and B̂.

The order in which two operators or 2 matrices are multiplied is crucial.
In general, two operators or two matrices do not commute. To understand
the concept of observable properties in the context of quantum mechanics,
we introduce the idea of a commutator of two operators or matrices as:
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[

Â, B̂
]

= ÂB̂ − B̂Â
[

Âmatrix, B̂matrix

]

= ÂmatrixB̂matrix − B̂matrixÂmatrix

The anticommutator is analogously defined as:

[

Â, B̂
]

= ÂB̂ + B̂Â
[

Âmatrix, B̂matrix

]

= ÂmatrixB̂matrix + B̂matrixÂmatrix

1.3 More on Matrices

Since we have introduced vectors, operators, and matrices in the context
of 3D space, we begin to generalize these results. A general matrix with N
rows and M columns (an NXM matrix) is represented as the familiar:

A =











A11 A12 · · · A1M

A21 A22 · · · A2M
...

... A1M

AN1 AN2 · · · ANM











If the N = M , the matrix is square. As we have seen, matrix multipli-
cation of an NXM and MXP matrix is

Cij =
∑M

k=1
AikBkj i = 1, · · · , N ; j = 1, · · · , P

The set of M numbers ai (i=1,...,M) can be represented as a column
matrix:

a =











a1

a2

...
aM











We note that for an NXM matrix, A,

Aa = b

(3)

and b is a column matrix with N elements,
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bi =

M
∑

j=1

Aijaj i = 1, 2, ....N

The adjoint of an NXM matrix A is an MXN matrix with elements
defined as:

(

A†
)

ij
= A∗

ji

where the A∗
ji notation signifies that we are taking the complex con-

jugate of the matrix elements of A and interchanging rows and columns.
This interchange is known as the transpose if the elements of the matrix
are real (show yourselves this).
The adjoint of a column matrix is a row matrix with the complex conjugates
of the elements of hate column matrix:

a =











a1

a2

...
aM











a† =
(

a∗
1

a∗
2

a∗
3

· · · a∗M
)

We can determine the product of the two column matrices just described
as (note each has dimension of M):

a†b =
(

a∗
1

a∗
2

a∗
3

· · · a∗M
)











b1
b2
...
bM











=
∑M

i=1
a∗i bi

NOTE: If a and b are real and M = 3, we obtain the 3D scalar product
of two vectors.

Here we list some useful properties relevant to square matrices (NXN).

• A diagonal matrix has zero off-diagonal elements: Aij = Aii δij

• The trace of a matrix is the sum of its diagonal elements trA =
∑

i Aii
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• The unit matrix is 1A = A1 = A. where (1)ij = δij

• The inverse of a matrix is such that A−1A = AA−1 = 1

• A unitary matrix is one whose inverse is its adjoint A−1 = A†

• A Hermitian matrix is self-adjoint A† = A

• A real Hermitian matrix is symmetric

2 Generalization to N-Dimensional Complex Vec-

tor Spaces

We have outlined some fundamental ideas of 3-dimensional vector spaces
familiar to everyone. For laying some of the conceptual foundations of
quantum mechanics, we now consider generalizing those ideas to spaces of
N-dimensions. We will also introduce Dirac’s convenient bra/ket notation
for representing vectors.

By analogy to 3 basis vectors in 3-d space, there are N basis vectors in
N-dimensional complex vector spaces. They are mutually orthogonal and
normalized, hence orthonormal. We represent the basis ei (i = 1, · · · , N) by
the symbol | i〉. These are the ket vectors, or kets.

A general vector is now written:

| a〉 =

N
∑

i=1

| i〉ai

This is a generalization of what we have seen for the simple N = 3 case
above. The vector is completely described once we supply the N ai that
give the projection of the vector onto the N basis vectors of the space.

We can write the matrix form of the vector as:

a =











a1

a2

...
aN











The adjoint of the column matrix is a row matrix:

a† = (a∗1 a
∗
2 · · · a∗N )

The abstract bra vector 〈a | is that whose matrix representation is a†.
The scalar product between bra and ket is defined as:
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〈a || b〉 = 〈a | b〉 = a†b

= (a∗
1
a∗

2
· · · a∗N )











b1
b2
...
bN











=
∑N

i=1
a∗i bi

Keep in mind, the square of the length of a N-dimension vector is:

〈a | a〉 =

N
∑

i=1

a∗i ai =

N
∑

i=1

|ai|
2

We can put forth similar mathematical statements for bra vectors:

〈a |=
∑

i

a∗i 〈i |

The scalar product is then:

〈a | b〉 =
∑

j

∑

i

a∗i 〈i | j〉bj

For this to be equivalent to our notion of a scalar product, what result
naturally arises from the last expression?

〈i | j〉 = δij

This last is a statement of orthonormality of the basis.

2.1 Projections, Completeness, Operators

The projection elements of a vector onto the basis vectors are determined
as we have seen before:

〈j | a〉 =
∑

i

〈j | i〉ai =
∑

i

δjiai = aj

〈a | j〉 =
∑

i

a∗i 〈i | j〉 =
∑

i

a∗i δij = a∗j

Now we can determine the completeness relations:
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| a〉 =
∑

i

| i〉ai =
∑

i

| i〉〈i | a〉

〈a |=
∑

i

a∗i 〈i |=
∑

i

〈a | i〉〈i |

Thus, we obtain the completeness relation for the basis:

1 =
∑

i

| i〉〈i |

This is a powerful way to derive many useful relations in quantum mechanics.
Keep in mind that that the result of the summation is a scalar.

An operator can be defined as an entity that acts on a ket to convert it
to another ket:

Ô | a〉 =| b〉

The operator is completely determined if we know what it does to the
basis | i〉 :

Ô | i〉 =
∑

j

| j〉Oji =
∑

j

| j〉 (O)ji

O is the matrix representation of the operator Ô in the basis | i〉. The
matrix elements are determined as:

〈k | Ô | i〈=
∑

j

〈k | j〉 (O)ji =
∑

j

δkj (O)ji = (O)ki

What is an alternate way to obtain the elements of the matrix represen-
tation O of the operator Ô

Ô | i〉 = 1Ô | i〉 = sumj | j〉〈j | Ô | i〉 = sumj | j〉

Thus

〈| Ô | i〉 = (O)ji = Oji

Let’s consider another example of the usefulness of Dirac notation as well
as the completeness of a basis. Take the matrix representation of a product
of operators:
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〈i | Ĉ | j〉 = (C)ij = 〈i | ÂB̂ | j〉 = 〈i | Â1B̂ | j〉

=
∑

k

〈i | Â | k〉〈k | B̂ | j〉

=
∑

k

(A)ik (B)kj

The action of an adjoint of an operator acting on bra/ket vectors is
analogous to the action of the vector as follows:

Ô | a〉 =| b〉

〈a | Ô† = 〈b |

Show that:

〈i | Ô† | j〉 =
(

O†
)

ij
= 〈j | Ô | i〉∗ = (O∗)ji

Hermitian operators are self-adjoint:

Ô = Ô†

3 Change of Basis

We have introduced the idea of a basis. Recall that the choice of basis is not
unique. We now consider how to convert a representation of a vector in one
basis to its representation in another basis. This is relevant because certain
operators may not have diagonal matrix representations in one basis, but we
can transform the matrix to another basis, one in which the representation is
diagonal. This is quite useful. This requires finding the relationship between
the two bases. We now turn to this.

Consider that we have two bases | i〉 and | α〉. We know:

〈i | j〉 = δij (4)
∑

i

| i〉〈i |= 1

〈α | β〉 = δαβ (5)
∑

α

| α〉〈α |= 1
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Since the completeness relations hold, we can represent any ket vector in
the basis | α〉 as a linear combination of kets in the basis | i〉 and vice versa.
Thus,

| α〉 = 1 | α〉 =
∑

i

| i〉〈i | α〉 =
∑

i

| i〉Uiα =
∑

i

| i〉(U)iα

The elements of the transformation matrix, U, are evidently:

〈i | α〉 = Uiα = (U)iα

The analogous relation for representing the | i〉 basis in the | α〉 basis is:

| i〉 = 1 | i〉 =
∑

α

| α〉〈α | i〉 =
∑

α

| α〉U∗
iα =

∑

α

| α〉(U†)αi

where,

〈α | i〉 = 〈i | α〉∗ = U∗
iα = (U†)αi

NOTE Because of the way U is defined, 〈α | i〉 6= Uαi !
We now show that an important property of this transformation matrix

U is that is is unitary, U−1 = U†.

δij = 〈i | j〉

=
∑

α

〈i | α〉〈α | j〉

=
∑

α

(U)iα(U†)αj

= (UU†)ij

This last is just another way of saying:

1 = UU†

This is just the definition of a unitary matrix!. We can start with 〈α | β〉 =
δαβ relation to arrive at

1 = U†U
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Now let’s go back and see how we can relate the matrix representation of
2 operators in the 2 different bases. This has relevance to the Eigenvalue
problem of the next section, as well as to quantum mechanics as well.

Ô | i〉 =
∑

j

| j〉〈j | Ô | i〉 =
∑

j

| j〉Oji

Ô | α〉 =
∑

β

| β〉〈β | Ô | α〉 =
∑

β

| β〉Ωβα

This obviously suggests:

〈j | Ô | i〉 = Oji

〈β | Ô | α〉 = Ωβα

To find the explicit relationship between O and Ω,

Ωαβ = 〈α | Ô | β = 〈α | 1Ô1 | β〉

=
∑

ij〈α | i〉〈i | Ô | j〉〈j | β〉

=
∑

ij(U
†)αi(O)ij(U)jβ

Thus,

Ω = U†OU

O = UΩU†

This shows that the matrix representations of the operators in the two bases
are related by unitary transformation. The importance of these transforma-
tions is that any Hermitian operator whose matrix representation
in one basis is not diagonal, it is always possible to find another
basis in which the matrix representation is diagonal

Ωαβ = ωαδαβ

Problem Show that the trace of a matrix is invariant under a unitary
transformation, that is

Ω = U†OU

then show that trΩ = trO.
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4 The Eigenvalue Problem I: Definition

The Schroedinger equation is an eigenvalue problem. Here we discuss what
this is. When an operator acts on a ket vector | α〉, the result is in general
another vector that is distinct from the original. If the result is simply a
constant times the original vector, we have:

Ô | α〉 = ωα | α〉

and we state that | α〉 is an eigenvector of the operator Ô with an
eigenvalue ωα. We can choose the eigenvectors to be normalized (〈α | α〉 =
1).

The eigenvalues and eigenvectors of Hermitian operators (Ô = Ô†) have
useful properties that are exploited in quantum mechanics (or rather fit
nicely for the purposes of quantum treatment of matter):

• The eigenvalues of a Hermitian operator are real.

ωα = 〈α | Ô | α〉 = 〈α | Ô† | α〉 = 〈α | Ô | α〉∗ = ω∗
α

For this to hold, the eigenvalues have to be real.

• The eigenvectors of a Hermitian operator are orthogonal

Ô | β〉 = ωβ | β〉

We also have the adjoint relation:

〈β | Ô† = 〈β | ω∗
β

〈β | Ô = 〈β | ωβ

(6)

Because of the Hermitian property of O :

〈β | Ô | α〉 − 〈β | Ô | α〉 = (ωβ − ωα)〈β | α〉 = 0

Since we take the eigenvalues to be non-equivalent for the non-degenerate
case, we see that the non-degenerate eigenvectors are orthogonal.
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5 The Eigenvalue Problem II: Diagonalization

The matrix representation of a Hermitian operator in an arbitrary basis
| i〉 is generally not diagonal. However, its matrix representation in the basis
formed by its eigenvectors is diagonal. To show this:

Ô | α〉 = ωα | α〉 eigenvalue equation

〈β | Ô | α〉 = ωα 〈β | α〉

〈β | Ô | α〉 = ωα δα β

Thus, we pose the following problem as an eigenvalue problem:
Given the matrix representation of a Hermitian operator Ô in the or-

thonormal basis | i〉, i = 1, 2, · · · , N we wish to find the orthonormal basis
| α〉, α = 1, 2, · · · , N in which the matrix representation of Ω̂ is diagonal,
(Ωαβ = ωαβ δαβ). That is, we would like to diagonalize the matrix repre-

sentation of Ô. Earlier we saw the relation between two representations of
the operator Ô in two different bases through a unitary transformation:

Ω = U † O U

The problem of diagonalizing the Hermitian matrix O is equivalent to
the problem of finding the unitary matrix U that converts the matrix O into
a diagonal matrix:

U † O U =

















ω1 0 0 · · · 0
0 ω2 0 · · · 0

0 0
. . . · · · 0

0
...

... ωN−1

...
0 · · · 0 0 ωN

















There exit numerous efficient methods to do this diagonalization. Here we
dicusss the mechanics of the process using a more brute force approach,
strictly for pedagogical purposes in the context of understanding diagonal-
ization, not for optimizing computational algorithms.

Let’s restate the eigenvalue problem as follows: Given an N x N Hermi-
tian matrix O, we wish to find all distinct column vectors c (the eigenvectors
of O) and the corresponding numbers ω (the eigenvalues of O) such that:

O c = ω c(O − ω 1) c = 0
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The last equation has a nontrivial solution (c 6= 0) only when the fol-
lowing holds:

|O − ω 1| = 0

where the above expression signifies that the determinant of the expression is
equal to zero. This is called the secular determinant, and for the resulting
polynomial of degree N (since we are dealing with an N x N Hermitian
operator and matrix), there will be N roots, ωα, α = 1, 2, · · · , N , which
are the eigenvalues of the matrix O. The corresponding eigenvectors result
from subustituting individually the eigenvalues into the defining equations
of the eigenvalue problem. This leads to the eigenvectors, cα determined
to within a multiplicative constant. The unique vectors are determined by
normalization

∑

i

= (cαi )∗ cαi = 1

Thus, we have our solutions for the eigenvectors and eigenvalues of the
original matrix O representing the operator Ô in the original basis | i〉, i =
1, 2, 3, · · · , N :

O cα = ωα cα

Since O is Hermitian, the eigenvalues are real and the eigenvectors are or-
thogonal

∑

i

= (cαi )∗ c
β
i = δαβ

Now, let’s finish the connection to the original discussion about the relation
of the eigenvalues and eigenvectors of the arbitrary Hermitian matrix, O to
unitary transformations.

Let’s construct a matrix whose columns are the eigenvectors we have
just determined for the matrix O. We will call this matrix U:

U =











c1
1

c2
1

· · · cN
1

c1
2

c2
2

· · · cN
2

...
...

. . .
...

c1N c2N · · · cNN











=
(

c1 c2 · · · cN
)

It is clear that the αth column of U is the eigenvector (as a column matrix),
cα, and so we can write:
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(U)i α = Ui α = cαi

This allows us to write straightforwardly:

O U = U

















ω1 0 0 · · · 0
0 ω2 0 · · · 0

0 0
. . . · · · 0

0
...

... ωN−1

...
0 · · · 0 0 ωN

















= U ω

We also note that the orthonormality condition becomes:

∑

i

= (cαi )∗ c
β
i =

∑

i

U∗
i α Ui β =

∑

i

(

U†
)

α i
(U)i β = δαβ

But the last relation is simply:

U† U = 1

The last relation allows us to write:

U† O U = ω

This gives the relation between the unitary transformation (U) which
diagonalizes the matrix O and the eigenvectors (cα) of O.

6 Exercise

Let’s consider the following matrix and find the eigenvalues and eigenvectors
for this arbitrary matrix representation of some operator.

O =

(

O11 O12

O21 O22

)

6.1 Solution

We are looking for the eigenvalues and eigenvectors of the matrix. The
restatement of the problem is:
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(

O11 O12

O21 O22

) (

c1
c2

)

= ω

(

c1
c2

)

The secular determinant and associated second-order polynomial equation
is:

∣

∣

∣

∣

O11 − ω O12

O21 O22 − ω

∣

∣

∣

∣

= ω2 − ω (O22 + O11) + O11O22 − O12O21 = 0

The quadratic equation has two solutions; these are the eigenvalues of the
matrix bf O:

ω1 =
1

2

[

O11 + O22 − ((O22 −O11)
2 + 4O12O21)

1/2

]

ω2 =
1

2

[

O11 + O22 + ((O22 −O11)
2 + 4O12O21)

1/2

]

Since we have two eigenvalues, there will be two eigenvectors (assuming
non-degenerate eigenvalues). This requires us to determine the values of c1

and c2 for the cases associated with the two eigenvalues. For the case of ω2,
consider:

O11 c
2

1 + O12 c
2

2 = ω2 c
2

1

O21 c
2

1 + O22 c
2

2 = ω2 c
2

2

We can write analogous expressions for ω1 (not shown here). One of the
above equations coupled with the normalization condition:

(c21)(c
2

1) + (c22)(c
2

2) = 1

allows us to solve for the coefficients for the eigenvector associated with ω2.
For the particular case where O11 = O22 = a and O12 = O21 = b, the
eigenvalues are :

ω1 = a − b

ω2 = a + b

To find the eigenvector, we use :

O11 c
2

1
+ O12 c

2

2
= ω2 c

2

1

a c2
1

+ b c2
2

= (a+ b) c2
1
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which gives c2
1

= c2
2
. The normalization condition gives c2

1
= c2

2
= 1√

2
.

One can also solve this eigenvalue equation by directly finding the unitary
transformation matrix, U. Try this approach to see what you can come up
with.

7 Orthogonal Functions, Eigenfunctions, and Op-

erators

We have so far encountered the idea that vectors in N-dimensional spaces
can be represented as linear combinations of basis vectors. By analogy to
Fourier series, we now see how we can set up the formalism to treat func-
tions as bases, and describe arbitrary functions as linear combinations of
these bases functions. You have already encountered this in the idea of
Fourier sine and cosine series representations of functions (recall that one
can represent a well-behaved function by infinite sums of sine and cosine
functions, or truncated sums to sufficient accuracy as dictated by the appli-
cation or individual preference).

Consider an infinite set of functions (ψi(x),= 1, 2, ...) that satisfy the
orthonormality conditions on some interval [x1, x2]. (In quantum mechanics,
you will encounter several examples of such mathematical functions):

∫ x2

x1

dx ψ∗
i (x)ψj(x) = δij

In the following, we drop the integration limits. As in the case of a Fourier
expansion, we now suppose that any function a(x) can be expressed as a
linear combination of the set of functions (ψi):

a(x) =
∑

i

ψi(x)ai

The basis (ψi(x),= 1, 2, ...) is thus complete. The components of the basis
functions, aj are determined from:

∫

dxψ∗
j (x) a(x) =

∑

i

∫

dx ψ∗
j (x) ψi(x) ai =

∑

i

δij ai = aj

Substituting our expressions for the coefficients aj in the expansion, we
obtain:

a(x) =

∫

dx
′

[

∑

i

ψi(x) ψ
∗
i (x

′

)

]

a(x
′

)
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The quantity in brackets is a functions of x and x
′

. It serves to pick out
a(x) if it is multiplied by a(x

′

) and integrated over all values of x
′

. This is
commonly referred to as the Dirac delta function δ(x− x

′

).

∑

i

ψi(x) ψ
∗
i (x

′

) = δ(x− x
′

)

The Dirac delta function is a generalization of the discrete Kronecker delta
as:

ai =
∑

j

δijaj ↔ a(x) =

∫

dx
′

δ(x − x
′

)a(x
′

)

also, as one might expect,

δ(x
′

− x) = δ(x− x
′

)

We can get a little further insight into a useful property of the Dirac delta
function via the following. If we let x = 0 in our definition of the Dirac delta
function,

a(0) =

∫

dx
′

δ(x
′

)a(x
′

)

Finally, taking a(x
′

) to be 1, one obtains:

1 =

∫

dx
′

δ(x
′

)

This shows the familiar property of the Dirac delta function of having
identically unit area. Furthermore, by multiplying a function a(x) and
integrating over any interval containing x = 0, it picks out the value of the
function at x = 0.

7.1 Functions in the Language of Linear Algebra

To make the connection between the linear algebra of vectors and complete
orthonormal functions, we first introduce the shorthand notation

ψi(x) = | i〉 ψ∗
i (x) = 〈i |

a(x) = | a〉 a∗(x) = 〈a |
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The scalar product of 2 functions is :

∫

dx a∗(x) b(x) = 〈a | b〉

We also have the following relations which should be fairly evident at this
point:

〈i | j〉 = δij

〈j | a〉 = aj

| a〉 =
∑

i

| i〉〈i | a〉

Operators serve to transform functions into other functions:

Ô a(x) = b(x)

Ô | a〉 = | b〉

The idea of eigenfunctions and eigenvalues is also evident for functions.

Ô φα(x) = ωα φα(x)

Ô | α〉 = ωα | α〉

The φα are eigenfunctions of the operator, and the ωα are eigenvalues. The
eigenfunctions are normalized:

∫

dx φ∗α(x) φα(x) = 〈α | α〉 = 1

and the eigenvalues can be represented as:

ωα =

∫

dx φ∗α(x) Ô φα(x) = 〈α | Ô | α〉

In general,

ωα =

∫

dx φ∗α(x) Ô φβ(x) = 〈α | Ô | β〉
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We finally comment on the properties of Hermitian operators acting on
functions:

∫

dx a∗(x) Ô b(x) =

∫

dx b(x)(Ô a(x))∗ =

(∫

dx b∗(x) Ô a(x)

)∗

〈a | Ô | b〉 = 〈b | Ô | a〉∗
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