Diatomic Molecules

7th May 2009

1 Hydrogen Molecule: Born-Oppenheimer Approx-

imation

In this discussion, we consider the formulation of the Schrodinger equation
for diatomic molecules; this can be extended to larger molecules. First we
will consider the separation of the total Hamiltonian for a 4-body prob-
lem into a more tractable form. We will afterward discuss the molecular

wavefunctions.

For the hydrogen molecule, we are concerned with 2 nuclei and 2 elec-
trons. The total Hamiltonian, representing the total energy operator, is:
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e NOTE: For the present purposes, Hy is only a function of R and
only depends on the coordinates of the nuclei. It is the bf kinetic
energy operator of the nuclei.

A~

o Hejectronic(T, R) is the electronic Hamiltonian.

Thus,

];AI(F? R) = FIN(R) + ﬁelectronic(f: ﬁ)

To solve the full Schrodinger equation for electrons and nuclei, one has
to make approximations. This is because, as in the hydrogen atom case,
there are non-radially symmetric interactions between electrons, nuclei, and
electrons-nuclei. The first approximation we make is the Born-Oppenheimer

e Due to the large relative difference in electronic and nuclear masses,
a first approximation is to assume that the time scales of motion of
electrons and nuclei are separable. Effectively, the nuclei are at rest
relative to the electrons; as the nuclear configuration changes, the
electronic degrees of freedom “relax instantaneously”. This is also
referred to the adiabatic approximation. This is a good assumption
for most cases.

e Because we consider the separation in time scales of nuclear and elec-
tronic degrees of freedom, we assume a separable ansatz of the form:

\II(T_‘; é) = ¢el(ﬁ ﬁ) wN(é)

Thus, if we consider the usual approach to setting up the Schrodinger equa-
tion:

[ﬁN(ﬁ) + gelectronic(ﬁ é)} T;Z)el("?a ﬁ) wN(é) = Ewel (F7 é) ¢N (é)
ﬁN(ﬁ)wel(Fv ﬁ) wN(R) + ﬁelectronic(ﬁ R)wel (7:; R) wN (R) = E%z(ﬁ R) wN(ﬁ)
Va7, B)HN (R) g (R) +n (B) Heteetronie (7 B)Ya (7, B) = Eta(7, K) vn ()

Ve (7, RYHN(R)n (R) + ¥n(R)Eo(R)a (7, R) = Eva(7, R) ¢n(R)



[Hn(R) + Eq(R)¥n (R) = Evn(R)

Thus, we have arrived at a Schrodinger eqution for just the nuclear coor-
dinates (degrees of freedom). What we see is that apart from the kinetic
energy operator, there is an energy depending on only the nuclear coordi-
nates, Eq(R). We see that this is related to the energy (for fixed nuclear
coordiantes) of the electronic Schrodinger equation:

I:Iel(f: R)wel (7?, ﬁ) = Eeﬂ/}el (7_;; R)

If one repeats the calculation of the electronic wavefunctions and energies
for many separations of the nuclear coordinates, one obtains a parametric
dependence of the electronic energy on the nuclear positions. This looks
like:

Solution of Schrodinger equation for each value of R leads to a set of eigen-
values Eel,n(é) and eigenfunctions e, (7, ﬁ) The minimum energy corre-
sponds to the most stable nuclear geometry.

The recipe is thus:
e fix nuclear coordinates.
e solve Schrodinger equation for fixed coordinate geometry

e obtain eigenfunctions and eigenvalues; the eigenvalues and eigenfunc-
tions have parametric dependence on nuclear coordinates

e solve for nuclear part of ansatz using E(R)

2 Solving the nuclear Schrodinger Equation

From the last section, we saw that the nuclear Schrodinger equation is simply
[Hy(R) + Eq(R)]yn (R) = Eyy(R)

The kinetic energy operator for the nuclear problem can be separated into
a center of mass coordinate and an internal coordinate (the reduced mass
for instance). Thus, we still have 2 coordinate, but they are just taken to
be another set with the same information. Thus, the kinetic part can be
written as:
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where

Vit = R2OR R OR +R23in(9) 00 sm(a)(‘)@ +R2sin2(0) 0¢?
b = e (B 2) _L26.9)
Vi = RZOR R OR R?

Thus, the nuclear Schrodinger equation becomes
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Now, since the total Hamiltonian is separable int center of mass and inter-
nal coordinates, we again pose the separable ansatz as:

¢N(ﬁ) = wtranslational (ECOM)wint (R7 07 ¢)
E = Etranslational + Eint

This allows us to obtain (show yourself) two separate Schrodinger equations
for center of mass and internal coordinates as:

h2

_WV%OM Ytranslational (ECOM) = Firans Ytransiational (ECOM)
h2
[—EV?nt + E(R)‘| ¢int(Ra 0, gb) = Eint¢int (R, 07 ¢)

The first equation, for the center of mass, gives solutions of the form of a
free particle or PIB; doesn’t give much information on molecular nature of
molecule. The second equation is the one we are concerned with now.
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We can now separate the intramolecular wavefunction simply as :



T/Jmt(R 67 ¢) = X(R)wrotational (07 ¢) = X(R)lem(ev (25)
Eint = Eel—m’b + Erot

Consider the angular momentum part of the intramolecular Hamiltonian:
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¢2nt(Ra 0, ¢) = X(R) Yzm(07 ¢) = X(R)

This gives for the “R” dependent Schrodinger equation for the nuclear in-
tramolecular motion:
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Now we are left with an equation in R. We can solve this numerically by
computing E(R) for various R values. This is cumbersome (though valid).
We can also take another approach. First, let’s consider expanding E(R) in
a Taylor expansion about some equilibrium separation R, as:

E(R) - E(Re) + (R — Re) <d_E> + % (R _ Re)2 (%) I
e R
= E(Re) + %k (R — Re)2 = E(Re) + %kx2

where x = R — R.. Substituting the expressin for E(R) and making the
transformation to a new function:

¢vib = X(R) R

we obtain the following Schrodinger equation:
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Since x = R— R, and the derivatives with respect to R and x are equivalent
under this transformation, we can take the derivatives with respect to R as
with resepct to x. Also, multiplying through by “R”, we obtain:
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2 ORZ 2uR?

1
wvib + E(Re)wvib + ik(R - Re)2wvib - Einﬂ/}vib

Rearranging, we obtain:
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This is exactly the Schrodinger equation for the 1-D quantum harmonic
oscillator. We have seen solutions of this type of equation in the form of
Hermite Polynomials. The vibrational energy is simply:
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