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Recap: Rigid Rotation and Q. M. Orbital Angular Momen-

For 3-D rigid body rotation in absence of external potential, the kinetic
energy (thus total energy) operator in spherical, polar coordinates be-
comes:
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The energy eigenvalues are
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The energy eigenstates are:
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Angular momentum is related to the total energy in the classical
sense as:
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The quantum mechanical formulation for the relation between oepra-
tors is then:
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Thus, angular momentum is quantized and the angular momentum
eigenvalues are:

The eigenvalues for the z-component of the total angular momentum
are:
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Note, only one compoent of the total angular momentum operator
commutes with the operator for the total angular momentum squared
operator:
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This relation defines the range of the m quantum number for a given
[ quantum number.

1=0,1,2,3,....
m=0,+1,42,43, ...

At this point, we see that the energy is only dependent on /. Since there
are several states associated with different m for a given [, the energy
states associated with rigid rotation are degenerate. The degeneracy
is 20 + 1.



