Quantum Mechanics: Vibration and Rotation of
Molecules

8th April 2009

I. The Rigid Rotor and Q. M. Orbital Angular Momentum

Consider a rigid rotating diatomic molecule —— the rigid rotor —— with
two masses separated by a distance r,; the distance is fixed, and the rota-
tion occurs in the absence of external potentials. The quantum mechanical
description begins with the Hamiltonian:
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This is simply the kinetic energy operator as we have seen in the past for the
particle-in-box and the harmonic oscillator. Now, we can change coordinate
systems from Cartesian to polar spherical coordinates. This goes as:

Cartesian(x,y,z) —  sphericalpolar(r,0, )
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Thus, in spherical polar coordinates, ﬁ(r,ﬁ,gb)w(r,ﬁ,qﬁ) = EyY(r,0,¢) be-
comes:

~h2 (10 (,0 1 9/ . 0 1 02
[ﬂ (ﬁ% (r E) + r2sinf 00 (81716%) * r2sin20 W)} ¥(r.0,9) = Ev(r.6,9)

For the rigid rotor, the length between masses is constant. Thus
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The Schrodinger equation is now:
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Recall: prg = I, the moment of Inertia of the rotor.
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If we assume that ¥(r,, 6, ¢) is more generally ¢ (r,,0,¢) = B(r)Y (0, ¢)
(the function B(r) is some generic function that takes into account the true
r-dependence which we are simplifying in the present case by treating the
system as a rigid rotor), the problem reduces to:
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Solving the Rigid Rotor Problem

Rearranging the previous equation:
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The left-hand side of the previous equation is a function only of # and the
right is a function only of ¢. Thus, we can use separation of variables to
generate a solution:



Thus,
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Dividing by ©(0)®(¢) and simplifying:
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Since both sides are functions of different variables, each is equal to a con-
stant, which we’ll let be m?2.
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First consider the ¢ expression:

0? 9
—®(¢p) = —m“P

5z (0) (%)

Solutions are of the general form: ®.1(¢) = ALe™™®. As before, the bound-
ary conditions lead to quantization. Since this expression is related to the
z-component of the angular momentum, we can imagine the particle moving
along a circular ring. At the values of ¢ separated by an entire revolution,
the wavefunction has to be the same; i.e. ®(¢) = P(¢ + 2m).
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The latter constraint leads to: e = 1. This is valid for values of m:

m=0,+1, 42,43, .....

m is the magnetic quantum number. Thus :

D(P) = Ape™®  m=0,£1,42,+3, ...

Normalization gives:

(p) = ™M m=0,+1,+2,£3, ...



Now we’ll consider the © function:
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First change variables: z = cosf, ©(0) = P(z), and —Z— = df.

Since 0 < 6 <7, —1 < x < 1, conveniently. Also, sin%0 = 1—cos?0 = 1 —22.
After some rearrangement and simplification, one obtains the associated
Legendre equation:
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The boundary conditions arise due to the requirement that © is continuous;
this quantizes (:

B=1(+1); 1=0,1,2,3,... (withm = 0,£1,+2 +3,...)
The energy (eigenvalue) is thus quantized from the definition of f.
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The wavefunctions are the associated Legendre Polynomials, Pllmlz

Pllml(a:) = Pllml(cose)
Pd(cosh) =1  P(cosh) = cost

1
PY(cosh) = 5 (300329 - 1) P) (cost) = 3cosfsind
Putting things togther:
0(0) = Ay P™(cos0)

From normalization:
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The Spherical Harmonics are the eigenfunctions for the 3-D rigid rotor:
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But what is the relation between the 1 and m quantum num-
bers that have arisen? For this, we need to consider Angular
Momentum



