Complex Reactions and Mechanisms (continued)

III) Reversible Reactions
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a) I*" order reversible reactions
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Can measure: K, = M and K +k, =K.
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And extract k; and k4



b) Higher order reactions
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1*' order backward

eg. A+Bx
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After much calculation, get.. A mess!

We must begin simplifying from the beginning!

Use Flooding in this case: [B], » [AL,[C],

Then ki = ko[Bl, = ko[B]

~d[A]
dt

k[A]-k ,[C]

This is now pseudo 1 order in A

= Looks the same as in part a)

Measure: K= 2, kous=kiv ko= elBl ks
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By changing [B], over a few experiments, can extract k; and k.



IV)  Series Reversible Reactions (1°' order)
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Can solve this, but it is an even bigger mess than in part IIIb)!!

And here Flooding, as an approximation, is not going to do much
for us.

We need to find new approximations for more complicated
mechanisms!



IV) Steady State and Equilibrium Approximations

a) Steady State Approximation
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Assume that [B] is small and slowly varying
eg. d}TE] ~ 0 and (ks + k) » ki

[B] reaches a steady state concentration [B]ss and
remains there
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Steady State approximation
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Looks like A k. C (first order) with k'= " k’kzk
1 7K
**Necessary Condition for use of Steady State Approximation**
i)  Datamust be taken after B has built up to a steady
state value.
ll) (kz + k.1) > k1 = [B]ss is S[]!O"

b)  Equilibrium Approximation

Assume Kz << k_;and k;

k
Thatis. B—» C is the rate limiting step.

Then.. A and B quickly come into equilibrium, while C slowly
builds up.
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Equilibrium approximation
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Looks like A — C  (firstorder) with k'=
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In general, for a mechanism with multiple pre-equilibria...
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Examples:

A) Apparent Termolecular Reactions (Reaction Chaperones)



I+I+M -5 o T+ M
M is a rare gas molecule or the wall of the reaction vessel

Mechanism:

where (kz + ki) > ki , that is the Steady State approximation!
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Solving... I)s=—"
olving [I; )ss K, +K,[M]
dr,] , ... ) k,[I)?

And .. i = kelL2 Jss[M] = k;[M] PROATTY

Limiting Cases



) ka[M]» ks then el g [1p2

dt
(high pressure) second order
i) ka[M]<< ky then dL]_kik, [M][T)?
dt k,
(low pressure) third order

B) Gas decomposition (Lindemann Mechanism)

A(g) — products

Mechanism:

ki

A+M < - EAT+M

.
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A* %, products (B +..)

M is a rare gas molecule and/or A,

k1 kz

» is fast, < " is very fast, "2, is slow

So.. (k2 +k.)>» k; , Steady State approximation again.
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Steady State approximation

K, [A][M]

[A Jes = K [M]+ K,

diA] dB] | -, _ kk;[A]IM]
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Limiting Cases

i)  High pressure (1 bar) ki[M] » k;

diA] Kk, . )
Tdt Tk, [A]=k,[A] (17 order)

ii) Low pressure (~10“bar)  ki[M]< kz

_dlA]
dt

=k, [A][M] (if M=A, then 2™ order in A)



