Quantum Mechanics: Commutation Relation
Proofs

16th April 2008

I. Proof for Non-Commutativity of Indivdual Quantum Angular
Momentum Operators

In this section, we will show that the operators I:m, I:y, L, do not commute
with one another, and hence cannot be known simultaneously. The relations
are (reiterating from previous lectures):

We would like to proove the following commutation relations:

Ly, Ly) =ih L.,

[L.,L;) =ih L,
We will use the first relation for our proof; the second and third follow analo-

gously. Let’s also consider a function, f(z,y,z) that we will have the opera-
tors act upon in our discussion. The expanded version of [L,, L,| =1ih L, is:
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Now let’s expand the operators (ignore the underbraces and numbers for
now):

Combining terms and noting that [Z,y] = 0 and [p4, p,] = 0. We will com-
bine terms as follows: (1-8), (2-7), (3-6), and (4-5).
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If we add the expressions 9 and 10, inserting a factor of —ih for each partial
derivative that represents a momentum operator, we obtain:
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