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I. Classical Orbital Angular Momentum and Extension to Q.
M. Operators

Before considering the eigenvalue equations describing the energetics and
eigenfunctions for describing orbital angular momentum in a q.m. sense,
we will first consider the operators that are pertinent to measurements of
angular momentum on such systems (remembering that operators are asso-
ciated with measureables/observables in a q.m. sense). We also note that
we will consider angular momentum in general, though the formulation in
the following is based on classical analogues, which are based on analogy to
orbital motion). We have considered, so far, the translational (particle-in-a-
box) and vibrational (harmonic-oscillator) models to describe translational
and vibrational dynamical modes as we understand in classical mechanics.
With a discussion of angular momentum, we focus on the rotational model
of such dynamics to arrive at a complete set of eigenfunctions that we can
apply towards describing actual systems, such as atoms and molecules.

Consider a particle described by the Cartesian coordinates (x, y, z) ≡ r
and their conjugate momenta (px, py, pz) ≡ p

The classical definition of the orbital angular momentum of such a par-
ticle about the origin is L = r× p giving,

Lx = y pz − z py, (1)

Ly = z px − x pz, (2)

Lz = x py − y px. (3)

Let us assume that the operators (L̂x, L̂y, L̂z) ≡ L̂ represent the components
of orbital angular momentum in quantum mechanics can be defined in an
analogous manner to the corresponding components of classical angular mo-
mentum. In other words, we are going to assume that the above equations
specify the angular momentum operators in terms of the position and lin-
ear momentum operators. Note that L̂x, L̂y, L̂z are Hermitian (have real
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eigenvalues), so they represent things which can, in principle, be measured.
Note, also, that there is no ambiguity regarding the order in which operators
appear in products on the right-hand sides of , since all of the products con-
sist of operators which commute. The fundamental commutation relations
satisfied by the position and linear momentum operators are

[xi, xj ] = 0, (4)

[pi, pj] = 0, (5)

[xi, pj] = i h̄ δij , (6)

where i and j stand for either x, y, or z.
Consider the commutator of the operators L̂x and L̂y

[L̂x, L̂y] = [(y pz − z py), (z px − x pz)] = y [pz, z] px + x py [z, pz]

= i h̄ (−y px + x py) = i h̄ L̂z. (7)

The cyclic permutations of the above result yield the fundamental com-
mutation relations satisfied by the components of an angular momentum:

[L̂x, L̂y] = i h̄ L̂z,

[L̂y, L̂z] = i h̄ L̂x,

[L̂z, L̂x] = i h̄ L̂y.

These can be summed up more succinctly by writing

L× L = i h̄L. (8)

The three commutation relations are the foundation for the whole the-
ory of angular momentum in quantum mechanics. Whenever we encounter
three operators having these commutation relations, we know that the dy-
namical variables which they represent have identical properties to those of
the components of an angular momentum (which we are about to derive).
In fact, we shall assume that any three operators which satisfy the commu-
tation relations represent the components of an angular momentum.

Suppose that there are N particles in the sysetm, with angular momentum
vectors

Li (where i runs from 1 to N . Each of these vectors satisfies Eq., so that

Li × Li = i h̄Li. (9)

However, we expect the angular momentum operators belonging to dif-
ferent particles to commute, since they represent different degrees of freedom
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of the system. by analogy to the classical Poisson Bracket, q. m.
operators for different degrees of freedom commute; those for the
same degree of freedom do not commute. So, we can write

Li × Lj + Lj × Li = 0, (10)

i 6= j. Consider the total angular momentum of the system,
L =

∑N
i=1 Li

L =
∑N

i=1 Li. It is clear from Eqs. and that

L× L =
N∑

i=1

Li ×
N∑

j=1

Lj =
N∑

i=1

Li × Li +
1

2

N∑

i,j=1

(Li × Lj + Lj × Li)

= i h̄
N∑

i=1

Li = i h̄L. (11)

Thus, the sum of two or more angular momentum vectors satisfies the
same commutation relation as a primitive angular momentum vector. In
particular, the total angular momentum of the system satisfies the commu-
tation relation .

The immediate conclusion which can be drawn from the commu-
tation relations is that the three components of an angular mo-
mentum vector cannot be specified (or measured) simultaneously.
In fact, once we have specified one component, the values of other
two components become uncertain. It is conventional to specify
the z-component, L̂z.

Consider the magnitude squared of the angular momentum vector,
L2 ≡ L 2

x + L 2
y + L 2

z The commutator of L2 and Lz is written

[L2, Lz] = [L 2
x , Lz] + [L 2

y , Lz] + [L 2
z , Lz]. (12)

It is easily demonstrated that

[L 2
x , Lz] = −i h̄ (Lx Ly + Ly Lx),

[L 2
y , Lz] = +i h̄ (Lx Ly + Ly Lx),

[L 2
z , Lz] = 0,

so

[L2, Lz] = 0.
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Since there is nothing special about the z-axis, we conclude
that L2 also commutes with Lx and Ly. It is clear from Eqs and
that the best we can do in quantum mechanics is to specify the
magnitude of an angular momentum vector along with one of its
components (by convention, the z-component).

Raising and Lowering Operators / Shift Operators

It is convenient to define the shift operators L+ and L−:

L+ = Lx + iLy, (13)

L− = Lx − iLy. (14)

Note that

[L+, Lz] = −h̄ L+, (15)

[L−, Lz] = +h̄ L−, (16)

[L+, L−] = 2 h̄ Lz. (17)

Note, also, that both shift operators commute with L2.
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