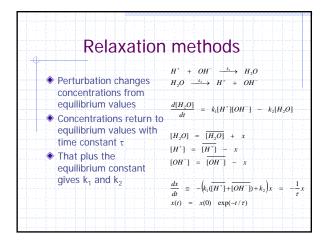
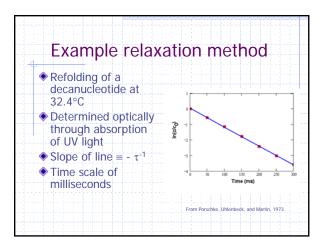
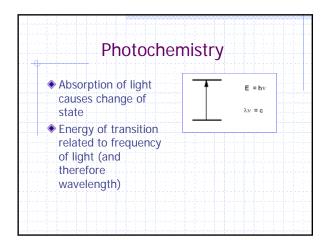
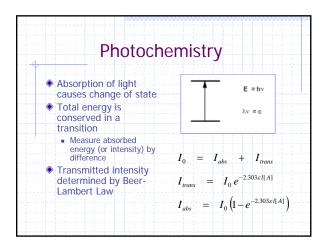


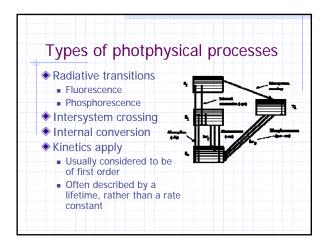
Diffusion	CONTION
 Limiting behavior EVERY molecule entering the cage reacts 	
 Diffusive motions control the time it takes to enter the cage 	$A + B \rightarrow Products$
 Simple bimolecular reaction with diffusion control 	$v = 4\pi N_0 (D_A + D_B) d_{AB} [A] [B]$
 Typical size of diffusion- 	
controlled rate constant	$k_{eff} = 4\pi N_0 (D_A + D_B) d_{AB}$
$k_{eff} \approx 4 \times 10^9 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$	


Rate constants for b			
reactions in so	lution		
Reaction	k (298 K)/ (dm³ mol-1 s-1)		
$H^{*} + HS^{-} \rightarrow H_{2}S$	7.5 × 10 ¹⁰		
H^{+} + $CH_{3}OH \rightarrow CH_{3}OH_{2}^{+}$	1×10 ⁸		
$OH^{\circ} + HCO_3^{\circ} \rightarrow CO_3^{\circ2} + H_2O$	6 × 10°		
$\mathrm{OH}^{:} + \mathrm{CH}_{3}\mathrm{OH} \rightarrow \mathrm{CH}_{3}\mathrm{O}^{:} + \mathrm{H}_{2}\mathrm{O}$	3 × 106		
$\mathrm{OH}^{-} + \mathrm{p}\text{-}\mathbb{C}_{g}\mathrm{H}_{4}(\mathrm{COOC}_{2}\mathrm{H}_{5})_{2} \rightarrow \mathrm{p}\text{-}\mathbb{C}_{2}\mathrm{H}_{5}\mathrm{OOCC}_{g}\mathrm{H}_{4}\mathrm{COO}^{-} + \mathrm{H}_{2}\mathrm{O}$	5.4 × 10-2		
. hemoglobin•3 $O_2 + O_2 \rightarrow$ hemoglobin•4 O_2 .			
From W. C. Gardiner, Jr., Rates and Mechanisms of Chemical Reaction	ss, Benjamin New York, 1969.		






Relaxation metho	ods
 For a reaction that happens so fast, i to mix reactants uniformly before the substantially done 	reaction is
 One cannot use typical methods of kinet 	
An alternative for determining rate co	onstants of fast
reactions is the relaxation method	
 Perturb the system from equilibrium 	
 Observe the return to equilibrium 	A65 F
Types of relaxation methods	- 0 E /
Temperature jump	the lit
Pressure jump	ALE D
Electric-field jump	Col Tra
 Flash photolysis 	
 Laser pump 	
	Sir George Porter


Recombinations $H^+ + OH^- \leftrightarrow H_2O$ $OH^- + NH_4^+ \leftrightarrow NH_4OH$ Substitution reactions $Ca^{2+}(H_2O)_6 + NH_3 \leftrightarrow Ca^{2+}(H_2O)_5NH_3 + H_2$ Dimerizations	Exan	nple	es of	fas	t reactions
$OH^- + NH_4^+ \leftrightarrow NH_4OH$ Substitution reactions $Ca^{2+}(H_2O)_6 + NH_3 \leftrightarrow Ca^{2+}(H_2O)_5NH_3 + H_2$	Recomb	oina	tions		
Substitution reactions $Ca^{2*}(H_2O)_6 + NH_3 \leftrightarrow Ca^{2*}(H_2O)_5NH_3 + H_{2*}$	H^{+}	+	OH^-	\leftrightarrow	H_2O
$Ca^{2*}(H_2O)_6 + NH_3 \leftrightarrow Ca^{2*}(H_2O)_5NH_3 + H_2$	ОН	+	NH_4^+	\leftrightarrow	NH ₄ OH
	Substitut	utior	n react	ions	
Dimerizations	$Ca^{2+}(H_2O)_6$	+	NH ₃	\rightarrow Ca	$^{2+}(H_2O)_5NH_3 + H_2O$
	Dimeriz	atio	ns		
2 proflavin \leftrightarrow (proflavin) ₂	2	prof	lavin	\leftrightarrow	$(proflavin)_2$

