τ	
	Physical Chemistry
	Lecture 30 Wave Functions and Group Theory
	<u> </u>

Finding the representa	e ir tioi	reo n c	duo of a	cibl i M	le IO		
 Objects belonging to a group are eigenfunctions of the operations 		E	2 C3	3 C2	σ _h	. 2 S3.	3 σ _ν
 Find the characters under the operations of 	A2' E'		- 1	-1 0	2	-1	-1
 By comparison, identify the representation of the 	A ₂ "	1 2	-1	-1 0	-1 -2	-1	1
orbital							
• $\psi = 1s_{F1} + 1s_{F2} + 1s_{F3}$ • Representation is a_1' in	-	E	2 C ₃	3 C2	ση	2.53	- 3 σ,

Direct p	roduct
Objects may be products of other objects Example: product of two wave functions Composite object's representation determined from representations of objects comprising it	h = f g $\Gamma_h = \Gamma_f \otimes \Gamma_g$
 Representation of a product found as direct product of representations of the objects of which it is composed Important in determining the representation of a multi- electron wave function 	$O(fg) = (Of)(Og)$ $= c_f c_g(fg)$

renrese	nta	tio	าร		
тергезе	ma	tio	13		
 Determining the direct product 					
 Multiply characters under each operation 	C24	E	C2	i	σ _h
 Analyze character set to 	Ag	1	1	1	1
find representation	A	1	1		-1
 Either an irreducible representation or a reducible 	Bg	1	-1	1	-1
representation	B	1	-1	-1	1
• For reducible representation					
 Reduce to a direct sum of irreducible 	A _g Ø 4 _g	1	1	1	1 A _g
representations	B. 00	1	1	4	-1 A.
 May be continued to find representations of multiple 	A., ØB.,	1	-1	- 1	-1 B _g

Finding e	electronic
configurations	s of molecules
 Must find one-electron MOs for the system Use SALCs A subset of linear combinations which take into account symmetry Must know filling order (energy order) Can sometimes guess it by classical theories of bonding Create configuration by adding electrons by the aufbau principle 	Example: Linear H—X—H $1\sigma_{g} = 1s_{X}$ $2\sigma_{g} = c_{1}2s_{X} + c_{2}(1s_{HA} + 1s_{HB})$ $1\sigma_{u} = c_{5}2p_{zX} - c_{6}(1s_{HA} - 1s_{HB})$ $1\pi_{u} = (2p_{xX}, 2p_{yX})$ $3\sigma_{g}^{*} = c_{3}2s_{X} - c_{4}(1s_{HA} + 1s_{HB})$ $2\sigma_{u}^{*} = c_{7}2p_{zX} + c_{8}(1s_{HA} - 1s_{HB})$

Example: exc Beł	ited state of H ₂
 Repeat the aufbau, adding the last electron to the next excited one- electron state 	$(1\sigma_g)^2 (2\sigma_g)^2 (1\sigma_u)^1 (1\pi_u)^1$
 Do the direct product Inner product of a representation with itself is the group dimension 	$ \begin{array}{l} \Gamma & = & \\ & \Sigma_g \otimes \Sigma_g \otimes \Sigma_g \otimes \Sigma_g \otimes \Sigma_u \otimes \Pi_u \end{array} $
 Spins of the two electrons may be paired or unpaired 	
 Apply Hund's rules to determine the term of lower energy 	Term symbols: ${}^{1}\Pi_{g}$ and ${}^{3}\Pi_{g}$

 Wave functions are objects in the group of the molecule Can be classified as reducible or irreducible representations Can determine the representation by carrying out operation: on the wave function SALCs Symmetry-adapted linear combinations of orbitals already conform to the required symmetry of the molecule Combine atomic orbitals of similar energy relative to the dissociation energy Aufbau principle Find multi-electron configurations Direct product 		Summary
 Can be classified as reducible or irreducible representations Can determine the representation by carrying out operations on the wave function SALCs Symmetry-adapted linear combinations of orbitals already conform to the required symmetry of the molecule Combine atomic orbitals of similar energy relative to the dissociation energy Aufbau principle Find multi-electron configurations Direct product 	۲	Wave functions are objects in the group of the molecule
 SALCs Symmetry-adapted linear combinations of orbitals already conform to the required symmetry of the molecule Combine atomic orbitals of similar energy relative to the dissociation energy Aufbau principle Find multi-electron configurations Direct product 		 Can be classified as reducible or irreducible representations Can determine the representation by carrying out operations on the wave function
 Symmetry-adapted linear combinations of orbitals already conform to the required symmetry of the molecule Combine atomic orbitals of similar energy relative to the dissociation energy Aufbau principle Find multi-electron configurations Direct product 	۲	SALCs
Combine atomic orbitals of similar energy relative to the dissociation energy Aufbau principle Find multi-electron configurations Direct product		 Symmetry-adapted linear combinations of orbitals already conform to the required symmetry of the molecule
Aufbau principle Find multi-electron configurations Direct product		 Combine atomic orbitals of similar energy relative to the dissociation energy
Find multi-electron configurations Direct product	۲	Aufbau principle
Direct product		Find multi-electron configurations
	۲	Direct product