








## Time-dependent process Must use Schroedinger's time-dependent equation Hamiltonian consists of two parts Stationary part that determines the energy levels Time-dependent part that determines coupling that induces transition Gives the time-dependent coefficients, $c_i$ and $c_f$







## Electric-dipole coupling

- An electric dipole couples to an electric field
- ◆ The energy of the dipole in the field depends on orientation

$$\hat{H}_1(t) = \hat{\mathbf{d}} \bullet \mathbf{E}(t)$$

A mechanism for coupling between the spectroscopic system and the light

Rate 
$$\propto |\langle \psi_i | \hat{\mathbf{d}} \cdot \mathbf{E}(t) | \psi_f \rangle|^2$$

| Selection rules                                                                                               |                                      |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------|
| <ul> <li>Is the integral of the<br/>Golden Rule zero?</li> <li>Must know dipole form</li> </ul>               | $\int \psi_i^* \hat{x} \psi_f d	au$  |
| A vector (the dipole moment) which can be shown to have components proportional to the cartesian co-ordinates | $\int \psi_i^* \hat{y} \psi_f d\tau$ |
| <ul> <li>Evaluation of integral<br/>becomes an evaluation of<br/>integral of x, y and z</li> </ul>            | $\int \psi_i^* \hat{z} \psi_f d	au$  |
| Can often evaluate integrals by knowing only certain properties of the wave functions                         |                                      |

## Summary

- ◆ Transitions are time-dependent processes
- ◆ Must use Schroedinger's time-dependent equation
- Rate of transition determined by an integral over the states
  - Fermi's Golden Rule
  - Electric dipole and magnetic dipole transitions
- Evaluation of whether integrals are zero can sometimes be without knowledgeable of the total mathematical form of the wave functions
  - Selection rules