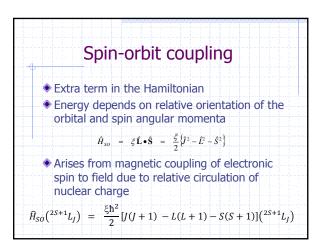
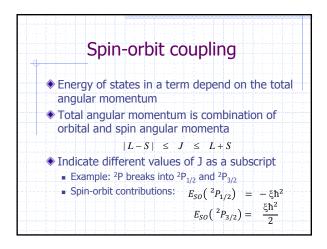
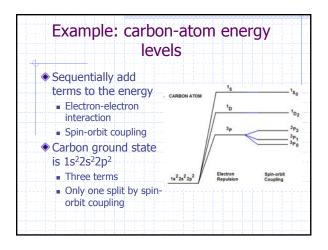
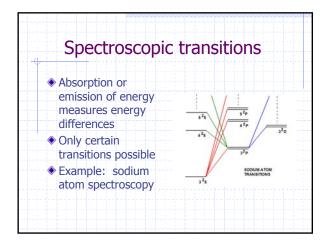
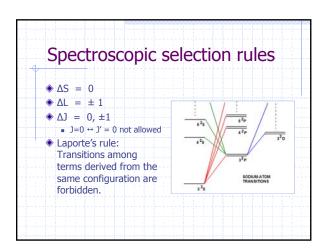

Physical Chemistry	
Trysical chemistry	
Lecture 20 Russell-Saunders Terms, Hund's Rules, Spin-orbit Coupling, Spectroscopy	

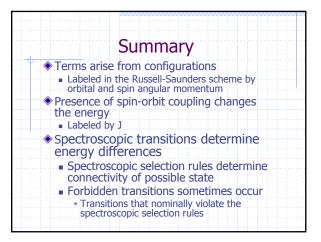



configurations				
Configuration	S	L	Term	
s ¹	1/2	0	2 S	
s ²	0	0	¹ S	
s ¹ s ¹	0 or 1	0	¹ S, ³ S	
sipi	0 or 1		······································	
p ⁱ p ⁱ	0 or 1	0, 1, or 2	¹ D, ¹ P, ¹ S ³ D, ³ P, ³ S	
	•••• 0 or 1•••••	0, 1, or 2	· · · · · ¹ S, ³ P, ¹ D	






 Energies determined spectroscopically 	18 ² 28 ² 29 ² 38 ¹	18 ² 28 ¹ 29
 Can estimate by IE energies and Coulomb integrals 	² P (4.0 eV) ⁴ P (4.5 eV)	4 (-3.8 +
 Ordering obeys Hund's rules 	19 ² 28 ² 29 ³	
Not all terms from upper configurations shown		ITROGEN ATOM



	Forbidden transitions				
۲	Transitions that occur in violation of these rules are called forbidden transitions.				
٩	States are not pure, so there is always some violation of rules.				
٢	States labeled as triplets may have some singlet quality				
	 Also true of other states 				
۲	Example: Hg atom				
	■ Strong 7 ${}^{1}S_{0} \leftrightarrow 6 {}^{3}P_{1}$ transition				

