Physical Chemistry

Lecture 2
Diffusion and random walks

Random walk in one
dimension

@ Particle hops from site
to site
= Only one step per hop
@ Probability of hopping in
either direction is ¥4 for e 2. 2
each step PR 1
# Calculate probability NEEEEEE ENEREE
that, after m steps, the 6 -4-2 0
particle is at position q

Mathematics of random walks
'©Probability has two factors

P(m) = (%] c(n,p)

#®Number of ways to end up at g is a
combinatorial factor based on the
number of positive steps, p, and the

number of negative steps, n
m! m!
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Calculation of averages in a

one-dimensional random walk

# Use the probability, P, to get averages of
functions of the distance in m steps
+m 1 m 4m m!
f = P(q,m) f =T o e e
<f(g)> qZ (a,m) f(a) [2} .;m (¥)!(%)! (@)

@ Examples:
<g> =0
<g’> = m

@ The average position does not appear to
change with number of steps, but the square
of the distance traveled does.

Example random walk

e Movement of He in a given time

» T=298.15K TIME Ax
s P =1 bar 1 second 16cm
# Distance moved e

A = J<xX’>-<x>? = Jmi = J<z>td 1day 60 cm
1 week 1220 cm
@ Typical flask is of the order of 10 cm in
diameter.
= In one minute, a molecule samples a reasonable
fraction of the environment in that flask.

Small-step-size, large-step-
number random walk

@ Treat the distribution function, P, as a
continuous function

qZ
P(q,m) = exp(——
(g.m) J2em o=
@ Technically only correct for either even or odd
g, but we “smooth” the probability over many
steps

@ Gaussian function
@ Normalized probability distribution function




Gaussian functions

| @ Occur in many different situations where
random processes affect the experiment
2

X
P(x,0) = o exp(—zaz)

@ Shape is determined by the standard
deviation, o

= Large o, wide function
= Small &, narrow function .

# Random noise is Gaussian /_ !

Diffusion from a point source

#®Random movement of molecules is

diffusion

@®Described by a parameter, D, the
diffusion coefficient

@ Diffusion in one dimension described by
the probability distribution

1 NG
P(x,t)dx = exp| — dx
(x1) 4Dt p( 4DtJ

Gas-phase diffusion

# Diffusion coefficient related to gas-kinetic
parameters D = k<v>41
where k = 0.5 fromsimple kinetic theory
k = 0.599 from more accurate theory

@ Measured and calculated gas diffusion
coefficients at 273.15 K and 1.01325 bar

Noble Gas Diffusion Coefficient
Calculated Experimental

Neon 435x10°5m?st 4.52x10°5m?s?

Argon 1.54x10°m?st 157x10°m2st
Krypton 0.93x105m? s 0.93x105m? st

Xenon 0.57x 105 m? s 0.58x 105 m? s

Diffusion in three dimensions

| ®Assume the diffusion in the three

dimensions is uncorrelated
P(x,y,z;t)dxdydz = P(x,t)P(y,t)P(z,t)dxdydz
X2 +y2+17°

1
@Dt exp[— Dt dedydz
#1n spherical co-ordinates it simplifies
and depends only on r

1 r )
P(r,0,4;)dQ = ————exp| ——— |r’sinadrd&d
(r.6.4:1) (4rDt)"* p( 4Dt] ¢

Macroscopic diffusion

# Diffusion eliminates concentration gradients
# Diffusion can be expressed in terms of the
changes in concentrations
@ Mass flux across an area, J
@ Fick’s first law in one dimension: diffusion is
“caused” by a concentration gradient
ac

J = -D=
OX

Macroscopic diffusion

®Fick's second law: The rate of change of
concentration in a volume is determined
by the gradient of the flux across its

boundaries
2
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# In three dimensions

ac
at

= DV%




Solutions of Fick’s equations

@ Depends on
boundary
conditions

# Example: diffusion

between two
tubular regions, like
from sugar water
into pure water in a

pipe

“Typical” diffusion coefficients

Gas (0°C)  D/(10“m?s?)  Liquid (25°C)  D/(10°m?st)

H, 1.5 H,0 2.4
o, 0.19 CH,OH 2.3
N, 0.15 CeHs 2.2

co, 0.10 Hg 1.7

CH, 0.09 C,H-OH 1.0
Xe 0.05 C;H;OH 0.6

Summary

#®Random walk is a simple theory of
movement

@ Diffusion describes the results of
random movement of molecules
= Random-walk derivation
= Fick's Laws

@ Diffusion coefficient characterizes the
material




