
1

Physical Chemistry

Lecture 2
Diffusion and random walks

Random walk in one 
dimension

Particle hops from site 
to site
 Only one step per hop

Probability of hopping in 
either direction is ½ for 
each step
Calculate probability 
that, after m steps, the 
particle is at position q

Mathematics of random walks
Probability has two factors

Number of ways to end up at q is a 
combinatorial factor based on the 
number of positive steps, p, and the 
number of negative steps, n
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Calculation of averages in a 
one-dimensional random walk

Use the probability, P, to get averages of 
functions of the distance in m steps

Examples:

The average position does not appear to 
change with number of steps, but the square 
of the distance traveled does.








 







m

mq

mm

mq

qf
qmqm

m
qfmqPqf )(

)!
2

()!
2

(

!

2

1
)(),()(

mq

q




2

0

Example random walk
Movement of He in a given time
 T = 298.15 K
 P = 1 bar

Distance moved

Typical flask is of the order of 10 cm in 
diameter.
 In one minute, a molecule samples a reasonable 

fraction of the environment in that flask.
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TIME x

1 second 1.6 cm

1 minute 12.1 cm

1 hour 93.9 cm

1 day 460   cm

1 week 1220   cm

Small-step-size, large-step-
number random walk

Treat the distribution function, P, as a 
continuous function

Technically only correct for either even or odd 
q, but we “smooth” the probability over many 
steps
Gaussian function
Normalized probability distribution function
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Gaussian functions
Occur in many different situations where 
random processes affect the experiment

Shape is determined by the standard 
deviation, 
 Large , wide function
 Small , narrow function

Random noise is Gaussian
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Diffusion from a point source
Random movement of molecules is 
diffusion
Described by a parameter, D, the 
diffusion coefficient
Diffusion in one dimension described by 
the probability distribution
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Gas-phase diffusion

Diffusion coefficient related to gas-kinetic 
parameters

Measured and calculated gas diffusion 
coefficients at 273.15 K and 1.01325 bar
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Noble Gas Diffusion Coefficient

Calculated Experimental

Neon 4.35  10-5 m2 s-1 4. 52  10-5 m2 s-1

Argon 1.54  10-5 m2 s-1 1.57  10-5 m2 s-1

Krypton 0.93  10-5 m2 s-1 0.93  10-5 m2 s-1

Xenon 0.57  10-5 m2 s-1 0.58  10-5 m2 s-1

Diffusion in three dimensions
Assume the diffusion in the three 
dimensions is uncorrelated

In spherical co-ordinates it simplifies 
and depends only on r
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Macroscopic diffusion

Diffusion eliminates concentration gradients
Diffusion can be expressed in terms of the 
changes in concentrations
Mass flux across an area, J
Fick’s first law in one dimension: diffusion is 
“caused” by a concentration gradient
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Macroscopic diffusion
Fick’s second law: The rate of change of 
concentration in a volume is determined 
by the gradient of the flux across its 
boundaries

In three dimensions
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Solutions of Fick’s equations

Depends on 
boundary 
conditions
Example: diffusion 
between two 
tubular regions, like 
from sugar water 
into pure water in a 
pipe

“Typical” diffusion coefficients
Gas (0C) D/(10-4m2s-1) Liquid (25C) D/(10-9m2s-1)

H2 1.5 H2O 2.4

O2 0.19 CH3OH 2.3

N2 0.15 C6H6 2.2

CO2 0.10 Hg 1.7

C2H4 0.09 C2H5OH 1.0

Xe 0.05 C3H7OH 0.6

Summary

Random walk is a simple theory of 
movement
Diffusion describes the results of 
random movement of molecules
 Random-walk derivation
 Fick’s Laws
Diffusion coefficient characterizes the 
material


