Physical Chemistry

Lecture 13

The Meaning of Wave Functions;
Solving Complex Problems

Born’s interpretation of the
wave function

# It is not possible to measure all properties of
a quantum system precisely

# Max Born suggested that the wave function
was related to the probability that an
observable has a specific value.

@ Often called the Copenhagen interpretation
@ A parameter of interest is position (x,y,z)

Y(x, Y, 2)¥(xy,2)d*r = P(x,y,2)d°r

Requirements on a wave
function

@®To be consistent with the Born
interpretation, a wave function has to
have certain characteristics.

Square integrable over all space. (In this way it
can be normalized and represent probability.)
Single-valued (so that the probability at any point
is unique)

Continuous at all points in space.

First derivative must be continuous at all points
where the potential is continuous.

Example: particle in a 1-D box
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Expectation values for a
particle in a 1-D box
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Expectation values for a
particle in a 1-D box
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Copenhagen interpretation for an
arbitrary (mixed) state

@ Particle in a 1D box in
an arbitrary state o 2 . (nax
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energy eigenstates
@ The expectation value
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Particle in a 3-D box

@ The actual space in which we live is
three-dimensional.

@ General problem of a particle in a 3-D
box is appropriate to gas molecules

@ Example of a complex problem
decomposed into a simpler problem

@ Hamiltonian (et & o
H = ——| —+—5+—
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Separation of variables

@There is only one way for the following kind
of equation to be generally satisfied

f(x) a(y)
f(x) = C

gly) = C

@ Each function must be equal to a constant,
independent of either x or y

Application to the particle in a
3-D box

# Overall problem may be
separated into three 1-

Hxy,2)¥(x.y,2) = E¥Y(xY.,2)
D problems
@ Hamiltonian must be a H %) = E¥()
sum of Hamiltonians %) = E¥0)
= Each depends on a single H.@%.@ = EX@
independent variable T e 5 .
. . xy,2) = H,(x) + L+ .z
4 The wave function is a
product of wave E-FE +E +E
functions for each mode
@ The energy is a sum of ¥(xy.2) = F0¥, ()2
the energies of the
modes

Solutions to the particle in a
3-D box
“®Each mode is exactly like the particle in
a 1-D box

@ Solutions and energies of these modes
are known

@ Overall solution
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Probability plots for a particle
in a 2-D box

@ Upper graph
= n =1
=N =1
@ Lower graph
= n =1
=N, =2
@ Note the symmetry of the
graphs and how it changes
depending on the
relationship of the
eigenvalues




Symmetry and degeneracy

@ For the particle in a 3-D box, the energies
depend on the size of the box in each
direction

# When a = b = c, the states (1,2,n,) and
(2,1,n,) necessarily have the same energy

# Symmetry increases the number of states at
a particular energy

= Degeneracy increases because of symmetry

= Very important relation used to determine
symmetry properties of systems

Quantum model problems

System Model Potential Differential Solutiohs
Energy Equation
Particle in a Bounded
Gas molecule ey EitherOorm  wave Sines and cosines
equations
Bond vibration Hanmofife (KI2)(1-T o) Hepmicy Hermite polynomials
oscillator < equation
Spherical
Molecularrotation Rigid rotor Either 0 or harmonic Spherical harmonic
(angular functions
momentum)
Legendre
Legendre’s polynomials,
Hydrogen atom Central-force 0 i Laguerre
problem Laguerre's polynomials,
equations spherical harmonic
functions
Compiex ysidma Multi-mode Complex Complicated Complex products of
systems equations functions

Summary

# A system’s wave function provides all possible information
on it
@ The wave function provides probabilities for values of
properties
= Born (Copenhagen) interpretation
= When a system is in an eigenstate, the value is exact
+ Repeated measurements give the same result for the property’s
value
= Example: particle in a 1-D box
+ Probability of position found from the square of the normalized
wave function for that position
+ States are not eigenfunctions of position
+ Expectation value for the position by averaging over probability
+ Energy eigenstate is also an eigenstate of p,?
@ Particle in a 3-D box
= Example of decomposition of a complex problem into simpler
problems
= Symmetry and degeneracy of energy levels




