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Physical Chemistry

Lecture 13
The Meaning of Wave Functions; 
Solving Complex Problems

Born’s interpretation of the 
wave function

It is not possible to measure all properties of 
a quantum system precisely
Max Born suggested that the wave function 
was related to the probability that an 
observable has a specific value.
Often called the Copenhagen interpretation
A parameter of interest is position (x,y,z)
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Requirements on a wave 
function

To be consistent with the Born 
interpretation, a wave function has to 
have certain characteristics.
 Square integrable over all space. (In this way it 

can be normalized and represent probability.)
 Single-valued (so that the probability at any point 

is unique)
 Continuous at all points in space.
 First derivative must be continuous at all points 

where the potential is continuous.

Example: particle in a 1-D box

Wave functions 

Square of wave 
functions 

Expectation values for a 
particle in a 1-D box

Expectation value of 
the position

Expectation value of 
the square of the 
position
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Expectation values for a 
particle in a 1-D box

Expectation value of 
the momentum

Expectation value of 
the square of the 
momentum
 An eigenvalue (!!!)
 Must be an eigenstate 
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Copenhagen interpretation for an 
arbitrary (mixed) state

Particle in a 1D box in 
an arbitrary state
  written as a sum of the 

energy eigenstates
The expectation value 
of the energy of the 
particle in this state is a 
sum of contributions
 Importantly, if one 

determines the 
expectation value by 
repeated measurements, 
one ONLY finds among 
the measurements 
elements of {Ek} 
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Particle in a 3-D box

The actual space in which we live is 
three-dimensional.
General problem of a particle in a 3-D 
box is appropriate to gas molecules
Example of a complex problem 
decomposed into a simpler problem
Hamiltonian
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Separation of variables
There is only one way for the following kind 
of equation to be generally satisfied

Each function must be equal to a constant, 
independent of either x or y
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Application to the particle in a 
3-D box

Overall problem may be 
separated into three 1-
D problems
Hamiltonian must be a 
sum of Hamiltonians
 Each depends on a single 

independent variable
The wave function is a 
product of wave 
functions for each mode
The energy is a sum of 
the energies of the 
modes
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Solutions to the particle in a 
3-D box

Each mode is exactly like the particle in 
a 1-D box
Solutions and energies of these modes 
are known
Overall solution
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Probability plots for a particle 
in a 2-D box

Upper graph
 nx = 1
 ny = 1

Lower graph
 nx = 1
 ny = 2

Note the symmetry of the 
graphs and how it changes 
depending on the 
relationship of the 
eigenvalues
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Symmetry and degeneracy
For the particle in a 3-D box, the energies 
depend on the size of the box in each 
direction
When a = b  c, the states (1,2,nz) and 
(2,1,nz) necessarily have the same energy
Symmetry increases the number of states at 
a particular energy
 Degeneracy increases because of symmetry
 Very important relation used to determine 

symmetry properties of systems

Quantum model problems
System Model

Potential 
Energy

Differential 
Equation

Solutions

Gas molecule
Particle in a 
Box

Either 0 or 
Bounded 
wave 
equations

Sines and cosines

Bond vibration
Harmonic 
oscillator

(k/2)(r-req)2 Hermite’s 
equation

Hermite polynomials

Molecular rotation Rigid rotor
Either 0 or 

Spherical 
harmonic 
(angular 
momentum)

Spherical harmonic 
functions

Hydrogen atom
Central-force 
problem

-Ze2/r

Legendre’s 
and 
Laguerre’s 
equations

Legendre 
polynomials,
Laguerre 
polynomials, 
spherical harmonic 
functions

Complex systems
Multi-mode 
systems

Complex
Complicated 
equations

Complex products of 
functions

Summary
A system’s wave function provides all possible information 
on it
The wave function provides probabilities for values of 
properties
 Born (Copenhagen) interpretation
 When a system is in an eigenstate, the value is exact

 Repeated measurements give the same result for the property’s 
value

 Example: particle in a 1-D box
 Probability of position found from the square of the normalized 

wave function for that position
 States are not eigenfunctions of position
 Expectation value for the position by averaging over probability
 Energy eigenstate is also an eigenstate of px

2

Particle in a 3-D box
 Example of decomposition of a complex problem into simpler 

problems
 Symmetry and degeneracy of energy levels


