
CHEM-443, Fall 2013, Section 010    Student Name_______________________ 
Midterm 2       November 4, 2013 
 
Directions: Please answer each question to the best of your ability. Make sure your response is legible, precise, 
includes relevant dimensional units (where appropriate), logically presented (include non-mathematical 
language if necessary to convey your intent clearly and transparently), and correct/accurate. You are free to 
use your Equations Handbook, Calculator, blunt/sharp writing instrument, and brain (your choice). If you have any 
doubt(s) about the meaning/intent of a question(s), please ask immediately so you do not wander off on an incorrect 
path! Please leave all responses to be graded on the exam sheet. Work on scratch paper will not be 
considered. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem Points 
1           /10 
2           /30 
3           /20 
4           /20 
5           /20 
Extra Credit           /5 
Total           /100 



 
1 (10 Points) Matching / Fill-In. Provide the proper response from the right column in the blanks provided in the left 
column. Keep in mind that some blanks in the left column may require multiple selections from the choices in the right 
column. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

  
1. A Legendre Transformation is a reversible transformation and leads to 
information loss.  True or False?________________H, False_______ 

A PA=PB (P = pressure) 

  
2. At equilibrium conditions for a two-phase (phase A and phase B), two 
chemical component (i and j) system at a particular temperature and 
pressure, what 3 relationships hold?_______A,Q,J__________ B  
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3. At equilibrium, the Gibbs Free Energy is maximized under conditions of 
constant temperature and entropy.  True or False? ____H, False______ 

C state function 

  
4. Entropy is a rigorous definition of chaos in a system, and maps in a 
unique, one-to-one fashion with the chaos function. True or False? _H, 
False____ 

D maximum 

  
5. The chemical potential of a species ‘A’ in an ideal gas mixture is 
____K____ that of the pure species at the same temperature and total 
pressure. 

E isothermal expansion 

  
6. The Third ‘Law’ of Thermodynamics guarantees that we can reach 0 
Kelvin (absolute temperature) and realize a perpetual motion machine; the 
only trivial limitation is that we have not found the right material. True or 
False? __________H, False_________ 

F       

!T
!P
"

#
$

%

&
'
S

=
!V
!S
"

#
$

%

&
'
P  

  
7. Total entropy change for a reversible adiabatic process must be zero. 
True or False?________G, true_____ 

G true 

  
8. Internal energy of a system is minimized at constant temperature and 
pressure. True or False?__H, False______ 

H false 

  
9. The thermodynamic potential that reaches an extremum under 
equilibrium condtions of constant volume and temperature is ___R____. 

I adiabatic compression 

  
10. A Maxwell Relation associated with a pure fluid, P-V work only 
system,  dH(S,P ) = TdS + VdP is ______F______.  

J.  µi
A (T,P) = µi

B (T,P)
  

 K less than 
 L intensive 
 M isothermal compression 
 N enthalpy 
 O mininum 
 P zero 
 Q TA=TB (T=temperature) 
 R Helmholtz Free Energy 
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2. (30 Points) For the following reaction, 
 

FeO(solid)+CO(gas)! Fe(solid)+CO2 (gas)  
 
the equilibrium constant (expressed in species partial pressures) at two temperatures has been determined 
to be: 
 
Temperature 700 Celsius 1200 Celsius 
KP 0.688 0.310 
 
 
A. Using this data and necessary assumptions, calculate at 700 Celsius the following: !GR

0,  !HR
0,  !SR

0 . 
Solution: 
 
At 700 Celsius (973.15K) we can find the value of the Gibbs free energy as: 
 

€ 

ln(KP ) =
−ΔGrxn

o

RT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ln(0.688) =
−ΔGrxn

o

(8.314 J
mol K

)(973.15K)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

ΔGrxn
o = 3026J /mol

 

 
The temperature dependence of equilibrium constant can be used to obtain the enthalpy of reaction, 
assuming that this value does not change over the range of temperatures considered here. 
 

€ 

ln(KP (T2)) − ln(KP (T1)) =
ΔHo

R
1
T1
−
1
T2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1.171183+ 0.37396644 =
ΔHo

(8.314J /mol −K)
1

973.15K
−

1
1473.15K

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0.79721656 =
ΔHo

(8.314J /mol −K)
1

973.15K
−

1
1473.15K

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ΔHo(T = 700Celsius) = −19004J /mol

 

 
The Entropy is thus: 
 

€ 

ΔSrxn
o =

ΔHrxn
o − ΔGrxn

o

T
=
−19004J /mol − 3026Jmol

973.15K

= −22.64 J
mol K

 

 
B. Calculate the mole fraction of carbon dioxide gas in the gas phase at 700 Celsius. 
 
For this problem, we treat the gases as ideal. As discussed in class and the textbook, we can write the 
equilibrium constant in terms of partial pressures of the ideal gases: 
 



€ 

KP =
pCO2 / pCO2

o

pCO / pCO
o =

xCO2
xCO

Ptotal
Ptotal

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = .688

xCO2
1− xCO2

= .688

xCO2 =
.688
1.688

= 0.408

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
3A. (20 Points) One mole of an ideal gas at 300K is isothermally compressed in a constant pressure 
process. The constant external pressure is Pexternal=2.494 x 105 Pa. The initial volume is 25.0 L and the final 
volume is 10.0 L. The surroundings are at temperature 300K.  Calculate the following three thermodynamic 
properties for this process: !STotal,!Ssystem,!Ssurroundings .  
 
 
Solution: 
 
For the system, we need to construct a reversible path. Since we have an ideal gas, isothermal process, 
this is as follows: 
 

€ 

dU = dqrev + dwrev = 0
dqrev = −dwrev = pdV = RTd(lnV )

 

 
Thus, 
 
 

€ 

dS =
dqrev
T

=
nRTd(lnV )

T
= nRd(lnV )

ΔSsys = nR ln V2

V1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = (1mol)(8.314J /mol K)ln 25

10
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −7.62J /  K

 

 
 
 
For the surroundings, we need the actual irreversible heat generated from the system’s perspective, which 
is taken as reversible from the large surroundings’ perspective. The surroundings are taken to be at 300K. 
The actual process is irreversible. The external pressure is initially higher than the equilibrium pressure that 
the system would have on its own, so the compression takes place irreversibly.  
 

€ 

dq = −dw
dq = −pextdV
= −(2.494x105Pa)dV
q = −(2.494x105Pa)(V2 −V1)
= (−15L)(2.494x105Pa)
= (−15L)(2.494x105Pa)(0.00000986923266716 atm)
= -37 L - atm

 

 
The surroundings’ entropy change is: 

€ 

ΔS =
−qsys
T

=
37L − atm
300K

101.325J
L − atm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

=12.5J /K
 

 
 
 
Total Entropy Change: 
 

€ 

ΔSTotal =12.5 − 7.62 = 4.88J /K  
 
 
 
 
 



 
4A (10 Points) On a graph with x-axis being entropy and y-axis being enthalpy, plot the steps of a Carnot 
Cycle. Recall that the Carnot Cycle consists of (not necessarily given in correct order) adiabatic expansion, 
adiabatic compression, isothermal compression, and isothermal expansion. Make sure the stages are in 
the correct order and label your graph axes and indicate each of the 4 steps of the Carnot Cycle on your 
plot; these will be required for full points. 
 
 
 

 
 
 
 
 
4B (10 Points) On a graph with x-axis being entropy and y-axis being internal energy, U, plot the steps of a 
Carnot Cycle. Recall that the Carnot Cycle consists of isothermal expansion, adiabatic expansion, 
isothermal compression, and adiabatic compression. Make sure the stages are in the correct order and 
label your graph axes and indicate each of the 4 steps of the Carnot Cycle on your plot; these will be 
required for full points. 
 
 

 
 
 
 
 
 
 
 
 



 
5 (20 Points) Thermodynamics of stretching a rubber band (polymer). This is a simple argument for 
considering the restoring force associated with the retraction of a rubber band to its original length after it is 
stretched. Starting from some initial equilibrium length, one can consider the reversible (quasi-static) work 
of stretching the rubber band to be: 
 

dwrev,sretching = f  dL  
 
where ‘f’ is the restoring force (force for retraction) exerted by the rubber band upon being stretched by a 
length ‘dL’. Including this term in the expression for the First ‘Law’ gives: 
 

dU = TdS ! pdV + f  dL  
 
A.  Based on this expression, what are the inherent variables for U, the internal energy? 
 
U = U(S,V,L) 
 
B. Use an appropriate Legendre Transform to generate a thermodynamic potential that is dependent in 
part on more practical, experimentally controllable variables such as Temperature (T) and Pressure (P). 
Keep in mind that you will still have more than two inherent variables that this potential will depend on. 
What is the name of the potential that you transformed to? 
 
 
new function = U(S,V,L) – TS – (-PV) 
d(new function) = dU(S,V,L) – SdT – TdS + PdV + VdP = TdS – pdV + fdL– SdT – TdS + PdV + VdP 
d(new function) = VdP – SdT + f dL 
 
This is Gibbs Free Energy , G(T,P, L) 
 
 
C. Using your knowledge of the definition of the Gibbs Free Energy, determine the expression for: 
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The expression should be in terms of ‘f’, temperature (T), and !f
!T
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Solution 
From the expression for the total differential of the Gibbs Free Energy, and the definition of the Gibbs Free 
Energy, we have: 
 

€ 

f =
∂G
∂L
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p,T

=
∂(H −TS)

∂L
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p,T

=
∂H
∂L
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p,T
−T ∂S

∂L
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p,T

 

 
We can now use a Maxwell Relation for the partial differential of entropy: 
 

€ 

∂S
∂L
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p,T

= −
∂f
∂T
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p,L

 

 
Thus, we obtain the requested partial derivative as: 
 

€ 

∂H
∂L
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p,T

= f −T ∂f
∂T
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
p,L

 

 
 



 
Extra Credit (5 Points) It can be shown that the partition function of an ideal gas of  “N” diatomic 
molecules in an external electric field, ε, is: 
 

€ 

Q =
[q]N

N!
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟     with      q = C kBT

µε

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  sinh µε

kBT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
 

 
Here, T is temperature, kB is Boltzmann’s constant, 

€ 

µ is the dipole moment of a single molecule, and C is a 
constant independent of ε.  The partition function, Q, relates to the Helmholtz Free Energy through the 
following equation: 
 

€ 

A = −kBT ln Q = −kBT ln [q]N

N!
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 
Using this information along with the Fundamental Thermodynamic Relation for the total derivative of the 
Helmholtz Free energy: 
 

€ 

dA = −SdT − PdV − (Nµ ) dε  
 
where 

€ 

µ  is the average dipole moment of a molecule in the direction of the external field, ε, show that at 
constant temperature and volume: 
 

€ 

µ = µ coth µε
kBT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

kBT
µε

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
 

 
Solution: 

€ 

µ =
−1
N

∂A
∂ε

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
T ,V

=
−1
N

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
∂
∂ε

−kBT ln [q]N

N!
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
T ,V

=
kBT
N

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
∂
∂ε

Nln(q) - ln(N!)( )T ,V =
kBT
N

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
∂
∂ε

Nln(q)( )T ,V = kBT
∂
∂ε

ln(q)( )T ,V

=
kBT
q

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
∂q
∂ε

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
T ,V

=
kBT
q

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
CkBT

µ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1
ε 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ sinh µε

kBT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

µ
kBTε
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ cosh µε

kBT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

=
kBT
µ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
CkBT
q

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1
ε 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ sinh µε

kBT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

µ
kBTε
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ cosh µε

kBT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

= kBTε

−1
ε 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ sinh µε

kBT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

µ
kBTε
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ cosh µε

kBT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

sinh µε
kBT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

= kBT
−1
ε

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + µcoth µε

kBT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

= µ
−kBT
µε

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + coth µε

kBT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = µ coth µε

kBT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

kBT
µε

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

 


