1. (4 Points) In class lecture, we discussed one particular equation of state (EOS), the ideal gas EOS. Another EOS is the van der Waals EOS which attempts to describe non-ideal (real) gases. The form of the van der Waals EOS is:

$$P(T,\overline{V}) = \frac{RT}{\overline{V} - b} - \frac{a}{\overline{V}^2}$$

P is pressure, T is absolute temperature, and \overline{V} is molar volume. What is the order of this polynomial equation with respect to $\underline{molar\ volume}$ for a single component species? Please derive an $\underline{explicit\ functional\ form}$ to support your answer.

Solution:

$$P = \frac{RT}{\overline{V} - b} - \frac{a}{\overline{V}^{2}}$$

$$P(\overline{V} - b)(\overline{V}^{2}) = RT\overline{V}^{2} - a(\overline{V} - b)$$

$$P\overline{V}^{3} - Pb\overline{V}^{2} = RT\overline{V}^{2} - a(\overline{V} - b)$$

$$P\overline{V}^{3} - (Pb + RT)\overline{V}^{2} + a\overline{V} - ab = 0$$
Third order
cubic

2. (3 Points) A mixture of 2.50×10^{-3} grams of O_2 , 3.51×10^{-3} moles of N_2 , and 4.67×10^{20} molecules of CO are placed in a vessel of volume 4.65 Liters at 15.4 Celsius. What is the <u>total pressure</u> in the vessel at this temperature and composition?

Solution:

$$\begin{split} N_{Total} &= N_{O_2} + N_{N_2} + N_{CO} \\ N_{Total} &= \left(0.00250 \text{ gr O}_2\right) \left(\frac{1mol}{(2)(15.9994)gr}\right) + 0.00351 + \left(\frac{4.67x10^{20}}{6.023x10^{23}}\right) \\ N_{Total} &= 0.000078129 + 0.00351 + 0.000775361 \\ N_{Total} &= 0.004363490 moles \\ P_{Total} &= \left(\frac{N_{Total}RT}{V}\right) = \left(\frac{(0.004363490)(0.08206 \text{ L atm mol}^{-1}K^{-1})(15.4 + 273.15)}{(4.65L)}\right) \\ P_{Total} &= 0.0217 atm \end{split}$$

3 (1 Point). Consider a state function $\overline{U}(T,\overline{V})$ where the independent variables are the usual state properties we measure for a pure fluid, single-phase system. Provide an expression for the total differential of $\overline{U}(T,\overline{V})$.

Solution:

$$d\overline{U}(T,\overline{V}) = \left(\frac{\partial \overline{U}}{\partial \overline{V}}\right)_T d\overline{V} + \left(\frac{\partial \overline{U}}{\partial T}\right)_{\overline{V}} dT$$

Physical Chemistry CHEM443 Quiz 1 (Fall 2014)

1. (4 Points). Prove the equality:

$$\left(\frac{\partial C_V}{\partial V}\right)_T = T \left(\frac{\partial^2 P}{\partial T^2}\right)_V$$

Remember that U is a state function (hence its total differential is an exact differential). Also, the following relation may be useful: $\left(\frac{\partial U}{\partial V}\right)_{-} = T\left(\frac{\partial P}{\partial T}\right)_{-} - P$.

Solution:

$$\begin{split} &\left(\frac{\partial C_{V}}{\partial V}\right)_{T} = \left(\frac{\partial}{\partial V}\left(\frac{\partial U}{\partial T}\right)_{V}\right)_{T} = \left(\frac{\partial}{\partial T}\left(\frac{\partial U}{\partial V}\right)_{T}\right)_{V} \\ &= \left(\frac{\partial}{\partial T}\left(T\left(\frac{\partial P}{\partial T}\right)_{V} - P\right)\right)_{V} \\ &= T\left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{V} + \left(\frac{\partial P}{\partial T}\right)_{V} - \left(\frac{\partial P}{\partial T}\right)_{V} \\ &= T\left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{V} \end{split}$$

2. (3 Point). For a change of 1 bar pressure at 298.15K, what is the fractional change in volume of a sample of water? Consider the fractional change relative to the initial sample volume. Solution:

$$\left(\frac{dV}{V}\right) = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_{P} + \frac{1}{V} \left(\frac{\partial V}{\partial P}\right)_{T}$$

$$\left(\frac{dV}{V}\right) = \alpha dT - \kappa_{T} dP$$

$$\ln\left(\frac{V_{2}}{V_{1}}\right) = \alpha \Delta T - \kappa_{T} \Delta P$$

$$f = \frac{\Delta V}{V_{1}} = \frac{V_{2} - V_{1}}{V_{1}} = \frac{V_{2}}{V_{1}} - 1$$

$$\frac{V_{2}}{V_{1}} = f + 1$$

$$\ln(f + 1) = \alpha \Delta T - \kappa_{T} \Delta P$$

$$f + 1 = e^{\alpha \Delta T - \kappa_{T} \Delta P} = e^{0 - (0.0000457 bar^{-1})(1bar)} = 0.9999543$$

$$f = 0.9999543 - 1 = -0.0000457$$

$$|f| = 0.0000457$$

There is a 0.00457% drop in the volume after the 1 bar pressure change. This is an example of why water is considered an incompressible fluid at normal thermodynamic conditions. This assumes constant expansion coefficients over this pressure change.

3. (1 Point).	
A. The Joule-Thomson coefficient for an ideal gas is zero. True or False?	True
B . Ideal Gas enthalpy is a function of _Temperature	?