Caveolin-1 Mediates Inflammatory Breast Cancer Cell Invasion via the Akt1 Pathway and RhoC GTPase†

Madhura Joglekar1,2, Weam O. Elbazanti1,2, Matthew D. Weitzman1,2, Heather L. Lehman1,2 and Kenneth L. van Golen1,2,3

1The Center for Translational Cancer Research, Dept. of Biological Sciences, The University of Delaware, 2The Helen F. Graham Cancer Center

Running Title: RhoC and Caveolin-1 in inflammatory breast cancer

Keywords: RhoC GTPase, Caveolin-1, Inflammatory breast cancer, Invasion, Metastasis

Abbreviations: IBC-inflammatory breast cancer; IDC-intraductal cancer; NB-normal breast; HMEC-human mammary epithelial cell; Cav1-caveolin-1; CSD-caveolin scaffolding domain; MβCD-methyl-β-cyclodextrin; siRNA-small inhibitor RNA.

3Correspondence: K.L. van Golen, Ph.D.
320 Wolf Hall
The University of Delaware Newark, DE 19716
Email: klvg@udel.edu Phone: (302) 831-2669
Fax: (302) 831-2281

†This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: [10.1002/jcb.25025]

Additional Supporting Information may be found in the online version of this article.

Received 18 July 2014; Revised 22 October 2014; Accepted 18 November 2014
Journal of Cellular Biochemistry
This article is protected by copyright. All rights reserved
DOI 10.1002/jcb.25025
Abstract

With a propensity to invade the dermal lymphatic vessels of the skin overlying the breast and readily metastasize, inflammatory breast cancer (IBC) is arguably the deadliest form of breast cancer. We previously reported that caveolin-1 is overexpressed in IBC and that RhoC GTPase is a metastatic switch responsible for the invasive phenotype. RhoC-driven invasion requires phosphorylation by Akt1. Using a reliable IBC cell line we set out to determine if caveolin-1 expression affects RhoC-mediated IBC invasion. Caveolin-1 was down regulated by introduction of siRNA or a caveolin scaffolding domain. The ability of the cells to invade was tested and the status of Akt1 and RhoC GTPase examined. IBC cell invasion is significantly decreased when caveolin-1 is down regulated. Activation of Akt1 is decreased when caveolin-1 is down regulated, leading to decreased phosphorylation of RhoC GTPase. Thus, we report here that caveolin-1 overexpression mediates IBC cell invasion through activation Akt1, which phosphorylates RhoC GTPase. This article is protected by copyright. All rights reserved
Introduction

Inflammatory breast cancer (IBC) is arguably the most aggressive and deadly form of locally advanced breast cancer (1). One distinctive feature of IBC is the presence of tumor emboli in the dermal lymphatic vessels of the skin overlying the breast (1), thus nearly all patients having axillary lymph node involvement and ~1/3 having gross distant metastasis (1).

Our laboratory has demonstrated that caveolin-1 and -2 (Cav1 and Cav2) are over expressed in IBC (2). Caveolins are suggested as potential novel targets for anti-metastatic therapy (3). Cav1 is a plasma membrane-associated protein typically located in invaginated cholesterol-rich lipid rafts called caveolae (4). Cav1 has a hairpin-like structure with both amino and carboxy terminal end and a domain termed the caveolin scaffolding domain (CSD) facing the cytoplasm (4). The CSD interacts with a variety of signaling molecules such as G-protein coupled receptors, small GTPases and growth factor receptors and regulates a variety of signaling pathways (3, 5-7).

RhoC GTPase is a small GTP-binding protein that dynamically controls nearly all aspects of cellular motility (8-10) drives invasion and metastasis of several cancers including IBC (11-15). RhoC shares 91% identity on the protein level with RhoA GTPase but is functionally distinct (10, 16, 17). Studies show that the Ras and Rho proteins contain a putative caveolin-binding domain that allows the GTPase to interact with Cav1 via the CSD (5, 18, 19). Introduction of a soluble CSD domain interferes with the interaction of Cav1 with proteins that have a putative CSD. In pancreatic cancer cells we demonstrate that interaction
of Cav-1 with RhoC GTPase results in decreased tumor cell invasion. In contrast, loss of Cav1 expression results in increased RhoC GTPase activation and p38 MAPK-mediated invasion of pancreatic cancer cells (5).

In the current study we set out to determine if IBC cell invasion is affected by Cav1 expression, specifically the interaction of Cav1 with RhoC GTPase. Here we show that depletion of Cav1 or introduction of a CSD leads to a significant decrease in Akt1 activation and a subsequent decrease in RhoC GTPase phosphorylation and IBC cell invasion.
Materials and Methods

Cell culture and treatments

All cell lines were verified for authenticity by the Johns Hopkins Genetics Resource Core Facility. Cell lines were propagated under defined, well-maintained culture conditions optimal for growth (20). The SUM149 IBC cell line is grown in Ham’s F12 medium (Mediatech, Inc., Manassas, VA, USA) supplemented with 5% Fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA, USA), 1% Penicillin/Streptomycin (Mediatech, Inc., Manassas, VA), antibiotic/antimycotic (Mediatech, Inc., Manassas, VA), Hydrocortisone (Invitrogen, Carlsbad, CA, USA), L-glutamine (Mediatech, Inc., Manassas, VA), and an insulin/transferring/selenium cocktail (Gibco, Carlsbad, CA) as previously described (2, 13, 21). Briefly, E6/E7 immortalized human mammary epithelial cells (HMECs) are grown in 5% FBS (Life Technologies, Gaithersburg, MD)-supplemented Ham’s F12 medium (Life Technologies) containing insulin, hydrocortisone, epidermal growth factor and cholera toxin (Sigma Chemical Co., St. Louis, MO) as previously described (2). MDA-MB-435 cells (verified breast cancer; a gift from Dr. Janet Price) are grown in MEM medium (Mediatech) with 5% FBS (Atlanta Biologicals, Lawrenceville, GA, USA), 1% Penicillin/Streptomycin, L-glutamine, sodium pyruvate and MEM non-essential amino acids (Mediatech). Mouse fibroblast NIH3T3 cells were purchased from ATCC and grown in DMEM medium (Mediatech) supplemented with 10% bovine calf serum (Atlanta Biologicals) and 1% Penicillin/Streptomycin (Mediatech). All cell lines were grown at 37°C in 95% air and 5% CO₂.
SUM149 IBC cells were treated with 5 μM of control peptide or CSD peptide (GenScript, Piscataway, NJ) fused to the antennapedia internalization sequence (AP) for 6 h prior to invasion assay. CSD sequence (amino acids 82-101, DGIWKASFTTFTVTKYWFYR) was synthesized as a fusion peptide to the C terminus of the antennapedia (AP) internalization sequence (RQIKIWFQNRRMKWKK). The control peptide sequence was a scrambled version of the CSD. In a different set of experiments cells were treated with 5 mM methyl-β-cyclodextrin (MβCD) for 2 h at 37°C in 95% air and 5% CO₂ as previously described (5). For inhibition of Rho GTPases (RhoA, -B and –C), cells were treated with C3 exoenzyme (Cytoskeleton Inc., Denver, CO) as previously described (13, 22). For pharmacologic inhibition of Akt, cells were treated with either 10 µM of Akt Inhibitor II (Calbiochem, Gibbstown, NJ) or the phosphatidylinositol-3 kinase (PI-3K) inhibitor 10 µM LY294002 (Selleckchem, Houston, TX) for 24 h at 37°C as previously described (23, 24).

In vitro transfection experiments.

For Cav1 depletion SUM149 IBC or MDA-MB-435 intraductal carcinoma cells were transfected with a SmartPool siRNA specific for Cav1 or a control siRNA targeted to bacterial LacZ (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) using FuGeneHD transfection reagent (Roche, Branchburg, NJ). SUM149 were transfected with siRNA directed against either Akt1 or a siRNA control (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) for 48 h using GeneSilencer siRNA
transfection reagent (Genlantis, Inc., San Diego, CA) (23). Transfected cells were kept at 37°C in 5% CO₂ for 48 h prior to their use in functional assays.

SUM149 IBC cells were transfected with plasmid DNA constructs of GFP tagged Cav1 as previously described (5) and RFP tagged RhoC (made in house). Transfected cells were kept at 37°C in 95% air and 5% CO₂ for 24 h prior to confocal imaging.

SUM149 cells were transfected with RhoCS73A, RhoCS73D, RhoAS73D or pcDNA6-His-LacZ using FuGeneHD transfection reagent (Roche, Branchburg, NJ). Transfection efficiency was 38-74% as determined by β-galactosidase staining of the LacZ-transfected cells after 16 h incubation at 37°C with X-gal staining solution (20 mg/ml X-gal, 5 mM potassium ferricyanide, 5 mM potassium ferrocyanide, and 2 mM magnesium chloride-hexahydrate in 1X PBS, pH 7.4 (Life Technologies, Inc., Carlsbad, CA). Transfected cells were allowed to incubate at 37°C for 48 h. RhoCS73D and RhoAS73D constructs were previously developed using the Quick Change Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA) (23).

Matrigel™ invasion assay

Invasion assays were performed using a Matrigel™ Invasion Chamber (BD Biosciences, San Jose, CA) with 8µ pore filters as previously described (23). Briefly, 1.25x10⁵ cells in serum-free medium were added to rehydrated invasion chambers and allowed to migrate toward normal growth medium for 24 h at 37°C. The media was aspirated and inserts gently wiped with a cotton swab. Crystal
violet was added into each insert for 30 min, washed with water and allowed to
dry at RT for 16 h. Cells were counted in continuous (10x) magnification fields.
Data are expressed as the percent invasion of the treated cells relative to the
untreated control cells.

Cell viability assay
SUM149 IBC cells were transfected with Cav1-specific or control siRNA for 48 h
as described above, harvested and seeded (500 cells/well) in triplicate in 96-well
plates. One plate was seeded for each time points. Fresh MTT (3-(4, 5-
dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (Invitrogen, Carlsbad, CA)
solution was prepared fresh for each trial experiment at a concentration of 5
mg/ml in phosphate buffered saline (PBS); 50 µl of MTT solution was added
directly to the medium at the appropriate time point, incubated at 37°C for 3 h
The media was aspirated and 100 µl of dimethyl sulfoxide (DMSO) added to
each well to dissolve the formazan crystals and absorbance read at 562 nm.
Data was represented as ratio of absorbance of Cav1 siRNA treated cells and
control cells for each time point.

Cell proliferation assay
SUM149 cells were plated on coverslips in 6-well plates and transfected with
Cav1-specific siRNA or control siRNA for 48 h. At the end of transfection, cells
were fixed with 4% paraformaldehyde and incubated with mouse anti-Ki-67
(Lifespan Biosciences, Seattle, WA) and DraqV (Cell Signaling Technology,
Boston, MA) nuclear stain. For Ki-67 staining an AlexaFluor 555 goat anti-mouse
IgG (Invitrogen Molecular Probes, Carlsbad, CA) secondary antibody was used. Immunofluorescence was performed on a Zeiss LSM5 High-speed Live confocal microscope housed in Delaware Biotechnology Institute. Cells were counted in 4 random non-overlapping areas per plate and data was expressed as ratio of Ki-67 expressing cells and DraqV expressing cells.

Sucrose gradient fractionation

SUM149 IBC cells and NIH3T3 cells were grown at 80% confluence, lysed in 2 ml of ice-cold 500 mM Na₂CO₃ followed by sonication. A total 4 ml of cell lysate was mixed with equal volume of 90% sucrose solution in MES buffered saline (25 mM MES, pH 6.5, 0.15 M NaCl). This mixture was placed in the bottom of an ultracentrifuge tube. This mixture was overlaid with 2 ml of 35% and 5% sucrose in MES buffered saline containing 250 mM Na₂CO₃. This assembly was centrifuged at 39,000 rpm for 18 h. Fractions (1 ml) were collected from top of the gradient and then subjected to TCA precipitation. Fractions were mixed with 1x Laemelli buffer containing 20 nM dithiothreitol, heat denatured for 5 min by boiling, separated by SDS-PAGE on Criterion pre-cast 4-20% Tris-HCl gels (BioRad, Hercules, CA) followed by immunoblotting.

Immunoprecipitation and Immunoblotting

Proteins were harvested from cell cultures using RIPA buffer and 5 µl/ml protease inhibitor cocktail (Calbiochem) and/or phosphatase inhibitor (Thermo Scientific, Waltham, MA, USA). Protein concentration was evaluated using a
BCA Protein Assay kit (Pierce Scientific, Rockford, IL) at a wavelength of 562 nm. For western blot analysis, aliquots of 30 µg were mixed with Laemelli buffer. For immunoprecipitation, whole cell lysates (300 µg) were incubated ON at 4ºC with primary antibodies specific for RhoC GTPase (developed in house) (23, 25, 26) or Akt1 (Cell Signaling, Beverly, MA). Antibody-bound proteins were incubated with Protein A/G PLUS-Agarose (Santa Cruz Biotechnology, Santa Cruz, CA) or donkey anti-chicken IgY-agarose (Gallus Immunotech, Inc., Cary, NC) at 4ºC for 3 h. Samples were washed 5x with PBS.

All protein samples were heat denatured, separated by SDS-PAGE on pre-cast 4-20% Tris-HCl gels (BioRad, Hercules, CA), transferred to nitrocellulose, blocked with 3% powdered milk (Nestle Carnation) in PBS with 0.05% Tween-20 (Sigma Chemical Co., St. Louis, MO). For immunoblot analysis, immobilized proteins were probed using antibodies specific for total Akt1 (Cell Signaling, Beverly, MA) Cav1 (BD Transduction Laboratories, San Jose CA), and β-actin (Cell signaling, Beverly MA), α-tubulin (Abcam, Cambridge, UK). Akt1 immunoprecipitates were incubated with a phospho-Akt (S473) antibody (Santa Cruz Biotechnology, Santa Cruz, MA). RhoC GTPase immunoprecipitates were immunoblotted with a anti-phospho-Serine or anti-RhoGDIα (Cell Signaling, Beverly, MA). Protein bands were visualized by ECL (Millipore, Co., Billerica, MA) and intensities measured with ImageJ v1.46.
Rho GTPase activation assay

Levels of active RhoC GTPase were determined as previously described using a GST-Rho Binding Domain and detected using a chicken anti-RhoC developed by our laboratory (13, 26, 27).

Transmission electron microscopy

SUM149 IBC cells were grown on coverslips at around 70-80% confluence. Cells were fixed using 4% paraformaldehyde in 0.1 M phosphate buffer for 1 h. Cells were washed and residual aldehyde groups were further removed by 0.1% NaBH$_4$ in 0.1 M phosphate buffer. Cells were blocked in AURION Goat blocking solution (Electron Microscopy Sciences, Hatfield, PA) containing 0.05% saponin for 1 h. Specimens were then incubated overnight at 4°C in caveolin-1 antibody (BD Transduction Laboratories, San Jose, CA) in BSA-c (Electron Microscopy Sciences, Hatfield, Pa) containing 0.05% saponin followed by incubation in secondary antibody ultra small goat anti-rabbit gold conjugate reagent, 1:100 in BSA-containing 0.05% saponin for 3 h at RT. These labeled specimens were post-fixed in 2% glutaraldehyde in 0.1 M phosphate buffer for 30 min and then in 1% aqueous osmium tetroxide for 45 min. Samples were incubated in silver enhancement mixture for 30-40 min at RT followed by dehydration in ascending ETOH (25, 50, 75, 95, 100%) 15 min each. Samples were subjected to series of infiltrations using different ratios of Embed-812 resin and 100% anhydrous ETOH. Each filtration was carried out for 1 h in permanox dishes. Lastly samples were embedded in fresh resin and polymerized at 60°C for 48 h.
Samples were then sectioned and examined using Transmission Electron Microscope: Zeiss LIBRA 120 at Delaware Biotechnology Institute, Delaware.

RNA extraction, reverse transcription and PCR analysis
Total RNA was harvested from cells using Trizol reagent (Invitrogen, Carlsbad, CA) and converted to cDNA using AMV-RT kit (Promega, Madison, WI) per the manufacturer’s instructions. The caveolin-1 transcript was amplified using 10 μM concentration of Cav1 forward and reverse primers (Integrated DNA Technologies, Inc., Coralville, Iowa) in total 25 μl reaction volume as previously described (5). GAPDH was used as a loading control. PCR products were separated on 1% TAE agarose gel and visualized by ethidium bromide staining. Band intensities of ethidium bromide stained PCR products were measured with ImageJ v1.46. Band intensities were normalized to GAPDH for the comparison purposes.

For quantitative (q)PCR, RNA was isolated from the cell lines using Trizol Reagent (Invitrogen, Carlsbad, CA) and cDNA was synthesized from the RNA using the Promega Reverse Transcription kit (Promega Corp., Madison, WI) per manufacturer’s recommendations. Caveolin-1 and GAPDH primers (Integrated DNA Technologies, Inc., Coralville, Iowa) were diluted to a final concentration of 10 μM. The cDNA synthesized from the isolated RNA was diluted to a final concentration of 4 ng/μl. Reactions were prepared as a bulk “master mix” using the ABI SYBR Green PCR Master Mix (Applied Biosystems Inc., Foster City, CA) for each target gene/primer pair used. A 5 μl aliquot of cDNA was pipetted into
each well of the ABI 96-well plate, and 20 µl of the reaction master mix was added. Plates were covered with ABI adhesive cover, centrifuged at 1000 rpm to mix the contents, and PCR performed on an ABI 7000 real-time qPCR machine housed in the Center for Translational Cancer Research (University of Delaware).

RhoGAP and RhoGEF Activity Assays

To determine RhoGAP activity, SUM149 IBC cells were plated in 6-well tissue culture dishes and allowed to reach 75% confluence. Cells were transfected using FuGeneHD transfection reagent with a scrambled control siRNA, Akt1-specific siRNA, RhoCS73A, or RhoCS73D plasmid. The Akt pharmacologic inhibitor was added directly to the cells. The untreated cells were used as a control. Treatments were allowed to incubate for 24-48 h and protein was harvested. Protein was harvested using RIPA buffer as previously described. The entire biochemical reaction was carried out in a 96-well tissue culture plate at room temperature. Twenty-five micrograms of each protein sample was added to 1x RhoGAP assay reaction buffer. An 800 µM GTP solution was added to each reaction mixture, the plate was shaken for five seconds, and the reaction was incubated at room temperature for 20 min. Immediately after the incubation, CytoPhos reagent (Cytoskeleton, Inc., Denver, CO) was added into each well and a green color was allowed to develop for approximately 6 min, indicating inorganic phosphate production. The absorbance of the plate was read at a wavelength of 650 nm. In addition to the protein samples of interest, control
reactions included His-tagged RhoC GTPase protein only (Cytoskeleton, Inc., Denver, Co) or p50 RhoGAP, and reaction buffer only.

To determine RhoGEF activity, SUM149 IBC cells were plated in 6-well tissue culture dishes and allowed to reach 75% confluence. Cells were transfected as described above. 10 µM of Akt pharmacologic inhibitor was added directly to the cells. The untreated cells were used as a control. Treatments were allowed to incubate for 24-48 h and protein was harvested. Protein was harvested using RIPA buffer as previously described. The entire biochemical reaction was carried out in a black flat-bottom 96-well half plate at RT. Twenty-five micrograms of each protein sample was added to 2x exchange assay reaction buffer (Cytoskeleton, Inc., Denver, CO), which contains 1.5 µM mant-GTP (the fluorescent nucleotide analog N-methylantraniloyl-GTP). Distilled water was added to adjust the volume to 90 µl in each well. The fluorescence of the reaction mixture immediately was read (ex: 450nm, em: 460 nm) for 150 s [five readings]. After five readings 10 µl of either GEF, hDbs protein (8µM) or distilled water (intrinsic control) was added to in respective wells and immediately after pipette up and down twice, fluorescence was read (ex: 450nm, em: 460 nm) for 30 min [60 readings]. In addition to the protein samples of interest, control reactions included His-tagged RhoC GTPase protein only (Cytoskeleton, Inc., Denver, CO), hDbs- His protein, and reaction buffer only.
Data analysis

In vitro data were analyzed using a GraphPad software package for Windows (Prism 4.0). A $p \leq 0.005$ was considered statistically significant. Experiments were performed in at least triplicate with multiple replicates per experiments. Error bars represent standard deviation.
Results

Our original Cav1 study did not include a comparison of normal breast with IBC and non-IBC. We began by extending our original observations comparing Cav1 expression levels in normal breast (NB), non-IBC intraductal carcinoma (IDC) and IBC from a publicly available database (www.oncomine.org). Figure 1A are Whisker plots for Cav1 expression compiled from multiple array analyses. Since NB, IDC and IBC were not represented on single array, data from multiple arrays were analyzed. A significant decrease in Cav1 expression is observed in IDC as compared to NB. Cav1 expression is significantly higher in IBC versus IDC. Although it is not a direct comparison, a trend is suggested for Cav1 expression. Consistently, IDC is observed to have significantly lower expression than IBC, with reported loss of expression in many cases. Similar results are observed in those studies comparing NB with IDC. NB is found to have slightly, yet significantly higher expression of Cav1 than IDC. Although the data from multiple array experiments are not directly comparable, a gradient trend of expression is suggested with Cav1 expression in IDC<NB<<IBC (Figure 1A).

The trend of Cav1 expression observed in the patient samples was also observed in the cell lines on both the mRNA and protein level. Figure 1B is a comparison of Cav1 mRNA and protein expression in immortalized human epithelial cells (HMECs), the MDA-MB-435 IDC and the SUM149 IBC cell lines. Although the SUM149 IBC cell line was the only cell line tested in this study it is reported to accurately mirror what is observed in patient tumors and has been successfully used to study IBC biology (28). Cav1 message levels were
determined by qPCR and protein by immunoblotting. Cav1 expression is significantly lower in the MDA-MB-435 IDC cells compared with the HMECs, while the SUM149 IBC cells have significantly higher expression.

We next set out to determine where Cav1 localizes in IBC cells. Figure 2A are representative immunofluorescence staining images. Punctate Cav1 expression appears to be localized to both the plasma membrane and in the cytoplasm.

Cytoplasmic Cav1 expression was further examined by transmission electron microscopy (TEM). Figure 2B are representative sections of cells showing Cav1 along several vesicular bodies, potentially represent abundant caveosomes. At the plasma membrane Cav1 appears to form clusters in caveolae.

We next fractionated the SUM149 IBC cells and as controls, NIH3T3 cells. The majority of Cav1 localized to fractions 5 onwards (Figure 2C), representing caveolae associated Cav1 expression at the plasma membrane.

Using SmartPool siRNA to deplete Cav1 levels in the SUM149 cells, we empirically determined the amount of siRNA used to approach levels comparable to the HMECs. Figure 3A are the results of a qPCR demonstrating an average 2-fold decrease in Cav1-specific siRNA transfected compared with untransfected control (-) SUM149 cells. Figure 3B is a representative western blot with corresponding quantitation comparing untransfected (-), a non-specific siRNA control for bacterial LacZ and siRNA for Cav1 transfected SUM149 cells. Cav1
depletion results in an average 1.7-fold decrease in protein levels, which is comparable with the HMECs.

To determine if Cav1 expression affects IBC cell proliferation, we performed Ki-67 staining and an MTT assay (Figure 3C and 3D). No difference in the number of proliferating cells after Cav1 depletion compared with controls was observed.

We next set out to determine if Cav1 depletion affected IBC invasion. Figure 4A are the results of Matrigel→ invasion assays performed after altering Cav1 levels in the SUM149 cells. Depletion of Cav1 siRNA leads to a significant 90% decrease in invasion. We also treated the IBC cells with methyl-β- cyclodextrin (MβCD), which chelates cholesterol thereby displacing Cav1. MβCD treatment is less efficient than siRNA depletion but still results in a significant 45% decrease in invasion. Lastly, use of a caveolin scaffolding domain (CSD) disrupts interactions of proteins with Cav1. Introduction of the CSD results in a significant 85% decrease in IBC cell invasion. Conversely, depletion of Cav1 in the IDC MDA-MB-435 cells lead to an approximate 25% increase in tumor cell invasion (Supplemental Figure 1).

We previously demonstrated that RhoC GTPase is required to drive the IBC invasive phenotype and inhibition or depletion of RhoC leads to loss of the cells ability to invade (13, 21, 29). Our previous work in pancreatic cancer demonstrated that interactions between Cav1 and RhoC GTPase-regulated signaling and cell invasion (5). To determine if an interaction between Cav1 and RhoC GTPase mediates invasion of the SUM149 IBC cell line, we transfected
the IBC cells with a Cav1-GFP and RhoC-RFP. **Figure 4B** is a representative image demonstrating apparent co-localization of the two proteins on the periphery of the cell, mostly at the leading edge of the lamellipodia. The inset shows detail of RhoC GTPase (red) expression, which appears to be co-localized with Cav1 (yellow) along the leading edge of the lamellipodia. Since immunofluorescence has limitations in actually determining co-localization of proteins we performed immunoprecipitation experiments but were unable to confirm a direct physical interaction between RhoC GTPase and Cav1 by immunoprecipitation (**Figure 4B**).

To determine whether Cav1 affects RhoC GTPase activity outside of a direct interaction between the two molecules, we performed a Rho activation assay. **Figure 4C** is representative activation assay with corresponding quantitation. RhoC GTPase is active in the control SUM149 cells. Introduction of CSD, which disrupts Cav1 function in general or Cav1 depletion with siRNA significantly decreased RhoC GTPase activity in the IBC cells by 42% and 48%, respectively, while total RhoC protein levels were not affected.

Although RhoC GTPase activity was significantly decreased, greater than 50% of RhoC activity remained. Thus, we questioned whether Cav1 could be affecting another functional aspect of RhoC GTPase. Previously, we demonstrated phosphorylation of RhoC GTPase by Akt1 was required for IBC cell motility (23). Evidence suggests a role for Cav1 activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway (30). Introduction of the CSD or depletion of Cav1 with siRNA led to a significant decrease in active
phosphorylated Akt1 (Figure 5A). RhoC GTPase has a putative Akt phosphorylation consensus sequence at serine 73 (23). Previously we observed that a decrease in active Akt1 led to a decrease in serine phosphorylation on RhoC GTPase and subsequently decreased IBC cell invasion (23). Figure 5B demonstrates that introduction of the CSD or depletion of Cav1 leads to a significant decrease in serine phosphorylated RhoC GTPase.

Finally, to demonstrate a direct link from Cav1 through the Akt1 pathway to RhoC GTPase, we transfected SUM149 cells with a RhoC serine 73 phosphomimetic mutant (RhoCS73D). As a control we transfected IBC cells with an identical mutant of RhoA GTPase (RhoAS73D) and a RhoC mutant that cannot be phosphorylated at serine 73 (RhoCS73A). We then introduced a control siRNA, siRNA for Cav1 or treated the cells with pharmacologic inhibitors of Akt or the phosphatidylinositol-3 kinase (PI-3K) pathway. As shown in Figure 6, when parental SUM149 cells are transfected with siRNA to Cav1 or treated with pharmacologic inhibitors to either the PI-3K pathway or Akt, cell invasion is significantly reduced. Identical results are obtained when the IBC cells are transfected with RhoAS73D and RhoCS73A. In contrast, expression of RhoCS73D into the SUM149 cells rescues the invasive capabilities of the cells. As a control cells were treated with C3 exoenzyme, a potent inhibitor of RhoA, -B and -C. Treatment of cells with C3 inhibited the invasive capabilities of the IBC cells. Phosphorylation of RhoC GTPase by Akt1 does not affect the interaction of RhoC with upstream effector proteins that control GTPase activity (Supplemental Figure 2). Specifically, phosphorylation does not affect the
interaction of RhoC with RhoGDIs (Supplemental Figure 3). The exchange of GDP for GTP by RhoGEFs is also unaffected (Supplemental Figure 4). Similarly, the rate of GTP hydrolysis by RhoC interacting with RhoGAPs is unaltered (Supplemental Figure 5).
Discussion

Inflammatory breast cancer (IBC) is a highly invasive and metastatic form of breast cancer that is phenotypically and molecularly distinct from other forms of breast cancer (31). Expression and activation of RhoC GTPase is known to drive the invasive and metastatic phenotype of IBC cells (13, 24, 32). Further, we demonstrated that RhoC is a substrate for Akt1 and phosphorylation of RhoC by Akt1 is required for IBC cell invasion (23). Previously, we demonstrated a role for a direct interaction of RhoC GTPase with Cav1 in pancreatic cancer cells (5). A direct interaction of RhoC GTPase with Cav1 prevented pancreatic cancer cell invasion thus, loss of Cav1 during pancreatic cancer progression results in activation of RhoC and acquisition of an invasive phenotype.

IBC patient and tumor samples express high levels of Cav1 (33). The role of Cav1 in non-inflammatory breast cancers has been a matter of speculation for several years with evidence to suggest that Cav1 has roles as both a tumor and metastasis suppressor in breast and other cancers (34-36). Recent evidence suggests that it is a breast tumor suppressor with a significant role in regulating estrogen signaling and proliferation (reviewed in (37)). A role for Cav1 in the stroma of breast tumors, specifically in cancer-associated fibroblasts, is suggested (reviewed in (38)). Increased expression of Cav1 in cancer-associated fibroblasts was associated with a decreased nodal involvement. Recent evidence demonstrates hypermethylation of the Cav1 promoter in breast cancer patient stromal cells correlates with nodal metastasis (39). Differential methylation of regions that flank CpG islands (termed CpG shores) regulate
Cav1 expression in non-IBC (40). We previously observed that the caveolin promoter was hypomethylated in IBC tumors and cells lines (33, 41). Analysis of IBC patient samples suggest that increased Cav1 protein expression is primarily associated with basal-like breast cancers (42). By its very nature, IBC is fast growing, highly invasive and by definition, metastatic. Thus, Cav1 likely would not act as a tumor or metastasis suppressor in IBC as suggested for non-inflammatory breast cancers, which is what is reflected in our survey of publicly available array data.

The SUM149 IBC cells express high levels of Cav1 relative to the MDA-MB-435 IDC (confirmed breast cancer cells) and immortalized human mammary epithelial cells. Although the SUM149 was the only IBC cell line tested, it has been used successfully in a number of studies of IBC biology. Further, similar what was observed in patient samples (33), Cav1 is expressed both at the membrane and in the cytoplasm of the IBC cells. To determine the role of Cav1 overexpression in IBC we attempted to reduce Cav1 expression to a level similar to human mammary epithelial cells. We purposely did not attempt to decrease Cav1 expression to what is observed in IDC cells. Decreasing Cav1 levels did not affect IBC cell growth or increase apoptosis (data not shown). However, we did observe a significant decrease in the ability of IBC cells to invade across a Matrigel coated filter in response to a chemoattractant. The opposite effect was shown for the MDA-MB-435 IDC cells, which is consistent with previous reports (35).
Cav1 overexpression has a role in melanoma cell motility, invasion and metastasis. Interestingly, melanoma and IBC share several phenotypic similarities such as lymphatic invasion forming intralymphatic emboli the propensity to form skin metastases and the requirement for RhoC GTPase to drive metastasis (14, 25, 43). Melanoma metastasis is regulated by interaction of Cav1 with RhoC GTPase leading to the activation of downstream signaling cascades and integrin expression (44).

Cav1 is known to scaffold several different types proteins including G-protein coupled receptors, non-receptor tyrosine kinases and small GTPases such as RhoC and RhoA GTPases. Thus, introduction of a CSD interferes with Cav1 function by disrupting its interaction with a number of proteins. RhoC GTPase has 91% homology to RhoA GTPase, yet is functionally distinct. Both RhoC and RhoA GTPases have a common Cav1 binding motif (5, 18). Immunofluorescence data suggests co-localization of RhoC with Cav1 in IBC cells. However, we were unable to confirm a physical interaction between RhoC GTPase and Cav1 by immunoprecipitation suggesting an actual lack of physical interaction of RhoC GTPase with Cav1. The apparent co-localization of RhoC with Cav1 by immunofluorescence may have been due to the limitations of the technique, namely performing a 2 dimensional visualization of a 3 dimensional cell. Activation of RhoC was decreased by ~40% with Cav1 depletion. SUM149 IBC cell migration and invasion is dependent upon RhoC signaling (13, 24, 32). Our previous studies demonstrate that phosphorylation of serine 73 on RhoC GTPase by Akt1 is essential for IBC cell invasion (23). Positive and negative
regulation of PI-3K signaling by Cav1 is reported for different cell types (30, 45). Our data suggests that phosphorylation of RhoC does not alter the interaction of the GTPase with RhoGEFs, RhoGAPs or GDIs, nor does it affect activity. Since serine 73 lies within the hinge region of RhoC GTPase, which is able to uniquely undergo two conformational changes (46), we are currently determining if phosphorylation affects the interaction of RhoC with downstream effectors. The decrease in RhoC activity may be due to an indirect interaction of a RhoGEF or RhoGAP with Cav1 and RhoC GTPase since this was not observed when the PI-3K pathway or Akt was inhibited.

Data from this study suggests that Cav1 expression in IBC cells affects the PI-3K pathway and Akt1 activation, which in turn leads to the phosphorylation of RhoC GTPase, mediating IBC cell invasion. These data furthers our understanding of the mechanisms underlying IBC migration and may also shed light on the current observation that women using cholesterol-lowering drugs have a better prognosis (47). Cav1 is shown to potentiate Akt1 activation in growth factor stimulated prostate cancer cells and also through mechanotransduction in vascular smooth muscle cells (48, 49). Cav1 could potentiate Akt1 activation in IBC cells by either sequestering and inactivating proteins involved in the inactivation of Akt1. Alternatively, high levels of Cav1 could lead to the assembly of signaling complexes to activate Akt1. Finally, as described in endothelial cells, cholesterol-lowering statins could lead to a decrease in Cav1 levels and subsequently decreased Akt1 activation and reduced metastasis (50). The possible mechanisms of how overexpressed
Cav1 affects Akt1 activation will be further discerned as the role of statins in IBC is studied.
Acknowledgements

The authors would like to thank Min Lin, M.D., Galina Radunsky, M.D., Kate Groh, M.D. and Jeff Caplan, Ph.D. for expert technical assistance. This work was supported in part by the Congressionally Directed Medical Research Program, Breast Cancer Research Program, DAMB-17-03-1-0728 (KLvG), W81WXH-06-1-00495 (KLvG) and W81XWH-08-1-0356 (KLvG). This study is communicated on behalf of the Inflammatory Breast Cancer International Consortium.
References

Figure Legends

Figure 1. Caveolin-1 expression in inflammatory breast cancer (IBC) relative to other breast cells. Panel A are whisker plots showing a comparison of Cav1 levels in normal breast (NB) compared to intraductal carcinoma (IDC) and IDC compared to IBC. Data were compiled from separate public data sets available through Oncomine. Panel B is a comparison of Cav1 mRNA and protein levels in immortalized human mammary epithelial cells (HMEC), and the cell type of origin-matched MDA-MB-435 IDC cell and SUM149 IBC cell lines. Error bars represent standard deviation (SD). A representative of three separate immunoblots for Cav1 with actin as a loading control is shown.

Figure 2. Caveolin-1 expression and localization in SUM149 IBC cells. Panel A is immunofluorescence for Cav1. Cells nuclei were counterstained with DAPI. Panel B is transmission electron microscopy (TEM) using a gold-labeled antibody specific for Cav1. Panel C is a representative western blot performed on cell fractions isolated on a sucrose density gradient. Proteins in fractions 3-7 are at the plasma membrane. The higher fractions are proteins within the cell cytoplasm. NIH3T3 cells were used as control for normal expression and cellular distribution of Cav1. Tubulin was used a cytoplasmic protein control. All experiments were performed in at least triplicate.

Figure 3. Depletion of caveolin-1 in the SUM149 IBC cell line. Panel A demonstrates a significant (*p<0.005) 50% decrease in Cav1 mRNA 48 h after introduction of a siRNA SmartPool specific for Cav1 as determined by qPCR on multiple samples. Panel B is a representative western blot of Cav1 protein after siRNA depletion. Untreated control (-), siRNA to bacterial LacZ was used as a non-specific siRNA control (LacZ) and SmartPool siRNA to Cav1 were compared, β-actin was used as a loading control. To determine relative levels of Cav1 protein, densitometry was performed on each individual western blot and Cav1 levels normalized to β-actin levels. The untreated controls are set to 100%.
Depletion of Cav1 resulted in a significant (*p<0.005) decrease in protein levels. Panel C are the results of Ki-67 staining. Immunofluorescence was performed using a Ki-67 antibody and the number of Ki-67 positive cells were counted and normalized to DAPI stained nuclei. Panel D are the results of an MTT assay to determine changes in cell metabolism and growth. Error bars represent standard deviation. All experiments were performed in at least triplicate.

Figure 4. Caveolin-1 and IBC cell invasion. Panel A are the results of a Matrigel invasion assay after depletion of Cav1 with a specific siRNA SmartPool, treatment with methyl-β-cyclodextrin (MβCD) or introduction of a caveolin scaffolding domain fused to the C terminus of the antennapedia internalization sequence (AP-CSD). A siRNA to LacZ was used as a nonspecific control for the Cav1 siRNA, PBS as a vehicle control for MβCD and a scrambled CSD sequence fused to the C terminus of the antennapedia internalization sequence for the AP-CSD. SUM149 invasion was significantly decreased (*p<0.005) with all treatments in comparison with the appropriate controls. Panel B is a representative immunofluorescence image of SUM149 cells co-transfected with Cav1-GFP and RhoC-RFP. The inset on the merge details an area of the lamellipodia showing RhoC GTPase and Cav1. Arrows indicate example areas of co-localization. Scale bars are 5 μm. Panel C is a representative RhoC GTPase activation assay. Cell lysates were incubated with the rhotekin Rho binding domain fused to GST and glutathione-sepharose beads. An aliquot of the cell lysate was used for the detection of total RhoC. Active GTP-bound and total RhoC was visualized by immunoblotting using anti-RhoC IgY developed in our laboratory. Densitometry was performed on each individual activation assay and RhoC-GTP was normalized to total RhoC. A significant decrease in RhoC activity (*p<0.005) was observed in the CSD and siRNA treated cells compared with the controls. Error bars represent standard deviation. All experiments were performed in at least triplicate.
Figure 5. Down regulation of caveolin-1 leads to decreased activation of Akt1.
(A) Representative blot and quantification for active and total Akt1. SUM149 cells were treated with either CSD or siRNA specific for Cav1 (siCav1). Proteins were isolated, immunoprecipitation for Akt1 performed followed for immunoblotting for phospho-Akt. Immunoblots were stripped and reprobed for total Akt1. Densitometry of each blot was performed using ImageJ. Results are expressed as percent expression of the control (Ctrl: siRNA specific for LacZ). Active Akt1 was significantly (*p<0.005) less in the CSD and siCav1 treated SUM149 cells. Error bars represent standard deviation. (B) Representative immunoprecipitation/immunoblot for serine phosphorylated RhoC GTPase. After treatment, protein was isolated, RhoC GTPase immunoprecipitated and the amount of serine phosphorylated RhoC detected using a pan-phosphoserine antibody. Representative control immunoblots for total RhoC GTPase and beta-actin are also shown. Each experiment was performed in triplicate.

Figure 6. Caveolin-1 effects IBC cell invasion via Akt1 phosphorylation of RhoC GTPase. Transfection of SUM149 IBC cells with a RhoC GTPase phosphomimetic mutant (RhoCS73D) and RhoA GTPase phosphomimetic mutant (RhoAS73D). IBC cells were either untreated or co-transfected with either RhoC- or RhoAS73D and C3 exoenzyme, LacZ siRNA control, siRNA to Cav1 (siCav1) or treated with a pharmacologic inhibitor to Akt (iAkt) or the PI-3K pathway (LY294002) for 48 h and placed in a Matrigel™ invasion assay. SUM149 RhoCS73D cells were compared with untransfected and RhoAS73D transfected SUM149 IBC cells. Data are from 3 separate experiments and represented as mean ± SD (*p<0.005).
Figure 1

A.

Relative Gene Expression (AU)

IDC | Normal Breast | IBC

B.

Relative Expression (AU)

mRNA | Protein

Actin

Figure 1
Figure 2
Figure 3

A.

B.

C.

D.

Figure 3
Figure 4
Figure 5

(A) Western blot analysis of pAkt1 (S473) and Total Akt1 with treatments Ctrl, CSD, and siCav1.

(B) Western blot analysis for i.p. αRhoC GTPase, i.b. = αphosphoserine for Ctrl, CSD, LacZ, and Cav1 siRNA treatments.

Figure 5
Figure 6: Graph showing the number of invaded cells for different conditions.

- siLacZ
- siCav1
- iAkt (10 μM)
- LY294002 (10 μM)
- C3 Exo.

The graph compares the number of invaded cells for SUM149, SUM149 RhoAS73D, SUM149 RhoCS73A, and SUM149 RhoCS73D under various conditions.