Relative Quantification
Applied Biosystems 7300/7500 Real Time PCR System

Introduction and Example RQ Experiment
Designing an RQ Experiment
Performing Reverse Transcription
Generating Data from RQ Plates
Generating Data in an RQ Study

Primer Extended on mRNA
5′
Reverse Primer
5′
Synthesis of 1st cDNA strand
cDNA
Oligo d(T) or random hexamer
3′
5′
Authorized Thermal Cycler

This instrument, Serial No __________, is an Authorized Thermal Cycler. Its purchase price includes the up-front fee component of a license under United States Patent Nos. 4,683,195, 4,683,202 and 4,965,188, owned by Roche Molecular Systems, Inc., and under corresponding claims in patents outside the United States, owned by F. Hoffmann-La Roche Ltd, covering the Polymerase Chain Reaction ("PCR") process to practice the PCR process for internal research and development using this instrument. The running royalty component of that license may be purchased from Applied Biosystems or obtained by purchasing Authorized Reagents. This instrument is also an Authorized Thermal Cycler for use with applications licenses available from Applied Biosystems. Its use with Authorized Reagents also provides a limited PCR license in accordance with the label rights accompanying such reagents.

Purchase of this product does not itself convey to the purchaser a complete license or right to perform the PCR process. Further information on purchasing licenses to practice the PCR process may be obtained by contacting the Director of Licensing at Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404.

DISCLAIMER OF LICENSE: No rights for any application, including any in vitro diagnostic application, are conveyed expressly, by implication or by estoppel under any patent or patent applications claiming homogeneous or real-time detection methods, including patents covering such methods used in conjunction with the PCR process or other amplification processes. The 5' nuclease detection assay and certain other homogeneous or real-time amplification and detection methods are covered by United States Patent Nos. 5,210,015, 5,487,972, 5,804,375 and 5,994,056, owned by Roche Molecular Systems, Inc.; by corresponding patents and patent applications outside the United States, owned by F. Hoffmann-La Roche Ltd; and by United States Patent Nos. 5,538,848 and 6,030,787, and corresponding patents and patent applications outside the United States, owned by Applera Corporation. Purchase of this instrument conveys no license or right under the foregoing patents. Use of these and other patented processes in conjunction with the PCR process requires a license. For information on obtaining licenses, contact the Director of Licensing at Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, or The Licensing Department, Roche Molecular Systems, Inc., 1145 Atlantic Avenue, Alameda, California, 94501, USA.

Trademarks

Applied Biosystems, MicroAmp, Primer Express, ROX, and VIC are registered trademarks of Applera Corporation or its subsidiaries in the US and/or certain other countries.

AB (Design), ABI Prism, Applera, Assays-by-Design, Assays-on-Demand, Celera Genomics, FAM, iScience, iScience (Design), and MultiScribe are trademarks of Applera Corporation or its subsidiaries in the US and/or certain other countries.

AmpErase, AmpliTaq Gold, and TaqMan are registered trademarks of Roche Molecular Systems, Inc.

SYBR Green is a registered trademark of Molecular Probes, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

All other trademarks are the sole property of their respective owners.
Contents

RQ Experiment Workflow .. iii

Preface ... vii
How to Use This Guide .. vii
How to Obtain More Information viii
How to Obtain Services and Support viii
Send Us Your Comments .. viii

Chapter 1
Introduction and Example RQ Experiment
Overview ... 1
About the 7300/7500 System 2
About Relative Quantification 2
About RQ Experiments ... 2
Example RQ Experiment ... 5

Chapter 2
Designing an RQ Experiment
Workflow ... 11
Selecting the PCR Method 12
Specifying the Components of an RQ Experiment 13
Selecting the Chemistry ... 15
Selecting One- or Two-Step RT-PCR 16
Choosing the Probes and Primers 17

Chapter 3
Performing Reverse Transcription
Workflow ... 19
Guidelines for Preparing RNA 20
Converting Total RNA to cDNA 21

Chapter 4
Generating Data from RQ Plates
Workflow ... 23
Before You Begin .. 24
Preparing the PCR Master Mix 24
Preparing the Reaction Plate .. 25
Creating a Relative Quantification (RQ) Plate Document 26
Specifying Thermal Cycling Conditions and Starting the Run 30
Analyzing and Viewing RQ Plate Data .. 32
Exporting RQ Plate Data ... 34

Chapter 5 Analyzing Data in an RQ Study 35
Workflow ... 35
Creating an RQ Study Document ... 36
Configuring Analysis Settings ... 38
Adjusting the Baseline and Threshold .. 40
Analyzing and Viewing the Results of the RQ Study 45
Reanalyzing an RQ Study ... 49
Omitting Samples from a Study ... 50
Exporting RQ Study Data ... 52

Appendix A Creating Detectors 53

References 55
Index 57
How to Use This Guide

Purpose of This Guide
This manual is written for principal investigators and laboratory staff who conduct relative quantification studies for gene expression using the Applied Biosystems 7300/7500 Real Time PCR System (7300/7500 system).

Assumptions
This guide assumes that you have:

- Familiarity with Microsoft® Windows® XP operating system.
- Knowledge of general techniques for handling DNA and RNA samples and preparing them for PCR.
- A general understanding of hard drives and data storage, file transfers, and copying and pasting.

If you want to integrate the 7300/7500 system into your existing laboratory data flow system, you need networking experience.

Text Conventions

- **Bold** indicates user action. For example:

 Type 0, then press **Enter** for each of the remaining fields.

- **Italic** text indicates new or important words and is also used for emphasis. For example:

 Before analyzing, *always* prepare fresh matrix.

- A right arrow bracket (>) separates successive commands you select from a drop-down or shortcut menu. For example:

 Select **File > Open > Spot Set**.

User Attention Words
The following user attention words appear in Applied Biosystems user documentation. Each word implies a particular level of observation or action as described below:

Note: Provides information that may be of interest or help but is not critical to the use of the product.

IMPORTANT! Provides information that is necessary for proper instrument operation, accurate chemistry kit use, or safe use of a chemical.

CAUTION Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

WARNING Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.
Safety
Refer to the Applied Biosystems 7300/7500 Real Time PCR System Installation and Maintenance Getting Started Guide and the Applied Biosystems 7300/7500 Real Time PCR System Site Preparation Guide for important safety information.

How to Obtain More Information

For more information about using the 7300/7500 system, refer to:

• Applied Biosystems 7300/7500 Real Time PCR System Online Help
• Applied Biosystems 7300/7500 Real Time PCR System Allelic Discrimination Getting Started Guide (PN 4347822)
• Applied Biosystems 7300/7500 Real Time PCR System Plus/Minus Getting Started Guide (PN 4347821)
• Applied Biosystems 7300/7500 Real Time PCR System Absolute Quantification Getting Started Guide (PN 4347825)
• Applied Biosystems 7300/7500 Real Time PCR System Installation and Maintenance Getting Started Guide (PN 4347828)
• Applied Biosystems 7300/7500 Real Time PCR System Site Preparation Guide (PN 4347823)
• Sequence Detection Systems Chemistry Guide (PN 4348358)
• ABI PRISM® 7700 Sequence Detection System User Bulletin #2: Relative Quantitation of Gene Expression (PN 4303859)

How to Obtain Services and Support

For the latest services and support information for all locations, go to http://www.appliedbiosystems.com, then click the link for Support.

At the Support page, you can:

• Search through frequently asked questions (FAQs)
• Submit a question directly to Technical Support
• Order Applied Biosystems user documents, MSDSs, certificates of analysis, and other related documents
• Download PDF documents
• Obtain information about customer training
• Download software updates and patches

In addition, the Support page provides access to worldwide telephone and fax numbers to contact Applied Biosystems Technical Support and Sales facilities.

Send Us Your Comments

Applied Biosystems welcomes your comments and suggestions for improving its user documents. You can e-mail your comments to:

techpubs@appliedbiosystems.com
Introduction and Example RQ Experiment

Overview

1. Introduction and Example RQ Experiment
2. Designing an RQ Experiment
3. Performing Reverse Transcription
4. Generating Data from RQ Plates
5. Performing an RQ Study
6. About the 7300/7500 system
7. About relative quantification
8. About RQ experiments
9. About the example RQ experiment

Notes

Relative Quantification Getting Started Guide for the 7300/7500 System
About the 7300/7500 System

Description
The Applied Biosystems 7300/7500 Real Time PCR System (7300/7500 system) uses fluorescent-based PCR chemistries to provide quantitative detection of nucleic acid sequences using real-time analysis and qualitative detection of nucleic acid sequences using end-point and dissociation-curve analysis.

Relative Quantification Assay
The 7300/7500 system allows you to perform several assay types using plates or tubes in the 96-well format. This guide describes the relative quantification (RQ) assay type. For information about the other assay types, refer to the Sequence Detection Systems Chemistry Guide (SDS Chemistry Guide) and the Online Help for the 7300/7500 system (Online Help).

About Relative Quantification

Definition
Relative quantification determines the change in expression of a nucleic acid sequence (target) in a test sample relative to the same sequence in a calibrator sample. The calibrator sample can be an untreated control or a sample at time zero in a time-course study (Livak and Schmittgen, 2001). For example, relative quantification is commonly used to compare expression levels of wild-type with mutated alleles or the expression levels of a gene in different tissues.

RQ provides accurate comparison between the initial level of template in each sample, without requiring the exact copy number of the template. Further, the relative levels of templates in samples can be determined without the use of standard curves.

Real-time PCR Assays
RQ is performed using real-time PCR. In real-time PCR assays, you monitor the progress of the PCR as it occurs. Data are collected throughout the PCR process rather than at the end of the PCR process (end-point PCR).

In real-time PCR, reactions are characterized by the point in time during cycling when amplification of a target is first detected rather than by the amount of target accumulated at the end of PCR.

There are two types of quantitative real-time PCR: absolute and relative.

About RQ Experiments

RQ Experiment Workflow
In this document, the term “RQ experiment” refers to the entire process of relative quantification, beginning with generating cDNA from RNA (reverse transcription) and ending with analyzing an RQ study. The RQ experiment workflow is shown on page iii.
RQ Studies with the 7300/7500 System

The data-collection part of an RQ assay is a single-plate document, called the RQ Plate. Amplification data from PCR runs is stored with sample setup information on the plate.

The data-analysis part of an RQ assay is a multi-plate document, called the RQ Study. You can analyze up to ten RQ plates in a study. RQ Study documents neither control the instrument, nor do they provide tools for setting up or modifying plates.

IMPORTANT! RQ Study software is an optional package for the 7300 instrument but is standard for the 7500 instrument.

The following figure illustrates the RQ Study process.

![Diagram of RQ Study process]

Note: The 7300/7500 system software uses only the comparative method (\(\Delta\Delta C_T\)) to calculate relative quantities of a nucleic acid sequence.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>The initial cycles of PCR in which there is little change in fluorescence signal.</td>
</tr>
<tr>
<td>Threshold</td>
<td>A level of (\Delta R_n)—automatically determined by the SDS software or manually set—used for (C_T) determination in real-time assays. The level is set to be above the baseline and sufficiently low to be within the exponential growth region of the amplification curve. The threshold is the line whose intersection with the Amplification plot defines the (C_T).</td>
</tr>
<tr>
<td>Threshold cycle ((C_T))</td>
<td>The fractional cycle number at which the fluorescence passes the threshold.</td>
</tr>
<tr>
<td>Passive reference</td>
<td>A dye that provides an internal fluorescence reference to which the reporter dye signal can be normalized during data analysis. Normalization is necessary to correct for fluorescence fluctuations caused by changes in concentration or in volume.</td>
</tr>
<tr>
<td>Reporter dye</td>
<td>The dye attached to the 5’ end of a TaqMan probe. The dye provides a signal that is an indicator of specific amplification.</td>
</tr>
<tr>
<td>Normalized reporter ((R_n))</td>
<td>The ratio of the fluorescence emission intensity of the reporter dye to the fluorescence emission intensity of the passive reference dye.</td>
</tr>
<tr>
<td>Delta (R_n) ((\Delta R_n))</td>
<td>The magnitude of the signal generated by the specified set of PCR conditions. ((\Delta R_n = R_n - \text{baseline}))</td>
</tr>
</tbody>
</table>

Terms Used in Quantification Analysis
The figure below shows a representative amplification plot and includes some of the terms defined in the previous table.

![Amplification Plot](image)

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required User-Supplied Materials</td>
<td></td>
</tr>
<tr>
<td>ABI PRISM™ 6100 Nucleic Acid PrepStation</td>
<td>Applied Biosystems (PN 6100-01)</td>
</tr>
<tr>
<td>High Capacity cDNA Archive Kit</td>
<td>Applied Biosystems (PN 4322171)</td>
</tr>
<tr>
<td>TaqMan® Universal PCR Master Mix</td>
<td>Applied Biosystems (PN 4304437)</td>
</tr>
<tr>
<td>MicroAmp® Optical 96-Well Reaction Plate</td>
<td>Applied Biosystems (PN 4306757)</td>
</tr>
<tr>
<td>Optical Adhesive Cover</td>
<td>Applied Biosystems (PN 4311971)</td>
</tr>
<tr>
<td>Labeled primers and probes from one of the following sources:</td>
<td></td>
</tr>
<tr>
<td>• Assays-on-Demand™ Gene Expression Products (predesigned primers and probes)</td>
<td>Applied Biosystems Web site</td>
</tr>
<tr>
<td>• Assays-by-Design™ service (predesigned primers and probes)</td>
<td>Contact your Applied Biosystems Sales</td>
</tr>
<tr>
<td>• Primer Express Software (custom-designed primers and probes)</td>
<td>Representative</td>
</tr>
<tr>
<td>Reagent tubes with caps, 10-mL</td>
<td>Applied Biosystems (PN 4305932)</td>
</tr>
<tr>
<td>Centrifuge with adapter for 96-well plates</td>
<td>Major laboratory supplier (MLS)</td>
</tr>
<tr>
<td>Gloves</td>
<td>MLS</td>
</tr>
<tr>
<td>Microcentrifuge</td>
<td>MLS</td>
</tr>
<tr>
<td>Microcentrifuge tubes, sterile 1.5-mL</td>
<td>MLS</td>
</tr>
</tbody>
</table>

Notes
Example RQ Experiment

Overview
To better illustrate how to design, perform, and analyze RQ experiments, this section guides you through an example experiment. The example experiment represents a typical RQ experiment setup that you can use as a quick-start procedure to familiarize yourself with the RQ workflow. Detailed steps in the RQ workflow are described in the subsequent chapters of this guide. Also in the subsequent chapters are Example Experiment boxes that provide details for some of the related steps in the example experiment.

Description
The objective of the example RQ experiment is to compare the levels of expression of 23 genes in the liver, kidney, and bladder tissue of an individual.

The experiment is designed for singleplex PCR – samples and endogenous controls were amplified in separate wells. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serves as the endogenous control. Four replicates of each sample and endogenous control are amplified. (In this experiment, an entire 96-well-plate is devoted to each tissue because the four replicates of each of the 23 genes plus the endogenous control require all 96 wells.)

Predesigned and labeled primer/probe sets are selected from the Applied Biosystems Assays-on-Demand™ product line.

Reactions are set up for two-step RT-PCR, where the High Capacity cDNA Archive Kit and the TaqMan® Universal PCR Master Mix are used for reverse transcription and PCR, respectively.

Data are generated by running three RQ plates, one for each tissue.

All three plates are analyzed in an RQ study, with the liver samples serving as the calibrator.

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclease-free water</td>
<td>MLS</td>
</tr>
<tr>
<td>Pipette tips, with filter plugs</td>
<td>MLS</td>
</tr>
<tr>
<td>Pipettors, positive-displacement</td>
<td>MLS</td>
</tr>
<tr>
<td>Safety goggles</td>
<td>MLS</td>
</tr>
<tr>
<td>Vortexer</td>
<td>MLS</td>
</tr>
</tbody>
</table>
Example RQ Experiment Procedure

1. Design the experiment, as explained in Chapter 2.
 a. Designate the targets, calibrator, endogenous control, and replicates.
 b. Order the reagents for TaqMan® probe-based chemistry.
 c. Order the appropriate Assays-on-Demand™ products, which provide predesigned primers and probes for the 23 genes.

2. Isolate total RNA from liver, kidney, and bladder tissue, as explained in Chapter 3.

3. Generate cDNA from total RNA using the High Capacity cDNA Archive Kit.
 a. Prepare the reverse transcription (RT) master mix as indicated in the table to the right.
 Additional guidelines are provided in the High Capacity cDNA Archive Kit Protocol.
 \[\text{10} \times \text{RT Buffer} \] may cause eye, skin, and respiratory tract irritation. Read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

 b. Prepare the cDNA archive plate by pipetting into each well of the plate:
 - 50 µL RT master mix
 - 30 µL nuclease-free water
 - 20 µL RNA sample
 Make sure the amount of total RNA converted to cDNA is 10 to 100 ng in 5 µL for each 50-µL PCR reaction.

<table>
<thead>
<tr>
<th>Component</th>
<th>µL/Reaction</th>
<th>µL/21 reactions^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X Reverse Transcription Buffer</td>
<td>10</td>
<td>210</td>
</tr>
<tr>
<td>25X dNTPs</td>
<td>4</td>
<td>84</td>
</tr>
<tr>
<td>10X random primers</td>
<td>10</td>
<td>210</td>
</tr>
<tr>
<td>MultiScribe™ Reverse Transcriptase, 50 U/µL</td>
<td>5</td>
<td>105</td>
</tr>
<tr>
<td>Nuclease-free water</td>
<td>21</td>
<td>441</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>1050</td>
</tr>
</tbody>
</table>

a. Each reaction is 100 µL (see step 3b). If you need 5 µL cDNA for each of 104 PCR reactions per tissue (see step 4), you need 6 RT reactions per tissue. Extra volume (enough for one additional RT reaction per tissue) is included to account for pipetting losses, as well as extra cDNA for archiving.

Notes
c. Program the thermal cycler using the indicated parameter values for the RT step of the two-step RT-PCR method.

Note: You have the option to use one-step RT-PCR, as explained in “Selecting One- or Two-Step RT-PCR” on page 16.

d. Store the cDNA at −20 °C until use.

4. Prepare the PCR master mix as indicated in the table to the right.

See Chapter 4 for more information.

Note: The reaction volumes for Assay-by-Design products are specified in the product insert; those for primers and probes designed with Primer Express software follow the universal assay conditions described in Chapter 4.

CHEMICAL HAZARD. TaqMan Universal PCR Master Mix may cause eye and skin irritation. Exposure may cause discomfort if swallowed or inhaled. Read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

5. Prepare the reaction plates.

a. Label the reaction plates, ensuring that you include an endogenous control on each plate.

b. Pipette 50 µL of the appropriate PCR master mix (containing cDNA) into each well of the plate.

c. Keep the reaction plates on ice until you are ready to load them into the 7300/7500 system.

### Step Type	Time	Temperature
HOLD | 10 min | 25 °C
HOLD | 120 min | 37 °C

PCR Master Mix

<table>
<thead>
<tr>
<th>Reaction Component</th>
<th>µL/Sample</th>
<th>µL/5 Reactions</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan Universal PCR Master Mix (2X)</td>
<td>25.0</td>
<td>125.0</td>
<td>1×</td>
</tr>
<tr>
<td>20X Assays-on-Demand™ Gene Expression Assay Mix</td>
<td>2.5</td>
<td>12.5</td>
<td>1×</td>
</tr>
<tr>
<td>cDNA sample</td>
<td>5.0</td>
<td>25.0</td>
<td>10 to 100 ng</td>
</tr>
<tr>
<td>Nuclease-free water</td>
<td>17.5</td>
<td>87.5</td>
<td>—</td>
</tr>
<tr>
<td>Total</td>
<td>50.0</td>
<td>250</td>
<td>—</td>
</tr>
</tbody>
</table>

a. Contains forward and reverse primers and labeled probe.
b. 24 master mixes are prepared, one for each of 23 genes plus the endogenous control. Volume for five reactions (4 replicates plus extra) to account for pipetting losses.
6. Create an RQ Plate document as described in “Creating a Relative Quantification (RQ) Plate Document” on page 26. Briefly,
 a. Select File > New.
 b. Select Relative Quantification (ddCt) Plate in the Assay drop-down list, then click Next >.

 IMPORTANT! You cannot use AQ Plate documents for RQ assays and vice versa. The information stored in AQ and RQ Plate documents is not interchangeable.

 c. Add detectors to the plate document, then click Next >.
 d. Specify the detectors and tasks for each well, then click Finish.

 You cannot add RQ plates to RQ studies unless you have specified sample names, as indicated in the message shown to the right. Click OK.

 The SDS software displays the Well Inspector.

7. Enter the sample names in the Well Inspector (View > Well Inspector).

 IMPORTANT! If your experiment does not use all the wells on a plate, do not omit the wells from use at this point. You can omit unused wells after the run is completed. For more information about omitting wells, refer to the Online Help.

 The figure on the right shows a completed plate set up.

Notes

Relative Quantification Getting Started Guide for the 7300/7500 System
8. Start the RQ run.
 a. Select the Instrument tab. By default, the standard PCR conditions for the PCR step of the two-step RT-PCR method are displayed.
 b. Select File > Save As, enter a name for the RQ Plate document, then click Save.
 c. Load the plate into the instrument.
 d. Click Start.

After the run, a message indicates if the run is successful or if errors were encountered.

9. Create an RQ Study document as described in “Creating an RQ Study Document” on page 36. Briefly,
 a. Select File > New.
 b. Select Relative Quantification (ddCt) Study in the Assay drop-down list, then click Next >.

 IMPORTANT! RQ Studies are an optional add-on for the 7300 instrument; they are built-in for the 7500 instrument.

 c. Click Add to add plates to the study, then click Open.

 Note: You can add up to 10 RQ plates to an RQ study.

 d. Click Finish.
10. Analyze the RQ data, as explained in Chapter 5.
 a. Configure analysis settings (), using the Auto Ct option and analyze the data.

 Note: See “Configuring Analysis Settings” on page 38 for details.

 If you know the optimal baseline and threshold settings for your experiment, you can use the Manual Ct and Manual Baseline options.

 b. If necessary, manually adjust the baseline and threshold.

 Note: See “Adjusting the Baseline and Threshold” on page 40.

 c. Click , or select Analysis > Analyze to reanalyze the data.

 d. View analysis results by clicking a tab in the RQ Results pane.

 e. If desired, save the RQ Study document.

Conclusion

As shown in the figure on the right, expression levels of CCR2 are greater in the liver than in the kidney or bladder tissues of this individual.
Chapter 2

Designing an RQ Experiment

Workflow

- Introduction and Sample RQ Experiment
- Designing an RQ Experiment
- Performing Reverse Transcription
- Generating Data from RQ Plates
- Performing an RQ Study

Select the PCR method

Specify the components of an RQ experiment

Select the chemistry

Select one-step or two-step RT-PCR

Choose probes and primers

See page 12
See page 13
See page 15
See page 16
See page 17

Notes

Absolute Quantification Getting Started Guide for the 7300/7500 System 11
Selecting the PCR Method

Types of PCR Methods

PCR is performed as either of the following:

- A singleplex reaction, where a single primer pair is present in the reaction tube or well. Only one target sequence or endogenous control can be amplified per reaction.
- A multiplex reaction, where two or more primer pairs are present in the reaction. Each primer pair amplifies either a target sequence or an endogenous control.

Selection Criteria

Both methods give equivalent results for relative quantification experiments. To select a method, consider the:

- Type of chemistry you use to detect PCR products – Singleplex PCR can use either SYBR® Green or TaqMan reagent-based chemistry. Multiplex PCR can use only TaqMan chemistry.
- Amount of time you want to spend optimizing and validating your experiment – Amplifying target sequences and endogenous controls in separate reactions (singleplex PCR) requires less optimization and validation than multiplex PCR. Among the factors to consider in multiplex PCR are primer limitation, the relative abundance of the target and reference sequences (the endogenous control must be more abundant than the targets), and the number of targets in the study.

IMPORTANT! As the number of gene targets increases, the singleplex format is typically more effective than the multiplex format because less optimization is required.

Additionally, running multiple reactions in the same tube multiplex PCR increases throughput and reduces the effects of pipetting errors.

For more information about multiplex and singleplex PCR, refer to the SDS Chemistry Guide (PN 4348358).

Example Experiment

The singleplex PCR method is used in the example experiment because:

- The number of targets to be amplified (23 genes, plus one endogenous control) is large
- Optimization and validation requirements are reduced for singleplex experiments

Notes
Specifying the Components of an RQ Experiment

After you decide to use the singleplex or multiplex method, you need to specify the required components of the RQ experiment for every sample:

- A target – The nucleic acid sequence that you are studying.
- A calibrator – The sample used as the basis for comparative results.
- An endogenous control – A gene present at a consistent expression level in all experimental samples. By using an endogenous control as an active reference, you can normalize quantification of a cDNA target for differences in the amount of cDNA added to each reaction. Note that:
 - Each sample type (for example, each tissue in a study comparing multiple tissues) requires an endogenous control.
 - If samples are spread across multiple plates, each plate must have an endogenous control. Additionally, every plate must include an endogenous control for every sample type on the plate.

Typically, housekeeping genes such as β-actin, glyceraldehyde-3-phosphate (GAPDH), and ribosomal RNA (rRNA), are used as endogenous controls, because their expression levels tend to be relatively stable.

- Replicate wells – For relative quantification studies, Applied Biosystems recommends the use of three or more replicate reactions per sample and endogenous control to ensure statistical significance.

For more information about these requirements, refer to the *SDS Chemistry Guide*.
Example Experiment

In the example experiment, the objective is to compare the expression levels of several genes in the liver, kidney, and bladder tissue of an individual. The 23 genes of interest, including ACVR1, ACVR2, CCR2, CD3D, and FLT4, are the targets and the liver samples serve as the calibrator.

The SDS software sets gene expression levels for the calibrator samples to 1. Consequently, if more ACRV1 is in the kidney than in the liver, the gene expression level of ACRV1 in the kidney is greater than 1. Similarly, if less CD3D is in the bladder than in the liver, the gene expression level of CD3D in the bladder is less than 1.

Because RQ is based on PCR, the more template in a reaction, the more the PCR product and the greater the fluorescence. To adjust for possible differences in the amount of template added to the reaction, GAPDH serves as an endogenous control. (Expression levels of the endogenous control are subtracted from expression levels of target genes.) An endogenous control is prepared for each tissue.

The experiment includes three sets of endogenous controls—one for each tissue. Also, the endogenous control for each tissue must be amplified on the same plate as the target sequences for that tissue. Finally, note that the experiment uses the singleplex PCR format, and therefore, the endogenous controls are amplified in wells different from the target wells.

Four replicates of each sample and endogenous control are performed to ensure statistical significance (see below).

Note: The example RQ experiment requires a separate plate for each of the three tissues because of the large number of genes being studied. Experiments can also be designed so that several samples are amplified on the same plate, as shown in the following table.

In the example RQ experiment, each plate contains a single sample type (tissue). The endogenous control for each tissue is on the same plate as the targets for that tissue.

If the example experiment were run with multiple sample types on the same plate, an endogenous control for each sample type must also be included on the same plate, as shown here.
Selecting the Chemistry

About Chemistries

Applied Biosystems offers two types of chemistries that you can use to detect PCR products on real-time instruments, as explained in the following table. Both TaqMan probe-based and SYBR Green I dye chemistries can be used for either one- or two-step RT-PCR. For more information about these chemistries, refer to the *SDS Chemistry Guide*.

<table>
<thead>
<tr>
<th>Chemistry</th>
<th>Process</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan® reagents or kits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TaqMan reagent-based chemistry uses a fluorogenic probe to enable detection of a specific PCR product as it accumulates during PCR cycles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advantages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Increases specificity with a probe. Specific hybridization between probe and target generates fluorescence signal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Provides multiplex capability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Optimized assays available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Allows 5′-nuclease assay to be carried out during PCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limitations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binds nonspecifically to all double-stranded DNA sequences. To avoid false positive signals, check for nonspecific product formation using dissociation curve or gel analysis.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SYBR® Green I reagents

Description

Uses SYBR Green I dye, a double-stranded DNA binding dye, to detect PCR products as they accumulate during PCR cycles.

Advantages

- Reduces cost (no probe needed)
- Amplifies all double-stranded DNA
- Yields a melting profile of distinct PCR runs
- Increases sensitivity for detecting amplification products relative to product length

Limitations

Binds nonspecifically to all double-stranded DNA sequences. To avoid false positive signals, check for nonspecific product formation using dissociation curve or gel analysis.

Legend

- **FORWARD PRIMER**
- **REVERSE PRIMER**
- **REPORTER**
- **QUENCHER**
- **STRAND DISPLACEMENT**
- **POLYMERIZATION**

Notes

Absolute Quantification Getting Started Guide for the 7300/7500 System
Selecting One- or Two-Step RT-PCR

When performing real-time PCR, you have the option of performing reverse transcription (RT) and PCR in a single reaction (one-step) or in separate reactions (two-step). The reagent configuration you use depends on whether you are performing one-step or two-step RT-PCR:

- Two-step RT-PCR is performed in two separate reactions: first, total RNA is reverse transcribed into cDNA, then the cDNA is amplified by PCR. This method is useful for detecting multiple transcripts from a single cDNA template or for storing cDNA aliquots for later use. AmpErase® UNG enzyme can be used to prevent carryover contamination.

IMPORTANT! This guide assumes that RQ experiments are designed using two-step RT-PCR. For additional options, refer to the *SDS Chemistry Guide*.

- In one-step RT-PCR, RT and PCR take place in one buffer system, which provides the convenience of a single-tube preparation for RT and PCR amplification. However, you cannot use the carryover prevention enzyme, AmpErase® UNG (uracil-N-glycosylase), with one-step RT-PCR. For more information about UNG, refer to the *SDS Chemistry Guide*.
Choosing the Probes and Primers

Choose probe and primer sets for both your target and endogenous control sequences. Applied Biosystems provides three options for choosing primers and probes:

- Assays-on-Demand™ Gene Expression Products – Provide you with optimized, ready-to-use TaqMan 5′-nuclease assays for human, mouse, or rat transcripts. For information on available primer/probe sets, go to: http://www.allgenes.com
- Assays-by-Design SM Service – Designs, synthesizes, formulates, and delivers quality-controlled primer and probe sets. Use this service if the assay you need is not currently available. To place an order, contact your Applied Biosystems representative.
- Primer Express® Software – Helps you design primers and probes for your own quantification assays. For more information about using this software, refer to the Primer Express Software v2.0 User’s Manual (PN 4329500).

Example Experiment

Premade probes and primers for all the genes of interest are available from the Assays-on-Demand™ product line, which uses TaqMan chemistry. Two-step RT-PCR is performed using the reagents recommended for TaqMan reagent- or kit-based chemistry in the table above.

<table>
<thead>
<tr>
<th>Chemistry</th>
<th>Step</th>
<th>Reagent</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan reagents or kits</td>
<td>RT</td>
<td>High Capacity cDNA Archive Kit</td>
<td>4322171</td>
</tr>
<tr>
<td></td>
<td>PCR</td>
<td>TaqMan Universal PCR Master Mix</td>
<td>4304437</td>
</tr>
<tr>
<td>SYBR Green I reagents or kits</td>
<td>RT</td>
<td>High Capacity cDNA Archive Kit</td>
<td>4322171</td>
</tr>
<tr>
<td></td>
<td>PCR</td>
<td>SYBR Green Master Mix</td>
<td>4309155</td>
</tr>
<tr>
<td></td>
<td>RT and PCR</td>
<td>SYBR Green RT-PCR Reagents</td>
<td>4310179</td>
</tr>
</tbody>
</table>

Choosing the Probes and Primers

Choose probe and primer sets for both your target and endogenous control sequences. Applied Biosystems provides three options for choosing primers and probes:

- Assays-on-Demand™ Gene Expression Products – Provide you with optimized, ready-to-use TaqMan 5′-nuclease assays for human, mouse, or rat transcripts. For information on available primer/probe sets, go to: http://www.allgenes.com
- Assays-by-Design SM Service – Designs, synthesizes, formulates, and delivers quality-controlled primer and probe sets. Use this service if the assay you need is not currently available. To place an order, contact your Applied Biosystems representative.
- Primer Express® Software – Helps you design primers and probes for your own quantification assays. For more information about using this software, refer to the Primer Express Software v2.0 User’s Manual (PN 4329500).

If you ordered Assays-on-Demand or Assays-by-Design products, probes are already labeled with a reporter dye. If you design your own assays, you need to specify a reporter dye for your custom probe(s). For singleplex experiments, you can use the same dye for targets and endogenous control(s). For multiplex experiments, the probe for the target is typically labeled with FAM dye and that for the endogenous control with VIC® dye.
Example Experiment

For the example experiment, primers and probes for all the genes being studied are obtained from Applied Biosystems Assays-on-Demand™ products. Each assay consists of two unlabeled PCR primers and a FAM™ dye-labeled TaqMan® MGB probe, provided as a 20X assay mix.

In the example experiment, all target probes are labeled with FAM dye; the endogenous control is also labeled with FAM dye.

The following table provides the gene symbol, gene name, and Applied Biosystems Assay ID number (provided on the Web site) for five of the genes studied in the example experiment, plus the endogenous control.

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>Assay ID #</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACVR1</td>
<td>acrosomal vesicle protein I</td>
<td>Hs00153836 m1</td>
</tr>
<tr>
<td>ACVR2</td>
<td>activin A receptor, type II</td>
<td>Hs00155658_m1</td>
</tr>
<tr>
<td>CCR2</td>
<td>chemokine (C-C motif) receptor 2</td>
<td>Hs00174150_m1</td>
</tr>
<tr>
<td>CD3D</td>
<td>CD3D antigen, delta polypeptide (TiT3 complex)</td>
<td>Hs00174158_m1</td>
</tr>
<tr>
<td>FLT4</td>
<td>fms-related tyrosine kinase 4</td>
<td>Hs00176607 m1</td>
</tr>
<tr>
<td>GAPDH</td>
<td>glyceraldehyde-3-phosphate dehydrogenase</td>
<td>Hs99999905 m1</td>
</tr>
</tbody>
</table>
Performing Reverse Transcription

Workflow

1. Introduction and Sample RQ Experiment
2. Designing an RQ Experiment
3. Performing Reverse Transcription
 - Isolate total RNA
 - See page 20
 - Adjust RNA concentration
 - See page 20
 - Convert total RNA to cDNA
 - See page 21
4. Generating Data from RQ Plates
5. Performing an RQ Study

Notes
Guidelines for Preparing RNA

Isolating RNA
Applied Biosystems supplies several instrument systems and chemistries for RNA isolation from a variety of starting materials, such as blood, tissue, cell cultures, and plant material.

<table>
<thead>
<tr>
<th>System</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI PRISM™ 6100 Nucleic Acid PrepStation</td>
<td>6100-01</td>
</tr>
<tr>
<td>Total RNA Chemistry Reagents:</td>
<td></td>
</tr>
<tr>
<td>Nucleic Acid Purification Elution Solution</td>
<td>4305893</td>
</tr>
<tr>
<td>Nucleic Acid Purification Lysis Solution</td>
<td>4305895</td>
</tr>
<tr>
<td>Nucleic Acid Purification Wash Solution I</td>
<td>4305891</td>
</tr>
<tr>
<td>Nucleic Acid Purification Wash Solution II</td>
<td>4305890</td>
</tr>
<tr>
<td>AbsoluteRNA Wash Solution (DNase treatment)</td>
<td>4305545</td>
</tr>
<tr>
<td>Tempus™ Blood RNA Tubes (For collection, stabilization, and isolation of total RNA in whole blood for gene analysis using the 6100 PrepStation)</td>
<td>4342972</td>
</tr>
<tr>
<td>Isolation of Total RNA from Whole Blood and from Cells Isolated from Whole Blood Protocol</td>
<td>4332809</td>
</tr>
<tr>
<td>Tempus™ Blood RNA Tube and Large Volume Consumables Protocol</td>
<td>4345218</td>
</tr>
<tr>
<td>Tissue RNA Isolation: Isolation of Total RNA from Plant and Animal Tissue Protocol</td>
<td>4330252</td>
</tr>
</tbody>
</table>

Quality of RNA
The total RNA you use for RQ experiments should:

- Have an A_{260/280} greater than 1.9
- Be intact when visualized by gel electrophoresis
- Not contain RT or PCR inhibitors

The High Capacity cDNA Archive Kit Protocol (4312169) contains additional guidelines for preparing the RNA template.

Adjusting the Starting Concentration of Total RNA
The High Capacity cDNA Archive Kit is optimized to convert 0.1 to 10 µg of total RNA to cDNA. Convert enough total RNA so that the final concentration of total RNA converted to cDNA is 10 to 100 ng in 5 µL for each 50-µL PCR reaction.
Converting Total RNA to cDNA

Using the High Capacity cDNA Archive Kit

Use the High Capacity cDNA Archive Kit (PN 4322171) to perform the first step (RT) in the two-step RT-PCR method. Follow the manual method for converting total RNA into cDNA, as specified in the High Capacity cDNA Archive Kit Protocol (PN 4322169).

IMPORTANT! The protocol is not shipped with the High Capacity cDNA Archive Kit. Download the protocol from

http://docs.appliedbiosystems.com/search.taf

To search for the document, select ABI PRISM™ 6100 Nucleic Acid PrepStation in the Product list box, then click Search at the bottom of the page. The protocol is listed under the Protocols heading.

Thermal Profile Parameters for RT

The High Capacity cDNA Archive Kit uses the following thermal profile parameters for the RT step.

<table>
<thead>
<tr>
<th>Step Type</th>
<th>Time</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOLD</td>
<td>10 min</td>
<td>25 °C</td>
</tr>
<tr>
<td>HOLD</td>
<td>120 min</td>
<td>37 °C</td>
</tr>
</tbody>
</table>

Note: Thermal cycling conditions for one-step RT-PCR are described on page 30.
Storing cDNA After cDNA conversion, store all cDNA samples at –15 to –25 °C. To minimize repeated freeze-thaw cycles of cDNA, store cDNA samples in aliquots.

WARNING CHEMICAL HAZARD. 10 × RT Buffer may cause eye, skin, and respiratory tract irritation. Read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

Example Experiment

For the example experiment, RNA is extracted from the liver, bladder, and kidney tissues of an individual. RNA concentration is determined spectrophotometrically (using A_{260}), and the RNA is diluted to a final concentration of 50 ng/µL.

The RT master mix is prepared as follows, using guidelines from the *High Capacity cDNA Archive Kit Protocol*:

<table>
<thead>
<tr>
<th>Component</th>
<th>µL/Reaction</th>
<th>µL/21 Reactions<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>10X Reverse Transcription Buffer</td>
<td>10</td>
<td>210</td>
</tr>
<tr>
<td>25X dNTPs</td>
<td>4</td>
<td>84</td>
</tr>
<tr>
<td>10X random primers</td>
<td>10</td>
<td>210</td>
</tr>
<tr>
<td>MultiScribe™ Reverse Transcriptase, 50 U/µL</td>
<td>5</td>
<td>105</td>
</tr>
<tr>
<td>Nuclease-free water</td>
<td>21</td>
<td>441</td>
</tr>
<tr>
<td>Total per reaction</td>
<td>50</td>
<td>1050</td>
</tr>
</tbody>
</table>

^a Each RT reaction is 100 µL (see below). If you need 5 µL cDNA for each of 104 PCR reactions per tissue (see “Creating a Relative Quantification (RQ) Plate Document” on page 26), you need 6 RT reactions per tissue. Extra volume (enough for one additional RT reaction per tissue) is included to account for pipetting losses, as well as extra cDNA for archiving.

The cDNA archive plate is then prepared by pipetting into each well:
 - 50 µL of the RT master mix
 - 30 µL of nuclease-free water
 - 20 µL of RNA sample (bringing the total starting amount of RNA to 1 µg per 100 µL reaction)

The RNA is then converted to cDNA using the thermal cycling parameters for two-step RT-PCR, as described in “Thermal Profile Parameters for RT” on page 21.

The cDNA is stored at –20 °C until use.

Notes
Generating Data from RQ Plates

Workflow

1. Introduction and Sample RQ Experiment
2. Designing an RQ Experiment
3. Performing Reverse Transcription
4. Generating Data from RQ Plates
5. Performing an RQ Study

- Prepare the PCR Master Mix
 - See page 24
- Create a new RQ Plate document
 - See page 26
- Create detectors
 - See page 26
- Program the thermal cycling conditions
 - See page 30
- Save the RQ Plate document
 - See page 31
- Start the run
 - See page 31
- View RQ plate data
 - See page 32

Notes

Absolute Quantification Getting Started Guide for the 7300/7500 System
Before You Begin

Check that background and pure-dye runs have been performed regularly to ensure optimal performance of the 7300/7500 system. For more information about calibrating the 7300/7500 system, refer to the Online Help.

Preparing the PCR Master Mix

The second step (PCR) in the two-step RT-PCR procedure is amplifying the cDNA, which you perform using the TaqMan® Universal PCR Master Mix reagents.

The *TaqMan Universal PCR Master Mix Protocol* (PN 4304449) explains how to use the reagents in the kit. The following table lists the universal assay conditions (volume and final concentration) for using the master mix.

> **CHEMICAL HAZARD.** TaqMan Universal PCR Master Mix may cause eye and skin irritation. Exposure may cause discomfort if swallowed or inhaled. Read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

<table>
<thead>
<tr>
<th>Reaction Component</th>
<th>µL/ Sample</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan Universal PCR Master Mix (2X)</td>
<td>25.0</td>
<td>1×</td>
</tr>
<tr>
<td>Forward primer</td>
<td>5.0</td>
<td>50 to 900 nM</td>
</tr>
<tr>
<td>Reverse primer</td>
<td>5.0</td>
<td>50 to 900 nM</td>
</tr>
<tr>
<td>TaqMan probe</td>
<td>5.0</td>
<td>50 to 250 nM</td>
</tr>
<tr>
<td>cDNA sample</td>
<td>5.0</td>
<td>10 to 100 ng</td>
</tr>
<tr>
<td>Nuclease-free water</td>
<td>5.0</td>
<td>—</td>
</tr>
<tr>
<td>Total</td>
<td>50.0</td>
<td>—</td>
</tr>
</tbody>
</table>

If you design probes and primers using Primer Express software, they must be optimized to work with the universal assay conditions, using the volumes listed in the table above. All Assays-by-Design and Assays-on-Demand products are formulated so that the final concentration of the primers and probes are within the recommended values.
Preparing the Reaction Plate

1. Label the reaction plates, ensuring that you include an endogenous control for each sample type (for example, each tissue in a study comparing multiple tissues). If samples are spread across multiple plates, each plate must have an endogenous control. Additionally, every plate must include an endogenous control for every sample type on the plate.

2. Into each well of the reaction plate, add 50 µL of the appropriate PCR master mix.

3. Keep the reaction plates on ice until you are ready to load them into the 7300/7500 system.

Example Experiment

Primers and probes for the example RQ experiment are obtained from the Assays-on-Demand product line and are provided as a 20X Gene Expression Assay Mix. The PCR master mix is prepared as follows:

<table>
<thead>
<tr>
<th>Reaction Component</th>
<th>µL/ Sample</th>
<th>µL/ 5 Reactionsb</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan Universal PCR Master Mix (2X)</td>
<td>25.0</td>
<td>125.0</td>
<td>1X</td>
</tr>
<tr>
<td>20X Assays-on-Demand™ Gene Expression Assay Mixa</td>
<td>2.5</td>
<td>12.5</td>
<td>1X</td>
</tr>
<tr>
<td>cDNA sample</td>
<td>5.0</td>
<td>25.0</td>
<td>50 ng (for the 50-µL reaction)</td>
</tr>
<tr>
<td>Nuclease-free water</td>
<td>17.5</td>
<td>87.5</td>
<td>—</td>
</tr>
<tr>
<td>Total</td>
<td>50.0</td>
<td>250</td>
<td>—</td>
</tr>
</tbody>
</table>

a. Contains forward and reverse primers and labeled probe.
b. 24 master mixes are prepared, one for each of 23 genes plus the endogenous control. Volume for five reactions (4 replicates plus extra) to account for pipetting losses.

Samples and endogenous controls are arranged on three plates as shown below. 50 µL of PCR master mix containing cDNA are added to each well.

The reactions are kept on ice until the plates are loaded on the 7300/7500 system.

Notes
Creating a Relative Quantification (RQ) Plate Document

Overview
An RQ Plate document stores data collected from an RQ run for a single plate. There must be one RQ Plate document for every RQ plate. RQ Plate documents also store other information, including sample names and detectors.

Run Setup Requirements
For each RQ plate document that you create, specify detectors, endogenous controls, and detector tasks:

- A detector is a virtual representation of a gene-specific nucleic acid probe reagent used in assays. You specify which detector to use for each target sequence. Appendix A explains how to create detectors.

 IMPORTANT! To conduct a comparative analysis of the data in a study, all the plates in the study must contain a common set of detectors.

- An endogenous control(s) (as defined in “Specifying the Components of an RQ Experiment” on page 13). If your experiment consists of multiple plates, each plate must have at least one endogenous control with at least three replicates. If your experiment consists of a single plate with multiple samples, there must be an endogenous control for each sample. All plates in an RQ experiment must use the same endogenous control (for example, GAPDH).

- A detector task specifies how the software uses the data collected from the well during analysis. You apply one of two tasks to each detector in each well of a plate document.

<table>
<thead>
<tr>
<th>Task</th>
<th>Symbol</th>
<th>Apply to detectors of...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>T</td>
<td>Wells that contain PCR reagents for the amplification of target sequences.</td>
</tr>
<tr>
<td>Endogenous Control</td>
<td>E</td>
<td>Wells that contain reagents for the amplification of the endogenous control sequence.</td>
</tr>
</tbody>
</table>
Creating an RQ Plate Document

You can enter sample information into a new plate document, import sample information from existing plate documents, or use a template document to set up new plate documents. This section describes setting up new plate documents. Refer to the Online Help for information about importing sample information or using template documents.

To create a new plate document:

1. Select Start > Programs > Applied Biosystems 7300/7500 > Applied Biosystems 7300/7500 SDS Software to start the SDS software.

2. Select File > New.

3. In the Assay drop-down list of the New Document Wizard, select Relative Quantification (ddCt) Plate. Accept the default settings for Container and Template (96-Well Clear and Blank Document).

 IMPORTANT! You cannot use RQ Plate documents for AQ assays and vice versa. The information stored in AQ and RQ Plate documents is not interchangeable.

4. Enter a name in the Default Plate Name field, or accept the default.

5. Click Next >.

6. Select detectors to add to the plate document.

 a. Click to select a detector. (Ctrl-click to select multiple detectors.) If no detectors are listed in the Detector Manager, create detectors as explained in Appendix A, “Creating Detectors.”

 b. Click Add>>. The detectors are added to the plate document.

 Note: To remove a detector from the Detectors in Document panel, select the detector, then click Remove.

 c. Click Next >.

Notes
7. Specify the detectors and tasks for each well.
 a. Click a well (or group of wells, for replicates) to select it.
 b. Click to select the detector(s) for the well.
 c. Click under the Task column to assign the detector task.
 d. Select Use.
 e. Click Finish.

You cannot add RQ plates to RQ studies unless you have specified sample names, as indicated in the message shown to the right. Click OK.

The SDS software creates the plate document and displays the Well Inspector.

8. Enter the sample names.
 a. In the Well Inspector, click a well or click-drag to select replicate wells.
 b. Enter the sample name.
 c. If necessary, change the setting for the Passive Reference dye. (By default, the ROX™ dye is selected.)
 d. Repeat steps a through c until you specify sample names and passive reference dyes for all the wells on the plate.

IMPORTANT! If your experiment does not use all the wells on a plate, do not omit the wells from use at this point. You can omit unused wells after the run. For information about omitting unused wells, refer to the Online Help.

Note: You can change the sample setup information (sample name, detector, task) after a run is complete.

 e. Close the Well Inspector.
9. Verify the information on each well in the Setup tab.

Example Experiment

In the example RQ experiment, the samples for each of the three tissues (liver, kidney, and bladder) are loaded on three separate plates. Consequently, three RQ Plate documents are created, one for each of the sample plates.

Because the experiment is singleplex, there is only one sample—either a target or endogenous control—in each well. Each well is associated with a detector (indicated by the colored squares). Additionally, each well is assigned a detector task—T (target) or E (endogenous control).

The figure below shows the example RQ Plate document after sample names, detectors, and detector tasks are assigned for each well in the liver plate.

![Example RQ Plate Document](image-url)
Specifying Thermal Cycling Conditions and Starting the Run

Default Thermal Cycling Conditions for PCR

If you selected the two-step RT-PCR method for your RQ experiment (recommended), you have already completed the RT step and are ready to PCR amplify cDNA.

The default thermal cycling conditions for the PCR step of the procedure, shown in the following table, should appear in the Instrument tab.

<table>
<thead>
<tr>
<th>Times and Temperatures (Two-step RT-PCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) RT Step</td>
</tr>
<tr>
<td>HOLD</td>
</tr>
<tr>
<td>HOLD</td>
</tr>
<tr>
<td>10 min @ 25 °C</td>
</tr>
<tr>
<td>120 min @ 37 °C</td>
</tr>
<tr>
<td>* For reference only. RT is complete at this point.</td>
</tr>
<tr>
<td>2) PCR Step</td>
</tr>
<tr>
<td>Initial Steps</td>
</tr>
<tr>
<td>AmpErase® UNG Activation</td>
</tr>
<tr>
<td>AmpLiTaq Gold® DNA Polymerase Activation</td>
</tr>
<tr>
<td>HOLD</td>
</tr>
<tr>
<td>HOLD</td>
</tr>
<tr>
<td>2 min @ 50 °C</td>
</tr>
<tr>
<td>10 min @ 95 °C</td>
</tr>
<tr>
<td>PCR (Each of 40 cycles)</td>
</tr>
<tr>
<td>Melt</td>
</tr>
<tr>
<td>Anneal/Extend</td>
</tr>
<tr>
<td>CYCLE</td>
</tr>
<tr>
<td>15 sec @ 95 °C</td>
</tr>
<tr>
<td>1 min @ 60 °C</td>
</tr>
</tbody>
</table>

Thermal Cycling Conditions for One-Step RT-PCR

If you select the one-step RT-PCR method, cDNA generation and amplification take place simultaneously at this point in the workflow.

The following table shows the thermal cycling conditions for one-step RT-PCR experiments.

Note: Refer to the Online Help for instructions on modifying thermal cycling parameters.

<table>
<thead>
<tr>
<th>Times and Temperatures (One-step RT-PCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Steps</td>
</tr>
<tr>
<td>Reverse Transcription</td>
</tr>
<tr>
<td>AmpliTaq® Gold DNA Polymerase Activation</td>
</tr>
<tr>
<td>HOLD</td>
</tr>
<tr>
<td>HOLD</td>
</tr>
<tr>
<td>30 min @ 48 °C</td>
</tr>
<tr>
<td>10 min @ 95 °C</td>
</tr>
<tr>
<td>PCR (Each of 40 Cycles)</td>
</tr>
<tr>
<td>Melt</td>
</tr>
<tr>
<td>Anneal/Extend</td>
</tr>
<tr>
<td>CYCLE</td>
</tr>
<tr>
<td>15 sec @ 95 °C</td>
</tr>
<tr>
<td>1 min @ 60 °C</td>
</tr>
</tbody>
</table>

Notes
To specify thermal cycling conditions and start the run:

1. Select the Instrument tab.
 By default, the standard PCR conditions for the PCR step of the two-step RT-PCR method are displayed.

2. Verify that:
 - For two-step RT-PCR, the default PCR thermal cycling conditions are set.
 - For one-step RT-PCR, you set the thermal cycling parameters as shown in “Thermal Cycling Conditions for One-Step RT-PCR” on page 30.
 - Sample volume is 50 µL.
 - 9600 Emulation is selected.

 Note: If you are using SYBR Green I chemistry and you want to determine if there is contamination or if you want to determine the dissociation temperature, create a separate Dissociation assay or template. Refer to the Online Help for more information.

 Note: In the 7300 instrument, the 9600 Emulation feature is not available.

3. Select File > Save As, enter a name for the RQ Plate document, then click Save.

4. Load the plate into the instrument.

 Note: The A1 position is in the top-left side of the instrument tray.

5. Click Start.
 As the instrument performs the PCR run, it displays real-time status information in the Instrument tab and records the fluorescence emissions.

 After the run, a message indicates whether or not the run is successful.

 All data generated during the run are saved to the RQ Plate document that you specified in step 3.

Notes
Chapter 4 Generating Data from RQ Plates
Analyzing and Viewing RQ Plate Data

Analyzing and Viewing RQ Plate Data

Starting the Analysis

To analyze RQ Plate data after the run, click or select Analysis > Analyze. The SDS software mathematically transforms the raw fluorescence data to establish a comparative relationship between the spectral changes in the passive reference dye and those of the reporter dyes. Based on that comparison, the software generates four result views: Plate, Spectra, Component, and Amplification Plot.

About the Results Tab

In the Results tab, you can view the results of the run and change the parameters. For example, you can omit samples or manually set the baseline and threshold. If you change any parameters, you should reanalyze the data.

The Results tab has four secondary tabs, each of which is described below. Details are provided in the Online Help.

- To move between views, click a tab.
- To select all 96 wells on a plate, click the upper-left corner of the plate.
- To adjust graph settings, click the y- or x-axes of a plot to display the Graph Settings dialog. The adjustable settings depend on which plot you are viewing.

Notes
Plate Tab
Displays the results data of each well, including the:
- Sample name and detector task and color for each well
- Calculated R_n value

Spectra Tab
Displays the fluorescence spectra of selected wells.
- The Cycles slider allows you to see the spectra for each cycle by dragging it with the pointer.
- The Cycle # text box shows the current position of the slider.

Component Tab
Displays the complete spectral contribution of each dye in a selected well over the duration of the PCR run. Only the first selected well is shown at one time.

Note: If you are using TaqMan® products, three components (ROX® dye, reporter dye, and TAMRA™ quencher) are displayed in the Component tab. If you are using TaqMan® MGB products, only two components (ROX and reporter dyes) are displayed, as shown in the figure on the right.

Amplification Plot Tab
Displays a plot of R_n as a function of cycle number for the selected detector and well(s).
Reanalyzing Data

Raw fluorescence data (spectra), R_n values, and well information (sample name, detector, and detector task) are saved in an RQ plate document.

If you decide to omit wells or change well information after a run is complete, you must reanalyze the data.

Note: After the software analyzes data, the Analyze button is disabled (). Whenever you change a setting that requires reanalysis, the Analyze button is enabled ().

Exporting RQ Plate Data

You can export numeric data from RQ plates into text files, which can then be imported into spreadsheet applications such as Microsoft Excel.

1. Select **File > Export**, then select the data type to export:
 - **Sample Setup** (*.txt)
 - **Calibration Data** (*.csv)
 - **Background Spectra** (*.csv)
 - **Component** (*.csv)
 - **Rn** (*.csv)

 Typically, you export sample setup data for newly created and newly run plates; other data types are exported for existing plates.

2. Enter a file name for the export file.

 Note: The name of the dialog box depends on the type of data you want to export.

3. Click **Save**.
Analyzing Data in an RQ Study

Workflow

1. Introduction and Sample RQ Experiment
2. Designing an RQ Experiment
3. Performing Reverse Transcription
4. Generating Data from RQ Plates
5. Performing an RQ Study
6. Create a new RQ Study document
7. Configure analysis settings
8. Adjust the baseline and threshold
9. Analyze and view results
10. If necessary, omit samples
11. Export the RQ Study document, if desired

See page 36
See page 38
See page 40
See page 45
See page 50
See page 52

Notes
Creating an RQ Study Document

To conduct a comparative analysis of RQ plates in a study, you must first create an RQ Study document.

IMPORTANT! RQ Study software is an optional package for the 7300 instrument but is standard for the 7500 instrument.

The SDS software uses the comparative method \((2^{-\Delta\Delta Ct})\) of relative quantification. For more information about methods of calculating relative quantification, refer to *ABI PRISM® 7700 Sequence Detection System User Bulletin #2* (PN 4303859).

<table>
<thead>
<tr>
<th>In an RQ study, you can...</th>
<th>You cannot</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Select the endogenous control and the calibrator sample.</td>
<td>• Create, add, or modify samples.</td>
</tr>
<tr>
<td>• Select the control type when applicable.</td>
<td>• Create, add, or modify detectors.</td>
</tr>
<tr>
<td>• Set baseline and threshold values and RQ Min/Max Confidence Levels.</td>
<td>• Change detector tasks.</td>
</tr>
<tr>
<td>• Omit individual wells or sample replicates.</td>
<td>(You can perform these operations in RQ Plate documents.)</td>
</tr>
</tbody>
</table>

To create a new RQ Study document:

1. Select File> New.
2. In the Assay drop-down list of the New Document Wizard, select **Relative Quantification (ddCt) Study**. Accept the default settings for Container and Template (**96-Well Clear** and **Blank Document**).
3. Enter a name in the Default Plate Name field, or accept the default.
4. Click Next>.

Notes
5. Add RQ plates to the study.
 a. Click **Add Plates**.

 Note: You can add up to 10 RQ plates to an RQ study.

 b. Select the plate(s) that you want to add to the study, then click **Open**.

 The selected plates are displayed.

 IMPORTANT! All plates added to a study must have identical thermal cycling parameters—the same number of steps, cycles, sample volume, emulation mode. The SDS software will reject a plate if it detects any differences. (The first plate added to the study serves as the reference plate against which other plates are compared.)

6. Click **Finish**. If desired, save the RQ Study document when prompted.

 The SDS software opens a new RQ Study document and displays the RQ Study main view with its three panes:

 a. **RQ Detector grid** – Allows you to select detectors to associate with the loaded study. For each detector, Color, Detector name, Threshold value, Auto Ct, and Baseline are displayed.

 Note: At this point, all the values in the Threshold, Auto Ct, and Baseline columns are set to the default values (0.200000, Manual, and [6,15], respectively).

 b. **RQ Sample grid** – Displays the samples associated with the selected detector(s). The Sample Grid displays numerical results of RQ calculations and has two subtabs: Sample Summary and Well Information.

Notes
c. RQ Results panel – Contains the three results-based tabs: Plate (default), Amplification Plot, and Gene Expression.

Note: You can save the RQ Study document now, or wait until after specifying analysis settings and analyzing the data.

Configuring Analysis Settings

After you create the RQ Study document, you must specify parameter values for the analysis.

Unless you have already determined the optimal baseline and threshold settings for your experiment, use the automatic baseline and threshold feature of the SDS software (auto Ct), explained below. If the baseline and threshold were called correctly for each well, you can proceed to view the results. Otherwise, you must manually set the baseline and threshold as explained in “Manual Baseline and Threshold Determination” on page 40.

To configure analysis settings:

1. Click or select Analysis > Analysis Settings.
2. In the Detector drop-down list, select All.
3. Select Auto Ct. The SDS software automatically generates baseline and threshold values for each well.

IMPORTANT! After analysis, you must verify that the baseline and threshold were called correctly for each well, as explained in “Adjusting the Baseline and Threshold” on page 40.

Alternatively, you can select Manual Ct and specify the threshold and baseline manually.

Notes
4. Select the Calibrator Sample.

Note: If your experiment uses only a single plate, there must be at least two different samples that have different names and have their own endogenous controls. (You can go back to a saved RQ Plate document and change the sample names, if necessary.)

5. Select the Endogenous Control Detector.

6. Select the Control Type if the study contains both multiplex and nonmultiplex reactions.

Note: The Multiplexed or Non-Multiplexed options are active only if the plates loaded for analysis contain both multiplexed and nonmultiplexed reactions that share the same endogenous control.

7. Select the RQ Min/Max Confidence level.

Note: The SDS software uses this value to calculate error bars for gene expression levels, as explained in “Error Bars for Gene Expression Plots” on page 48.

8. Optionally, select **Remove Outliers** to enable the SDS software to automatically identify and filter outliers for groups containing at least four replicates.

Note: You can also remove outliers manually, as explained in “Omitting Samples from a Study” on page 50.

9. Click **OK & Reanalyze**. The detector information appears in the RQ Detector grid.

After analysis, the Threshold column displays the automatically calculated threshold values. The Auto Ct and Baseline columns are set to “Auto.”

For more information about the settings in the Analysis Settings dialog box, refer to the Online Help.

Notes

Absolute Quantification Getting Started Guide for the 7300/7500 System
After the analysis, you must verify that the baseline and threshold were called correctly for each detector, as explained in the following section.

Adjusting the Baseline and Threshold

Automatic Baseline and Threshold Determination

The SDS software calculates baseline and threshold values for a detector based on the assumption that the data exhibit the “typical” amplification curve.

A typical amplification curve has a:

- Plateau phase (a)
- Linear phase (b)
- Geometric phase (c)
- Background (d)
- Baseline (e)

Experimental error (such as contamination, pipetting errors, and so on) can produce data that deviate significantly from data for typical amplification curves. Such atypical data cause the software algorithm to generate incorrect baseline and threshold values for the associated detector.

Therefore, Applied Biosystems recommends reviewing all baseline and threshold values after analysis of the study data. If necessary, adjust the values manually as described on page 43.

Manual Baseline and Threshold Determination

If you set the baseline and threshold values manually for any detector in the study, you must perform the procedure on page 43 for each of the detectors.

The following amplification plots show the effects of baseline and threshold settings.
Baseline Set Correctly
The amplification curve begins after the maximum baseline. No adjustment necessary.

Baseline Set Too Low
The amplification curve begins too far to the right of the maximum baseline. Increase the End Cycle value.

Baseline Set Too High
The amplification curve begins before the maximum baseline. Decrease the End Cycle value.
Adjusting the Baseline and Threshold

Threshold Set Correctly
The threshold is set in the geometric phase of the amplification curve.
Threshold settings above or below the optimum increase the standard error of the replicate groups.

Threshold Set Too Low
The threshold is set below the geometric phase of the amplification curve. The standard error is significantly higher than that for a plot where the threshold is set correctly. Drag the threshold bar up into the geometric phase of the curve.

Threshold Set Too High
The threshold is set above the geometric phase of the amplification curve. The standard error is significantly higher than that for a plot where the threshold is set correctly. Drag the threshold bar down into the geometric phase of the curve.
To manually adjust the baseline and threshold:

1. Select the **Amplification Plot** tab, then select **Delta Rn vs. Cycle** in the Data drop-down list.

2. In the RQ Detector grid, select a detector.

 The SDS software displays the:

 - Associated samples (from all plates included in the study) in the RQ Sample grid.
 - Graph for the selected detector in the RQ Results panel.

 Note: When manually adjusting baseline and threshold settings, you can select only one detector at a time. If you select multiple detectors, the Analysis Settings section and the threshold bar are disabled.

3. Set the baseline for the detector.

 a. Under Analysis Settings, select **Manual Baseline**.
b. Enter values in the Start Cycle and End Cycle fields, ensuring that the amplification curve growth begins at a cycle after the End Cycle value.

Note: After you change a baseline or threshold setting for a detector, the Analyze button (|
|) is enabled, indicating that you must reanalyze the data.

4. Set the threshold for the detector.
 a. Under Analysis Settings, select **Manual Ct**.
 b. Drag the threshold setting bar so the threshold is:
 - Above the background
 - Below the plateaued and linear regions of the amplification curve
 - Within the geometric phase of the amplification curve

 The SDS software adjusts the threshold value and displays it in the Threshold field after reanalyzing.

5. Repeat steps 2 through 3 to set the baseline and threshold values for all remaining detectors in the study.

6. Click |
 | or select **Analysis > Analyze** to reanalyze the data using the adjusted baseline and threshold values.

Notes

Chapter 5 Analyzing Data in an RQ Study
Adjusting the Baseline and Threshold

Absolute Quantification Getting Started Guide for the 7300/7500 System

Analyzing and Viewing the Results of the RQ Study

Selecting Detectors to Include in Results Graphs

In the RQ Detector Grid, select detectors to include in the result graphs by clicking a detector. (Ctrl-click to include multiple detectors; Click-drag to include multiple adjacent detectors.)

The corresponding samples appear in the RQ Sample Grid. Depending on which tab you select in the RQ Results Panel (Plate, Amplification Plot, or Gene Expression), analysis results are displayed.

To see information about a specific well, select the Well Information tab.

Example Experiment

Suppose that you want to view the comparative gene expression levels of the following genes when the liver tissue is used as the calibrator: ACVR1, ACVR2, CCR2, CD3D, and FLT4. Selecting the detectors in the RQ Detector grid (1) displays the sample information in the RQ Sample grid (2) and in a result graph in the RQ Results panel (3). Note that:

- The Gene Expression tab is selected, and the gene expression levels are sorted by detector.
- Gene expression levels for bladder samples are indicated by the green bar; those for kidney samples by the blue bar. These colors also indicate the samples in the RQ Sample Grid and the RQ Results Panel plots.
- Because liver samples are used as calibrators, the expression levels are set to 1. But because the gene expression levels were plotted as log₁₀ values (and the log₁₀ of 1 is 0), the expression level of the calibrator samples appear as 0 in the graph.
- Because the relative quantities of the targets are normalized against the relative quantities of the endogenous control, the expression level of the endogenous control is 0; there are no bars for GAPDH.
- Fold-expression changes are calculated using the equation $2^{-\Delta\Delta CT}$.

Notes
Amplification Plot

The three Amplification Plots allow you to view post-run amplification of specific samples. The Amplification Plots display all samples for selected detectors.

You can adjust graph settings by clicking the y- or x-axes of a plot to display the Graph Settings dialog, as shown on page 32.

Rn vs. Cycle (Linear) View

Displays normalized reporter dye fluorescence (Rn) as a function of cycle. You can use this plot to identify and examine irregular amplification.

For more information about Rn, refer to the SDS Chemistry Guide.

ΔRn vs. Cycle (Log) View

Displays dye fluorescence (ΔRn) as a function of cycle number. You can use this plot to identify and examine irregular amplification and to manually set the threshold and baseline parameters for the run.

Ct vs. Well Position View

Displays threshold cycle (Ct) as a function of well position. You can use this plot to locate outliers from detector data sets (see “Omitting Samples from a Study” on page 50 for more information).

Notes
Gene Expression Plot

Gene Expression plots show the expression level or fold-difference of the target sample relative to the calibrator.

Because the calibrator is compared to itself, the expression level for the calibrator is always 1.

Adjusting Graph Settings

You can adjust graph settings for gene expression plots in the Graph Settings dialog box, including:

- Bar width
- 3D bars
- Autoscaling
- Data display as Log_{10} RQ or Raw RQ

Refer to the Online Help for more information about adjusting graph settings for gene expression plots.

Gene Expression Plot Orientation: Detector

Detectors are plotted on the x-axis, and each bar shows the detector value of a single sample.
Gene Expression Plot Orientation: Sample

Samples are plotted on the x-axis, and each bar shows the set of sample values of a single detector.

Error Bars for Gene Expression Plots

The SDS software displays error bars for each column in the plot provided that the associated expression level was calculated from a group of two or more replicates. The error bars display the calculated maximum (RQMax) and minimum (RQMin) expression levels that represent standard error of the mean expression level (RQ value). Collectively, the upper and lower limits define the region of expression within which the true expression level value is likely to occur.

The SDS software calculates the error bars based on the RQMin/Max Confidence Level in the Analysis Settings dialog box (see page 38).
Reanalyzing an RQ Study

If you change any of the analysis settings, you must reanalyze the data before you can view results. (You can switch between the variations of the Amplification and Gene Expression plots without having to reanalyze the data.)

Suppose you select Liver as the calibrator, then perform an analysis. Next, you view the Amplification and Gene Expression plots. If you then want to use Kidney or Bladder as the calibrator, you need to reanalyze the data before viewing results.

Similarly, if you want to change the baseline or threshold values, the endogenous control, the control type, or the RQ Min/Max parameters, you need to reanalyze your data.

<table>
<thead>
<tr>
<th>Calibrator</th>
<th>Gene Expression Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>![Liver Gene Expression Plot]</td>
</tr>
<tr>
<td>Kidney</td>
<td>![Kidney Gene Expression Plot]</td>
</tr>
<tr>
<td>Bladder</td>
<td>![Bladder Gene Expression Plot]</td>
</tr>
</tbody>
</table>

Notes

Absolute Quantification Getting Started Guide for the 7300/7500 System
Omitting Samples from a Study

Experimental error may cause some wells to amplify insufficiently or not at all. These wells typically produce C_T values that differ significantly from the average for the associated replicate wells. If included in the calculations, these outlying wells (outliers) can result in erroneous measurements.

To ensure precise relative quantification, you must carefully view replicate groups for outliers. You can remove outliers manually using the C_T vs. Well Position Amplification Plot.

To remove samples from an RQ Study:

1. Select the Amplification Plot tab.
2. In the Data drop-down list, select Ct vs. Well Position.
3. In the RQ Detector grid, select a detector to examine. All samples that use this detector are displayed in the RQ Samples grid.
4. In the RQ Samples grid, click to select the samples to display in the Amplification Plot.
5. Verify the uniformity of each replicate population by comparing the groupings of C_T values for the wells that make up the set.

Notes
6. Do one of the following:
 • If outliers are present, select the **Well Information** tab, find the outlying sample, and select the **Omit** check box for the sample.
 • If outliers are not present, go to step 7.

7. Repeat steps 5 and 6 to screen the remaining replicate groups.

8. Select **Analysis > Analyze** () to reanalyze the run without the outlying data.

9. Repeat steps 3 to 8 for other detectors you want to screen.

Notes

Absolute Quantification Getting Started Guide for the 7300/7500 System
Exporting RQ Study Data

You can export numeric data from RQ studies into text files, which can then be imported into spreadsheet applications such as Excel.

1. Select File > Export > Results, then select the data type to export:
 - Sample Summary (*.csv)
 - Well Information (*.csv)
 - Both (*.csv)

 Refer to the Online Help for information about the export file types.

2. Enter a file name for the export file.

 Note: The name of the dialog box depends on the type of data you want to export.

3. Click Save.
Before you can use a plate document to run a plate, you need to create and apply detectors for all samples on the plate. A detector is a virtual representation of a gene- or allele-specific nucleic acid probe reagent used for analyses performed on instruments.

To create a detector:

1. Select Tools > Detector Manager.
 Note: A plate document (any type) must be open before you can access the Tools menu.

2. Select File > New.

3. In the New Detector dialog box, enter a name for the detector.
 IMPORTANT! The name of the detector must be unique and should reflect the target locus of the assay (such as GAPDH or RNase P). Do not use the same name for multiple detectors.

4. Optionally, click the Description field, then enter a brief description of the detector.
5. In the Reporter Dye and Quencher Dye drop-down lists, select the appropriate dyes for the detector.

Note: The dyes that appear on the Reporter and Quencher Dye lists are those that have been previously entered using the Dye Manager. If the dye that you want to use does not appear in a list, use the Dye Manager to add the dye and then return to this step in this procedure. Refer to the Online Help for more information.

Note: Select TAMRA as the quencher for TaqMan™ probes and None for TaqMan MGB probes.

6. Click the **Color** box, select a color to represent the detector using the Color dialog box, then click OK.

7. Optionally, click the **Notes** field, then enter any additional comments for the detector.

8. Click **OK** to save the detector and return to the Detector Manager.

9. Repeat steps 2 through 8 for the remaining detectors.

10. In the Detector Manager, click **Done** when you finish adding detectors.

Example Experiment

In the example RQ experiment, a detector is created for each target gene and the endogenous control. 24 detectors are created: 23 for the target genes and 1 for the endogenous control, GAPDH.

For example, the detector for the ACVR1 gene is named ACVR1 and assigned a yellow color. Because all Assays-on-Demand™ products have probes that are labeled with FAM™ dye, FAM was selected for the reporter dye. Additionally, Assays-on-Demand products use TaqMan MGB probes, which use nonfluorescent quenchers. No quencher dye is selected for the detector.

Note: Assays-on-Demand products are shipped with an assay information file (AIF). This text-based file contains information about the assays that you ordered, including the Applied Biosystems Assay ID number, well-location of each assay, primer concentration, and primer sequence. The file also indicates the reporter dyes and quenchers (if applicable) that are used for each assay. When creating detectors, you use the reporter dye and quencher information (and optionally, the gene name or symbol for the sample name). You can view the contents of AIFs in a spreadsheet program, such as Microsoft Excel.

Notes
References

Index

Numerics
3D bars 47
5′-nuclease assay 15
9600 Emulation Mode 31

A
AIF. See assay information files
AmpErase UNG 16
amplification curve 40
amplification plots
 Amplification Plot view for RQ plates 33
types of amplification plots for RQ studies 45
appearance of graphs 32, 46, 47
Applied Biosystems
 contacting viii
 customer feedback on documentation viii
 Services and Support viii
 Technical Communications viii
 Technical Support viii
assay information files 54
Assays-by-Design 17
Assays-on-Demand 17
autoscaling options 32, 46, 47

B
background in amplification curve 40
bar width 47
baseline
 adjusting 40
definition 3
examples 41

C
calibrating the 7300/7500 instrument 24
calibrator
 definition 13
 selecting in RQ studies 39
CAUTION, description vii
cDNA
 generating 21
 storing 22
 See also reverse transcription
Chemistries 15
comparative method of calculation 3, 36
Component view 33
concentration of RNA 20
certainty levels 39
conventions, text vii
Ct. See threshold cycle
 curves
 amplification 40
 standard 2

D
data
 analyzing 32, 45
 importing 27
 generating PCR data from RQ plates 31
 omitting from a study 50
delta Rn 3
Delta Rn vs.Cycle view 46
designing RQ experiments
 determining reagent configuration 15
 PCR method 12
 primers and probes 17
 selecting the chemistry 15
Detector Manager dialog box 53
detector tasks, definition 26
detectors
 adding to RQ plates 27
 creating 53
 definition 53
 selecting for RQ studies 38
deviation, standard 42
display options 32, 46, 47
documentation, feedback viii
documents
 exporting 34, 52
 RQ Plate 26
 RQ Study 36
templates 27
dyes
 FAM 17, 54
 reporter 3
 ROX 28, 33
Index

dyes (continued)
SYBR Green I 15, 17
TAMRA 33, 54

E
emulation mode, 9600 31
endogenous controls
associating with detectors 26
definition 13
for RQ plates 26
selecting for RQ studies 39
endpoint PCR 2
equipment 4
example RQ experiment
components 14
creating detectors 54
description 5
PCR master mix 25
PCR method 12
reverse transcription 22
RQ Plate document, example 29
RQ Study document, example 45
exporting data
RQ plates 34
RQ studies 52

F
FAM dye 17, 54

G
Gene Expression plots 47
geometric phase of amplification curve 40
graph settings 32, 46, 47
guidelines
preparing RNA 20

H
High Capacity cDNA Archive kit 21

I
importing plate setup information 27
Instrument tab 31

L
line width 32, 46, 47
linear phase of amplification curve 40

M
master mix, PCR 24
materials 4
mode, emulation 31
MSDSs, obtaining viii
multiplex PCR 12

N
New Detector dialog box 53
normalized reporter 3

O
options, display 32, 46, 47
options, graph 32, 46, 47
outliers 50

P
passive reference 3, 28
PCR
end-point 2
master mix, preparing 24
multiplex 12
real-time 2
selecting a method 12
singleplex 12
starting an RQ plate run 31
phases of amplification curve 40
Plate view 33
plate, RQ. See RQ plates
plateau phase of amplification curve 40
plot appearance 32, 46, 47
Primer Express Software 17
primers 17
probes 17, 54

R
reagent configurations 16
real-time PCR assays 2
reference sample. See calibrator
reference, passive 3, 28
relative quantification
comparative method of calculation 3
definition 2
example experiment 5
experiments. See also RQ experiments 2
real-time PCR 2
references 2
RQ plates 3
RQ studies 3
replicates 13
reporter dye 3
Index

Results tab 32
results, RQ Study analysis 45
reverse transcription
 guidelines for preparing RNA 20
 High Capacity cDNA Archive kit 21
 thermal cycling parameters 21
Rn vs. Cycle view 46
Rn. See normalized reporter
RNA
 guidelines for preparing RNA 20
 isolation 20
 starting concentration 20
ROX dye 28, 33
RQ Detector grid 39
RQ experiments
 chemistries 15
 components 13
 probes and primers 17
 reagent configuration 15
 requirements 13
 workflow 2
RQ Main Study view 37
RQ plates
 adding to RQ studies 37
 Amplification Plot view 33
 analyzing 32
 Component view 33
 data types 34
 definition 3
 detectors, creating 53
 exporting data 34
 Plate view 33
 reanalyzing data 34
 results 32
 RQ Plate documents 26
 Spectra view 33
 starting a run 31
RQ Results panel 45
RQ Sample grid 45
RQ studies
 adding RQ plates 37
 Amplification Plots confidence level 39
 control type 39
 data types 52
 definition 3
 exporting data 52
 Gene Expression plots 47
 omitting samples from orientation 47
 reanalyzing data results 45
 RQ Study documents 36
 RT-PCR
 one-step 16, 30
 two-step 16, 30
S
Services and Support, obtaining viii
settings, graph 32, 46, 47
Setup tab 29
singleplex PCR 12
Spectra view 33
standard curves 2
standard deviation, effect of threshold on 42
starting an RQ plate run 31
study, RQ. See RQ studies
SYBR Green I dye chemistry 15
T
TAMRA dye 33, 54
TaqMan chemistry 15
TaqMan MGB probes 18, 54
TaqMan Universal PCR Master Mix 24
target
 associating with detectors 26
 definition 13
tasks. See detector tasks
Technical Communications, contacting viii
Technical Support, contacting viii
template documents 27
text conventions vii
thermal cycling conditions
 default for PCR 30
 one-step RT-PCR 30
 specifying 31
two-step RT-PCR 30
thermal cycling parameters
 for plates added to a study 37
 RT using High Capacity cDNA Archive kit 21
threshold
 adjusting 40
 definition 3
 examples 42
threshold cycle
 definition 3
 setting for RQ studies 38
Training, obtaining information about viii
U
uracil-N-glycosylase 16
Index

W
WARNING, description vii
Well Information tab 45
wells, replicate 13
width, bars 47
width, lines 32, 46, 47
workflow, RQ experiment overview 2

X
x-axis 32, 46, 47

Y
y-axis 32, 46, 47