Instructor: Dr. David L. Kirchman (kirchman@udel.edu

September 16, 1997                                   MAST 634 Lecture 4: Light Reactions 

Important Points from Last Week 
        Review of CO2 chemistry 
        CO2/HCO3- uptake; carbonic anhydrydrase (CA) 
        Cavin-Bassham-Benson Cycle 
        RuBPcase Structure 
        Other carboxylations 

Photosynthesis: Light reactions 
        Basic, of course, to aquatic plants 
        Need to understand to measure plants in marine environment 
                Biomass --> chlorophyll concentrations 
                Growth rates ---> fluorescent properties 

What does a plant need to fix CO2
        ATP 
        NADPH ---> reducing power to reduce CO2 to organic C 

Remember: in chemoautotrophy, oxidization of reduced inorganic compounds produced e- for NAD(P)H and created gradients for ATP synthesis 

We will try to answer the following questions 
        How do plants make ATP from light energy? 
        Where and how do plants get e- to make NADPH? 
        How do marine plants get light? 

General structure of P.S. apparatus answers these questions 
 

 
 
What happens when light hits a pigment? 
        It's now "electronically excited". Energy (E) has to go somewhere. 

1. Heat 
        light E ---> kinetic E = heat 
        very fast process <10-11sec 

2. Fluorescence 
        - E goes off as another photon, i.e. light 
        - relatively slow process 10-8sec 
        - emitted photon has less energy 

What is wave length? 
                         hc               lambda = 700 mM 
       E = hv =  lambda                                E = 171 KJ/einstein 

                                                                 Einstein is a mole of photons 

So, E excited > E emitted 
... excited < emitted 

small amount (3-6%) of total absorbed light goes off as fluorescence = in vivo fluorescence very important in examining plants by remote sensing, growth rates 

3. Exciton transfer; resonance energy 

      hv pigment A ---> pigment B 
          "thing" transferred between pigments is "exciton" 
 
4. Photo-oxidation 
      "Bad"; light absorbed by other compounds, not designed to transfer energy ---> can irreversibly       destroy (oxidize the compound). 
      "Good"; excited Chl ---> photochemistry and eventually production of NADPH and ATP. 

Let's discuss reaction center and electron transfer chain. Next lecture will deal with light harvesting pigments. 
 
 
How is ATP and NADPH made? Answer comes from looking at this equation 
                        CO2 + H2O = CH2O + O2 

      [A side: Goal here is to understand final "answer", not just give it.] 

Known since Priestly in 1772 that plants evolve O2 

But where does O2 come from? 

Modern day experiment 

      use stable isotope of O, 18
      CO2 + H2 18O ----> (CH2O) + 18O2 
i.e., O2 comes from H2

C.B. van Niel at Hopkins Marine Lab (Stanford) 

                                light 
       CO2 + 2H2S ----------> (CH2O) + 2So + H2

                green photosynethic bacteria: example of anoxygenic photosynthesis only bacteria do this 

eukaryotic plants and cyanobacteria: evolve O2 = oxygenic photosynthesis 

van Niel deduced that O2 come from splitting of H2O (oxidation of H2O) 

Anoxygenic P.S. bacteria cannot split O2 

Why not? 
     -depends on pigment in reaction center 
     - reaction center has to become a strong oxidizer to oxidize H2A where A is S (H2S) or O (H2O) 
 

Eo (V)
So + 2e- = H2S
-0.28
O2 + e- = H2O
+0.82
 
 
    deltaE = Epigment - EH2A  
                          acceptor       donor   

     since deltaE>O for deltaG<O 
          Epigment> EH2A 

          Specifically for H2O Epigment > 0.82 

     Another redox problem 

                                                           E 
          NADP+ + H+ + 2e- = NADPH -0.32 

Here: Delta E = ENADP/NADPH- Epigment 
          Epigment < -0.32 

[NOTE: This web program cannot transcribe some greek symbols; this is why "delta" or other characters may be written out] 

Various "solutions" to this problem during evolution of photosynthesis 

Purple bacteria: Cyclic e- transport version of this in oxygenic photosynthesis 
 
 

 

P870 = not strong enough oxidizer for H2O  

P870 = type of bacterial chlorophyll (bchl) 

Px Maximum absorbance at x nm 

Net Result 
      e- flow does set up H + and charge gradient ---> ATP synthesis 
     But no NADPH synthesis 

Where do these bacteria get e- for NAD(P)H? 
      Oxidation of 
          H2
         organics (photo-organotrophs) 

Green Bacteria 

  
 
  
FeS protein strong enough reducer for NADH synthesis 

P840 strong enough oxidizer for S2- oxidation but not water 

Finally, oxygenic photosynthesis: see handout 

Three components in "Z scheme" 

      1. Photosystem II: H2O ---> 1/2 O2 + proton gradient 
      2. Photosystem I: NADP+ ---> NADPH 
      3. Cytochrome b6-f: connection between PSI and II. 

Some evidence for this scheme: action of DCMU 
      - useful herbicide 
      - stops PSII (actually e- exchange at cytochrome b6-f) 
All components are in membranes 
      - only exception in P.S. are some pigments in cyanobacteria, which we will discuss in next lecture. 

Flow of e- 
      Some cyclic ET 
      P 700* goes back to cytochrome b6-f 
      similar process as in purple bacteria 
      but PSII is closer genetically to bacterial (anoxygenic) photosynthesis 

Balance between PSI and PSII 
      Depends on whether NH4+ and NO3- is used as N source 
      NO3- ---> needs more e- ---> more PSI 

ATP synthesis 
      Simple diagram --> see handout 
      See Voet and Voet (p 640) 

Proton-motive force, once again 
      H+ pumped out of stoma into thylakoid 
      H+ pumped out of bacterial cell 
      Creates H+ and charge gradient, but Mg2+ also pumped in and C (symbol: ell)- pumped out of thylakoid space which removes charge gradient.