Instructor: Dr. David L. Kirchman (kirchman@udel.edu

September 11, 1997                                        MAST 634                    Lecture 3: Chemoautotrophy 
 

Important Points from Last Week 

    Review of Gibb's Free Energy 
    Calculation of changes in potential for redox reactions 
    Chemoautotrophy: p 489-495 in Hochachka and Somero on reserve 
    Generation of proton-motive force via oxidation of X and reduction of O2 (O2 is terminal e- acceptor) 
Proton-motive force  
      Gradient in charge and protons across a membrane 
      Present in 
            1) Reverse electron flow of chemoautotrophs 
            2) Oxidative phosphorylation 
            3) Photosynthesis 

How to separate PCR products when they are same site? cloning 

      Useful Web Sites for Illustrations about Cloning and Molecular Biology  

CO2 fixation: Dark reactions of photosynthesis  

      -virtually same for all organisms bacteria to higher plants 

      Chapter 22 in Voet and Voet; p 295-317 in Gottschalk 

      CO2 is the form of inorganic C used by pathway 

  But different mechanisms for getting CO2 

Land plants: CO2 gas, often not a problem fast-growing plants -- C4 plants have Hatch - Slack pathway 

Aquatic plants 
      usually not limiting 
      some question about effect of build up in CO2 conc. on plant growth 

Review of inorganic carbon (DIC)  

      H2O + CO2(g) = H2CO3 = HCO3- + H+ = CO32- + 2H+ 
                                                 bicarbonate         carbonate 

                at seawater pH, mostly HCO3- 

DIC Uptake 

Important to plants and for interpreting 13C as paleo-marker - used as index of past CO2 concentrations 

1. Diffusion of CO2 
      - no charge and small, so diffusion is possible 
      - but can be too slow 
2. Active uptake of CO2 
3. HCO3- uptake 

Carbonic anhydroydrase (CA) mediates this reaction: 

            HCO3- + H+ = CO2 + H2

CA is in many cells, such as in gastric mucosa; creates acidity       p 528 in Voet and Voet 

In plants: 

            "Traps" CO2 in cell, HCO3- can't diffuse out as easily 
            Can help create concentration gradient for CO2 reducing CO2 concentrations  
 

Out
In
CO2 ----------->  CA 

CO2 -----> HCO3- CO2 ---> Rubisco 

- keep internal CO2 low 

- maximizes CO2 diffusion

 

For HCO3- - active uptake, different role for CA; facilitate CO2 formation 
 

HCO3--------> CA 

HCO3- -------> CO2 ----> Rubisco 

+H+

                                                          In this case, need CA to control pH 

Complex picture; several differences among different plants 

What happens after CO2 is in cell? 

Dark reactions: Calvin - Bassham - Benson Cycle  
      - found in all autotrophs ---> bacteria to eukaryotes 
      - chemolithotrophics 

Cycle dissected with 14CO2 
      Stable, abundant C = 12
      radioactive C = 14C half-life of 5700 yr. 

1. First exp's: add 14CO2, look at radioactive organics 
      found 3-P-glycerate (3-PG), suggesting 2-C + 14CO2 = 3-PG 
      but never found 2-C sugar 

2. Next; 
      a) Add 14C ("pulse"); allow plants to take up for some time 
      b) Remove 14CO2 

(Note: This is not a true "pulse-chase" experiment because 14CO2 is not chased with nonradioactive (unlabeled or "cold") CO2, but rather CO2 is removed completely.) 

 
 
 
RuBP = ribulose -1, 5-bisphosphate, a 5C sugar 

Data suggest: RuBP + 14CO2 6C ----> 3PG ----> rest of Calvin cycle 

            Consistent with data 
                    - remove of 14CO2 ----> more RuBP because it's not building up 
                    - 3PG not endproduct because it is used up 

This reaction is the most important reaction of Calvin Cycle 

Full name for enzyme: RuBP carboxylase/oxygenase 
                    Abbreviations: RuPBcase, Rubisco 
 
Two stages of Calvin Cycle  

      1. 3 RuBP + 3 CO2 + 9ATP + 6 NADPH= 6 glyceraldhehyde-3-phosphate (abbreviated as GAP, a 3C   sugar) 

      2. Regenerate RuBP 
            5 of 6 GAP ---> RuBP 
            1 of  6 GAP ---> everything else 

     ... during stage 2: 5C3 ---> 3 C5 

Overall stoichiometry: 3 CO2 + 9ATP + 6NADPH ---> GAP + 9 ADP + 8Pi + 6 NADP+ 

More details on RuBP carboxylase (RuBPcase) 
      50% of leaf protein ---> 
            RuBPcase 4 x 109 tons /y 
            1 production 11 x 109 
            Crude oil consumption 3 x 109 

"Fraction 1" of tobacco = RuBPcase: once thought as possible food source? 

Structure of RuBPcase  
 

Large (L)
Small (S)
Subunit 477 AA 

52 kDa

123 AA 

13 kDa

Total Mass 520 kDA
Function? Catalytic site Regulation (?)
Location of genes  Chloroplasts nucleus
Conserved high low
Exceptions 
      1. Dinoflagellates have both subunits genes in nucleus, another alga with both in chloroplast 
      2. Photosynthetic bacterium Rhodospirullum rubrum has L2 

Mechanism of CO2 fixation: see handout; nucleophilic attack 

Other carboxylations 

ß carboxylation See handout 
 
          Gluconeogenesis 
          PEP carboxykinase 
                    oxaloacetate ----------> PEP 
          Pyruvate carboxylase 
                    oxaloacetate ----------> pyruvate   

C4 Plants --> Hatch and Slack pathway   

          Concentrate CO2 via specialized cells; 
          important enzymes: PEP 
 

 
 
 
Found in C4 plants -grasses; such as marsh grass Spartina 

C3 plants: many including phytoplankton 

Controls on Calvin Cycle  

RuBPcase one of 3 enzymes in cycle with "actual" (delta)G (not delta G) far from equilibrium     -----> candidates for control points  

RuBPcase activity depends on: 
       Light; "dark" reaction, but very expensive so plants have evolved control of 

Two immediate effects on RuBPcase caused by light 
      1. pH effects: pH increases to pH=8.0 with light (protons out of stoma) 
           RuBPcase has max activity at pH 8.0 
      2. Mg2+ stimulates RuBPcase: Mg2+ go into stoma as H+ leave 
      3. In dark, plants synthesize analog of intermediate in CO2 fixation reaction that binds with RuBPcase and thus inhibits it. RuBP carboxylase activase removes this analog. 

Other controls on Calvin cycle: other enzymes (e.g. FBPase) depend on redox state, i.e. whether compounds are oxidized or reduced: 

                    Light---> e- ---> thioredoxin--->e---> reduces FBPase, making it active 
 
 
Oceanographic applications: Correlate RuBPcase activity or amount with plant production 

Photo respiration 
      1960's noticed: plants in life can consume O2 and evolve CO2 

Occurs in conditions of low CO2 and high O2 
                              Rubisco 
            RuBP+ O2 ----------> P-glycolate 
                                                         | 
                                                        \/ 
                                                  Glycolate 

                                          COO- 
                                               | 
                                              \/ 
                                        CH2OH 

Net result: ATP & NADPH used up. Nothing gained? 

Why photorespiration? 
      Left over from world of high CO2, low O2 
      One role: protection of PS apparatus against photodamage 
            Evidence: if you blast chloroplasts without CO2 and O2 ---> kills it. 

      Photorespiration (PR) ---> limits plant growth (land) 
      1) Hot, bright days decrease CO2 in chloroplasts --> P.R. can be high 
      2) Evidence that increases CO2 due to fossil fuel burning increases plant growth